

Buy

MSP430G2333-Q1

SLAS802A-OCTOBER 2013-REVISED MARCH 2014

MSP430G2333-Q1 Automotive Mixed-Signal Microcontroller

1 Features

Texas

INSTRUMENTS

- Qualified for Automotive Applications
- Low Supply-Voltage Range: 1.8 V to 3.6 V
- Ultra-Low-Power Consumption
 - Active Mode: 230 µA at 1 MHz, 2.2 V
 - Standby Mode: 0.5 µA
 - Off Mode (RAM Retention): 0.1 µA
- **Five Power-Saving Modes**
- Ultra-Fast Wakeup From Standby Mode in Less Than 1 µs
- 16-Bit RISC Architecture, 62.5-ns Instruction Cycle Time
- **Basic Clock Module Configurations**
 - Internal Frequencies up to 16 MHz With Four Calibrated Frequency
 - Internal Very-Low-Power Low-Frequency (LF) Oscillator
 - 32-kHz Crystal
 - External Digital Clock Source
- Two 16-Bit Timer A With Three Capture/Compare Registers
- Up to 24 Capacitive-Touch Enabled I/O Pins
- Universal Serial Communication Interface (USCI)
 - Enhanced UART Supports Auto Baudrate Detection (LIN)
 - IrDA Encoder and Decoder
 - Synchronous SPI
 - I²C
- 10-Bit 200-ksps Analog-to-Digital Converter (ADC) With Internal Reference, Sample-and-Hold, and Autoscan
- **Brownout Detector**
- Serial Onboard Programming, No External Programming Voltage Needed, Programmable Code Protection by Security Fuse
- On-Chip Emulation Logic With Spy-Bi-Wire Interface
- Table 1 Summarizes Available Family Members
- Package Options
 - TSSOP: 20 Pin, 28 Pin
- For Complete Module Descriptions, See the MSP430x2xx Family User's Guide (SLAU144)

2 Applications

- **Power Management**
- Sensor Interface
- Capacitive Touch

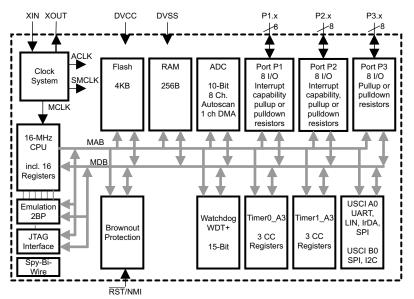
3 Description

The Texas Instruments MSP430[™] family of ultra-lowpower microcontrollers consists of several devices that feature different sets of peripherals targeted for various applications. The architecture, combined with five low-power modes, is optimized to achieve extended battery life in portable measurement applications. The device features a powerful 16-bit RISC CPU, 16-bit registers, and constant generators that contribute to maximum code efficiency. The digitally controlled oscillator (DCO) allows the device to wake up from low-power modes to active mode in less than 1 µs.

The MSP430G2333 devices are ultra-low-power mixed signal microcontrollers with built-in 16-bit timers, up to 24 I/O capacitive-touch enabled pins, a 10-bit A/D converter, and built-in communication capability using the universal serial communication interface. For configuration details, see Table 1.

Typical applications include low-cost sensor systems that capture analog signals, convert them to digital values, and then process the data for display or for transmission to a host system.

Device Information⁽¹⁾


ORDER NUMBER	PACKAGE (PIN)	BODY SIZE
MSP430G2333IPW8RQ1	PW (28)	9.7 mm x 4.4 mm
MSP430G2333IPW0RQ1	PW (20)	6.5 mm x 4.4 mm

(1) For the most current part, package, and ordering information, see the Package Option Addendum at the end of this document, or see the TI web site at www.ti.com.

4 Functional Block Diagram

NOTE: Port P3 is available on 28-pin devices only.

EXAS

STRUMENTS

Table of Contents

1	Feat	ures 1
2	Арр	lications1
3	Des	cription1
4	Fun	ctional Block Diagram 2
5		ision History4
6		ice Characteristics4
7		ninal Configuration and Functions5
•	7.1	20-Pin PW Package (Top View)5
	7.2	28-Pin PW Package (Top View)
	7.3	Terminal Functions
8	Deta	ailed Description8
-	8.1	CPU
	8.2	Instruction Set
	8.3	Operating Modes
	8.4	Interrupt Vector Addresses 10
	8.5	Special Function Registers (SFRs) 11
	8.6	Memory Organization 12
	8.7	Bootstrap Loader (BSL) 12
	8.8	Flash Memory 12
	8.9	Peripherals 13
9	Spe	cifications 18
	9.1	Absolute Maximum Ratings 18
	9.2	Recommended Operating Conditions 18
	9.3	Active Mode Supply Current Into V _{CC} Excluding External Current
	9.4	Typical Characteristics, Active Mode Supply Current (Into V _{CC})
	9.5	Low-Power Mode Supply Currents (Into V _{CC}) Excluding External Current
	9.6	Typical Characteristics, Low-Power Mode Supply Currents
	9.7	Schmitt-Trigger Inputs, Ports Px 21
	9.8	Leakage Current, Ports Px 21
	9.9	Outputs, Ports Px 21
	9.10	Output Frequency, Ports Px 21
	9.11	Typical Characteristics, Outputs 22
	9.12	
	9.13	Typical Characteristics, Pin-Oscillator Frequency
	9.14	POR, BOR 24
	9.15	
	9.16	
	9.17	
	9.18	

		Typical Characteristics, DCO Clock Wakeup Time From LPM3 or LPM4
	9.20	Crystal Oscillator, XT1, Low-Frequency Mode 29
	9.21	Internal Very-Low-Power Low-Frequency Oscillator
	(VLO)
	9.22	Timer_A 29
	9.23	USCI (UART Mode) 30
	9.24	USCI (SPI Master Mode) 30
	9.25	USCI (SPI Slave Mode) 31
	9.26	USCI (I ² C Mode)
	9.27	10-Bit ADC, Power Supply and Input Range Conditions
	9.28	10-Bit ADC, Built-In Voltage Reference
	9.29	10-Bit ADC, External Reference
	9.30	10-Bit ADC, Timing Parameters
	9.31	10-Bit ADC, Linearity Parameters
	9.32	10-Bit ADC, Temperature Sensor and Built-In V _{MID}
	9.33	Flash Memory 36
	9.34	RAM
	9.35	JTAG and Spy-Bi-Wire Interface 37
	9.36	JTAG Fuse 37
10	I/O P	ort Schematics 38
	10.1 ۱	Port P1 Pin Schematic: P1.0 to P1.2, Input/Output Nith Schmitt Trigger
	10.2 S	Port P1 Pin Schematic: P1.3, Input/Output With Schmitt Trigger
	10.3	Port P1 Pin Schematic: P1.4, Input/Output With Schmitt Trigger 42
	10.4	Port P1 Pin Schematic: P1.5 to P1.7, Input/Output Nith Schmitt Trigger
	10.5	Port P2 Pin Schematic: P2.0 to P2.5, Input/Output
		With Schmitt Trigger
	10.6	Port P2 Pin Schematic: P2.6, Input/Output With
	5	Schmitt Trigger 48
	10.7 S	Port P2 Pin Schematic: P2.7, Input/Output With Schmitt Trigger
11	Devi	ce and Documentation Support 52
	11.1	Device Support
	11.2	Documentation Support 54
	11.3	Community Resources 54
	11.4	Trademarks 55
	11.5	Electrostatic Discharge Caution 55
	11.6	Glossary 55
12	Mech	nanical, Packaging, and Orderable
	Infor	mation 55

5 Revision History

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

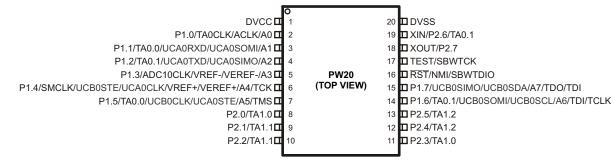
REVISION	DESCRIPTION					
SLAS802	Production Data release					
SLAS802A	Formatting and document organization changes throughout. Removed all device variants except for MSP430G2333. Added Device and Documentation Support and Mechanical, Packaging, and Orderable Information.					

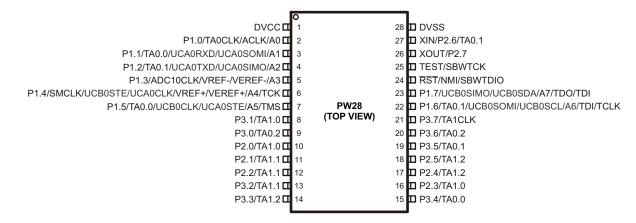
6 Device Characteristics

Table 1. Family Members⁽¹⁾⁽²⁾

Device	BSL	EEM	Flash (KB)	RAM (B)	Timer_A	ADC10 Channel	USCI A0/B0	Clock	I/O	Package Type
								LF,	16	20-TSSOP
MSP430G2333	1	1	4	256	2x TA3	8	1	DCO, VLO	24	28-TSSOP

(1) For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI web site at www.ti.com.


(2) Package drawings, thermal data, and symbolization are available at www.ti.com/packaging.


7 Terminal Configuration and Functions

7.1 20-Pin PW Package (Top View)

NOTE: The pulldown resistors of port P3 should be enabled by setting P3REN.x = 1.

7.2 28-Pin PW Package (Top View)

7.3 Terminal Functions

TERMINAL NO.					
		I/O	DESCRIPTION		
NAME	PW28	PW20			
P1.0/				General-purpose digital I/O pin	
TA0CLK/	2 2		I/O	Timer0_A, clock signal TACLK input	
ACLK/				ACLK signal output	
A0				ADC10 analog input A0	
P1.1/				General-purpose digital I/O pin	
TA0.0/				Timer0_A, capture: CCI0A input, compare: Out0 output / BSL transmit	
UCA0RXD/	3	3	I/O	USCI_A0 receive data input in UART mode	
UCA0SOMI/				USCI_A0 slave data out/master in SPI mode	
A1				ADC10 analog input A1	
P1.2/				General-purpose digital I/O pin	
TA0.1/				Timer0_A, capture: CCI1A input, compare: Out1 output	
UCA0TXD/	4	4	I/O	USCI_A0 transmit data output in UART mode	
UCA0SIMO/				USCI_A0 slave data in/master out in SPI mode	
A2				ADC10 analog input A2	
P1.3/				General-purpose digital I/O pin	
ADC10CLK/	-	-		ADC10, conversion clock output	
A3/	5	5	I/O	ADC10 analog input A3	
VREF-/VEREF-				ADC10 negative reference voltage	
P1.4/				General-purpose digital I/O pin	
SMCLK/			I/O	SMCLK signal output	
UCB0STE/				USCI_B0 slave transmit enable	
UCA0CLK/	6	6		USCI_A0 clock input/output	
A4/				ADC10 analog input A4	
VREF+/VEREF+				ADC10 positive reference voltage	
тск				JTAG test clock, input terminal for device programming and test	
P1.5/				General-purpose digital I/O pin	
TA0.0/				Timer0_A, compare: Out0 output / BSL receive	
UCB0CLK/				USCI_B0 clock input/output	
UCA0STE/	7	7	I/O	USCI_A0 slave transmit enable	
A5/				ADC10 analog input A5	
TMS				JTAG test mode select, input terminal for device programming and test	
P1.6/				General-purpose digital I/O pin	
TA0.1/				Timer0_A, compare: Out1 output	
A6/				ADC10 analog input A6	
UCB0SOMI/	22	14	I/O	USCI_B0 slave out/master in SPI mode,	
UCB0SCL/				USCI_B0 SCL I ² C clock in I ² C mode	
TDI/TCLK				JTAG test data input or test clock input during programming and test	
P1.7/				General-purpose digital I/O pin	
A7/				ADC10 analog input A7	
UCB0SIMO/	23	15	I/O	USCI_B0 slave in/master out in SPI mode	
	23	10	1/0	USCI_B0 SDA I ² C data in I ² C mode	
UCB0SDA/			JTAG test data output terminal or test data input during programming and test		
TDO/TDI					
P2.0/	10	8	I/O	General-purpose digital I/O pin	
TA1.0	Timer1_A, capture: CCI0A input, compare: Out0 output				

Terminal Functions (continued)

TERMINAL NO.						
		I/O	DESCRIPTION			
NAME	PW28	PW20				
P2.1/	4.4	0	1/0	General-purpose digital I/O pin		
TA1.1	11	9	I/O	Timer1_A, capture: CCI1A input, compare: Out1 output		
P2.2/	40	40	I/O	General-purpose digital I/O pin		
TA1.1	12	10	1/0	Timer1_A, capture: CCI1B input, compare: Out1 output		
P2.3/	16	11	I/O	General-purpose digital I/O pin		
TA1.0	16	11	1/0	Timer1_A, capture: CCI0B input, compare: Out0 output		
P2.4/	17	12	I/O	General-purpose digital I/O pin		
TA1.2	17	12	1/0	Timer1_A, capture: CCI2A input, compare: Out2 output		
P2.5/	18	13	I/O	General-purpose digital I/O pin		
TA1.2	10	15	1/0	Timer1_A, capture: CCI2B input, compare: Out2 output		
XIN/				Input terminal of crystal oscillator		
P2.6/	27	19	I/O	General-purpose digital I/O pin		
TA0.1				Timer0_A, compare: Out1 output		
XOUT/	26	18	I/O	Output terminal of crystal oscillator		
P2.7	20	10	1/0	General-purpose digital I/O pin		
P3.0/	9	_	I/O	General-purpose digital I/O pin		
TA0.2	9	-	1/0	Timer0_A, capture: CCI2A input, compare: Out2 output		
P3.1/	8	-	I/O	General-purpose digital I/O pin		
TA1.0	0	-	1/0	Timer1_A, compare: Out0 output		
P3.2/	13	-	I/O	General-purpose digital I/O pin		
TA1.1	15	-	1/0	Timer1_A, compare: Out1 output		
P3.3/	14	_	I/O	General-purpose digital I/O		
TA1.2	14	_	1/0	Timer1_A, compare: Out2 output		
P3.4/	15	-	I/O	General-purpose digital I/O		
TA0.0	10	_	1/0	Timer0_A, compare: Out0 output		
P3.5/	19	-	I/O	General-purpose digital I/O		
TA0.1	10		1/0	Timer0_A, compare: Out1 output		
P3.6/	20	-	I/O	General-purpose digital I/O		
TA0.2	20		1/0	Timer0_A, compare: Out2 output		
P3.7/	21	_	I/O	General-purpose digital I/O		
TA1CLK	21	_	1/0	Timer1_A, clock signal TACLK input		
RST/				Reset		
NMI/	24	16	I	Nonmaskable interrupt input		
SBWTDIO				Spy-Bi-Wire test data input/output during programming and test		
TEST/	25	17	I	Selects test mode for JTAG pins on Port 1. The device protection fuse is connected to TEST.		
SBWTCK				Spy-Bi-Wire test clock input during programming and test		
DVCC	1	1	NA	Digital supply voltage		
DVSS	28	20	NA	Ground reference		

8 Detailed Description

8.1 CPU

The MSP430 CPU has a 16-bit RISC architecture that is highly transparent to the application. All operations, other than program-flow instructions, are performed as register operations in conjunction with seven addressing modes for source operand and four addressing modes for destination operand.

The CPU is integrated with 16 registers that provide reduced instruction execution time. The register-toregister operation execution time is one cycle of the CPU clock.

Four of the registers, R0 to R3, are dedicated as program counter, stack pointer, status register, and constant generator, respectively. The remaining registers are general-purpose registers.

Peripherals are connected to the CPU using data, address, and control buses, and can be handled with all instructions.

The instruction set consists of the original 51 instructions with three formats and seven address modes and additional instructions for the expanded address range. Each instruction can operate on word and byte data.

8.2 Instruction Set

The instruction set consists of 51 instructions with three formats and seven address modes. Each instruction can operate on word and byte data. Table 3 shows examples of the three types of instruction formats; Table 4 shows the address modes.

Instruction Set (continued)

Program Counter	PC/R0
Stack Pointer	SP/R1
Status Register	SR/CG1/R2
Constant Generator	CG2/R3
General-Purpose Register	R4
General-Purpose Register	R5
General-Purpose Register	R6
General-Purpose Register	R7
General-Purpose Register	R8
General-Purpose Register	R9
General-Purpose Register	R10
General-Purpose Register	R11
General-Purpose Register	R12
General-Purpose Register	R13
General-Purpose Register	R14
General-Purpose Register	R15

Table 3. Instruction Word Formats

INSTRUCTION FORMAT	EXAMPLE	OPERATION
Dual operands, source-destination	ADD R4,R5	R4 + R5> R5
Single operands, destination only	CALL R8	PC>(TOS), R8> PC
Relative jump, un/conditional	JNE	Jump-on-equal bit = 0

Table 4. Address Mode Descriptions⁽¹⁾

ADDRESS MODE	S	D	SYNTAX	EXAMPLE	OPERATION			
Register	✓	~	MOV Rs,Rd	MOV R10,R11	R10> R11			
Indexed	~	~	MOV X(Rn),Y(Rm)	MOV 2(R5),6(R6)	M(2+R5)> M(6+R6)			
Symbolic (PC relative)	~	~	MOV EDE,TONI		M(EDE)> M(TONI)			
Absolute	~	~	MOV &MEM,&TCDAT		M(MEM)> M(TCDAT)			
Indirect	✓		MOV @Rn,Y(Rm)	MOV @R10,Tab(R6)	M(R10)> M(Tab+R6)			
Indirect autoincrement	1		MOV @Rn+,Rm	MOV @R10+,R11	M(R10)> R11 R10 + 2> R10			
Immediate	\checkmark		MOV #X,TONI	MOV #45,TONI	#45> M(TONI)			

(1) S =source, D =destination

8.3 Operating Modes

The MSP430 has one active mode and five software selectable low-power modes of operation. An interrupt event can wake up the device from any of the low-power modes, service the request, and restore back to the low-power mode on return from the interrupt program.

The following six operating modes can be configured by software:

- Active mode (AM)
 - All clocks are active
- Low-power mode 0 (LPM0)
 - CPU is disabled
 - ACLK and SMCLK remain active, MCLK is disabled
- Low-power mode 1 (LPM1)
 - CPU is disabled
 - ACLK and SMCLK remain active, MCLK is disabled
 - DCO's dc generator is disabled if DCO not used in active mode
- Low-power mode 2 (LPM2)
 - CPU is disabled
 - MCLK and SMCLK are disabled
 - DCO's dc generator remains enabled
 - ACLK remains active
- Low-power mode 3 (LPM3)
 - CPU is disabled
 - MCLK and SMCLK are disabled
 - DCO's dc generator is disabled
 - ACLK remains active
- Low-power mode 4 (LPM4)
 - CPU is disabled
 - ACLK is disabled
 - MCLK and SMCLK are disabled
 - DCO's dc generator is disabled
 - Crystal oscillator is stopped

8.4 Interrupt Vector Addresses

The interrupt vectors and the power-up starting address are located in the address range 0FFFFh to 0FFC0h. The vector contains the 16-bit address of the appropriate interrupt handler instruction sequence.

If the reset vector (located at address 0FFFEh) contains 0FFFFh (for example, flash is not programmed), the CPU goes into LPM4 immediately after power-up.

	Table 5. Interrupt Sources, Flag			
INTERRUPT SOURCE	INTERRUPT FLAG	SYSTEM INTERRUPT	WORD ADDRESS	PRIORITY
Power-Up External Reset Watchdog Timer+ Flash key violation PC out-of-range ⁽¹⁾	PORIFG RSTIFG WDTIFG KEYV ⁽²⁾	Reset	0FFFEh	31, highest
NMI Oscillator fault Flash memory access violation	NMIIFG OFIFG ACCVIFG ⁽²⁾⁽³⁾	(non)-maskable (non)-maskable (non)-maskable	0FFFCh	30
Timer1_A3	TACCR0 CCIFG ⁽⁴⁾	maskable	0FFFAh	29
Timer1_A3	TACCR2 TACCR1 CCIFG, TAIFG ⁽²⁾⁽⁴⁾	maskable	0FFF8h	28
			0FFF6h	27
Watchdog Timer+	WDTIFG	maskable	0FFF4h	26
Timer0_A3	TACCR0 CCIFG ⁽⁴⁾	maskable	0FFF2h	25
Timer0_A3	TACCR2 TACCR1 CCIFG, TAIFG (5)(4)	maskable	0FFF0h	24
USCI_A0, USCI_B0 receive USCI_B0 I ² C status	UCA0RXIFG, UCB0RXIFG ⁽²⁾⁽⁵⁾	maskable	0FFEEh	23
USCI_A0, USCI_B0 transmit USCI_B0 I ² C receive or transmit	UCA0TXIFG, UCB0TXIFG ⁽²⁾⁽⁶⁾	maskable	0FFECh	22
ADC10	ADC10IFG ⁽⁴⁾	maskable	0FFEAh	21
			0FFE8h	20
I/O Port P2 (up to eight flags)	P2IFG.0 to P2IFG.7 ⁽²⁾⁽⁴⁾	maskable	0FFE6h	19
I/O Port P1 (up to eight flags)	P1IFG.0 to P1IFG.7 ⁽²⁾⁽⁴⁾	maskable	0FFE4h	18
			0FFE2h	17
			0FFE0h	16
See ⁽⁷⁾			0FFDEh	15
See ⁽⁸⁾			0FFDEh to 0FFC0h	14 to 0, lowest

Table 5. Interrupt Sources, Flags, and Vectors

(1) A reset is generated if the CPU tries to fetch instructions from within the module register memory address range (0h to 01FFh) or from within unused address ranges.

(2) Multiple source flags

(3) (non)-maskable: the individual interrupt-enable bit can disable an interrupt event, but the general interrupt enable cannot.

(4) Interrupt flags are located in the module.

(5) In SPI mode: UCB0RXIFG. In I²C mode: UCALIFG, UCNACKIFG, ICSTTIFG, UCSTPIFG.

(6) In UART/SPI mode: UCB0TXIFG. In I²C mode: UCB0RXIFG, UCB0TXIFG.

(7) This location is used as bootstrap loader security key (BSLSKEY). A 0xAA55 at this location disables the BSL completely. A zero (0h) disables the erasure of the flash if an invalid password is supplied.

(8) The interrupt vectors at addresses 0FFDEh to 0FFC0h are not used in this device and can be used for regular program code if necessary.

rw-0

rw-0

rw-0

8.5 Special Function Registers (SFRs)

Most interrupt and module enable bits are collected into the lowest address space. Special function register bits not allocated to a functional purpose are not physically present in the device. Simple software access is provided with this arrangement.

Legend	rw:	Bit can be read and written.
	rw-0,1:	Bit can be read and written. It is reset or set by PUC.
	rw-(0,1):	Bit can be read and written. It is reset or set by POR.
		SFR bit is not present in device.

Table 6. Interrupt Enable Register 1 and 2

Address	7	6	5	4	3	2	1	0	
00h			ACCVIE	NMIIE			OFIE	WDTIE	
			rw-0	rw-0			rw-0	rw-0	
WDTIE	Watchdog Timer interrupt enable. Inactive if watchdog mode is selected. Active if Watchdog Timer is configured in interval timer mode.								
OFIE	Oscillator	fault interrupt e	nable						
NMIIE	(Non)mas	skable interrupt	enable						
ACCVIE	Flash acc	ess violation in	terrupt enable						
Address	7	6	5	4	3	2	1	0	
01h					UCB0TXIE	UCBORXIE	UCA0TXIE	UCA0RXIE	

		rw-0
UCA0RXIE	USCI_A0 receive interrupt enable	
UCA0TXIE	USCI_A0 transmit interrupt enable	
UCB0RXIE	USCI_B0 receive interrupt enable	

OCBURAIE	USCI_D0 receive interrupt enable
UCB0TXIE	USCI_B0 transmit interrupt enable

Table 7. Interrupt Flag Register 1 and 2

					0				
Address	7	6	5	4	3	2	1	0	
02h				NMIIFG	RSTIFG	PORIFG	OFIFG	WDTIFG	
				rw-0	rw-(0)	rw-(1)	rw-1	rw-(0)	
WDTIFG					security key viola NMI pin in reset				
OFIFG	Flag set o	Flag set on oscillator fault.							
PORIFG	Power-Or	n Reset interrup	ot flag. Set on V ₀	_{CC} power-up.					
RSTIFG	External r	eset interrupt fl	ag. Set on a res	et condition at	RST/NMI pin in I	reset mode. Res	et on V _{CC} powe	er-up.	
NMIIFG	Set via R	ST/NMI pin							
Address	7	6	5	4	3	2	1	0	
03h					UCB0TXIFG	UCBORXIFG	UCA0TXIFG	UCA0RXIFG	
					rw-1	rw-0	rw-1	rw-0	
UCA0RXIFG	USCI_A0	receive interru	pt flag						
UCA0TXIFG	USCI_A0	transmit interru	upt flag						
UCBORXIFG	USCI_B0	receive interru	pt flag						
UCB0TXIFG	USCI_B0	transmit interru	upt flag						

8.6 Memory Organization

		MSP430G2333
Memory	Size	4kB
Main: interrupt vector	Flash	0xFFFF to 0xFFC0
Main: code memory	Flash	0xFFFF to 0xF000
Information memory	Size	256 Byte
	Flash	010FFh to 01000h
RAM	Size	256 Byte
		0x02FF to 0x0200
Peripherals	16-bit	01FFh to 0100h
	8-bit	0FFh to 010h
	8-bit SFR	0Fh to 00h

Table 8. Memory Organization

8.7 Bootstrap Loader (BSL)

The MSP430 BSL enables users to program the flash memory or RAM using a UART serial interface. Access to the MSP430 memory via the BSL is protected by user-defined password. For complete description of the features of the BSL and its implementation, see the *MSP430 Programming Via the Bootstrap Loader User's Guide* (SLAU319).

Table 9. BSL Function Pins

BSL FUNCTION	20-PIN PW PACKAGE	28-PIN PW PACKAGE
Data transmit	3 - P1.1	3 - P1.1
Data receive	7 - P1.5	7 - P1.5

8.8 Flash Memory

The flash memory can be programmed via the Spy-Bi-Wire/JTAG port or in-system by the CPU. The CPU can perform single-byte and single-word writes to the flash memory. Features of the flash memory include:

- Flash memory has n segments of main memory and four segments of information memory (A to D) of 64 bytes each. Each segment in main memory is 512 bytes in size.
- Segments 0 to n may be erased in one step, or each segment may be individually erased.
- Segments A to D can be erased individually or as a group with segments 0 to n. Segments A to D are also called *information memory*.
- Segment A contains calibration data. After reset segment A is protected against programming and erasing. It can be unlocked but care should be taken not to erase this segment if the device-specific calibration data is required.

8.9 Peripherals

Peripherals are connected to the CPU through data, address, and control buses and can be handled using all instructions. For complete module descriptions, see the MSP430x2xx Family User's Guide (SLAU144).

8.9.1 Oscillator and System Clock

The clock system is supported by the basic clock module that includes support for a 32768-Hz watch crystal oscillator, an internal very-low-power low-frequency oscillator and an internal digitally controlled oscillator (DCO). The basic clock module is designed to meet the requirements of both low system cost and low power consumption. The internal DCO provides a fast turn-on clock source and stabilizes in less than 1 us. The basic clock module provides the following clock signals:

- Auxiliary clock (ACLK), sourced either from a 32768-Hz watch crystal or the internal LF oscillator.
- Main clock (MCLK), the system clock used by the CPU.
- Sub-Main clock (SMCLK), the sub-system clock used by the peripheral modules.

The DCO settings to calibrate the DCO output frequency are stored in the information memory segment A.

8.9.2 Calibration Data Stored in Information Memory Segment A

Calibration data is stored for both the DCO and for ADC10 organized in a tag-length-value structure.

NAME	ADDRESS	VALUE	DESCRIPTION				
TAG_DCO_30	0x10F6	0x01	DCO frequency calibration at V_{CC} = 3 V and T_A = 30°C at calibration				
TAG_ADC10_1	0x10DA	0x10	ADC10_1 calibration tag				
TAG_EMPTY	-	0xFE	Identifier for empty memory areas				

Table 10, Tags Used by the ADC Calibration Tags

Table 11. Labels Used by the ADC Calibration Tags							
LABEL	ADDRESS OFFSET	SIZE	CONDITION AT CALIBRATION / DESCRIPTION				
CAL_ADC_25T85	0x0010	word	INCHx = 0x1010, REF2_5 = 1, T _A = 85°C				
CAL_ADC_25T30	0x000E	word	INCHx = 0x1010, REF2_5 = 1, T _A = 30°C				
CAL_ADC_25VREF_FACTOR	0x000C	word	REF2_5 = 1, $T_A = 30^{\circ}C$, $I_{VREF+} = 1 \text{ mA}$				
CAL_ADC_15T85	0x000A	word	INCHx = 0x1010, REF2_5 = 0, T _A = 85°C				
CAL_ADC_15T30	0x0008	word	INCHx = 0x1010, REF2_5 = 0, T _A = 30°C				
CAL_ADC_15VREF_FACTOR	0x0006	word	REF2_5 = 0, $T_A = 30^{\circ}$ C, $I_{VREF+} = 0.5$ mA				
CAL_ADC_OFFSET	0x0004	word	External VREF = 1.5 V, f _{ADC10CLK} = 5 MHz				
CAL_ADC_GAIN_FACTOR	0x0002	word	External VREF = 1.5 V, f _{ADC10CLK} = 5 MHz				
CAL_BC1_1MHZ	0x0009	byte	-				
CAL_DCO_1MHZ	0x0008	byte	-				
CAL_BC1_8MHZ	0x0007	byte	-				
CAL_DCO_8MHZ	0x0006	byte	-				
CAL_BC1_12MHZ	0x0005	byte	-				
CAL_DCO_12MHZ	0x0004	byte	-				
CAL_BC1_16MHZ	0x0003	byte	-				
CAL_DCO_16MHZ	0x0002	byte	-				

Table 44 Labela Llagd by the ADC Calibratian

8.9.3 Brownout

The brownout circuit is implemented to provide the proper internal reset signal to the device during power on and power off.

Copyright © 2013-2014, Texas Instruments Incorporated

8.9.4 Digital I/O

Up to three 8-bit I/O ports are implemented:

- All individual I/O bits are independently programmable.
- Any combination of input, output, and interrupt condition (port P1 and port P2 only) is possible.
- Edge-selectable interrupt input capability for all bits of port P1 and port P2 (if available).
- Read/write access to port-control registers is supported by all instructions.
- Each I/O has an individually programmable pullup/pulldown resistor.
- Each I/O has an individually programmable pin oscillator enable bit to enable low-cost capacitive touch detection.

8.9.5 WDT+ Watchdog Timer

The primary function of the watchdog timer (WDT+) module is to perform a controlled system restart after a software problem occurs. If the selected time interval expires, a system reset is generated. If the watchdog function is not needed in an application, the module can be disabled or configured as an interval timer and can generate interrupts at selected time intervals.

8.9.6 Timer_A3 (TA0, TA1)

Timer0_A3 and Timer1_A3 are 16-bit timers/counters with three capture/compare registers. Timer_A3 can support multiple capture/compares, PWM outputs, and interval timing. Timer_A3 also has extensive interrupt capabilities. Interrupts may be generated from the counter on overflow conditions and from each of the capture/compare registers.

INPUT PIN NUMBER		DEVICE INPUT	MODULE	MODULE	MODULE	OUTPUT PIN NUMBER	
PW20	PW28	SIGNAL	INPUT NAME	BLOCK	OUTPUT SIGNAL	PW20	PW28
P1.0-2	P1.0-2	TACLK	TACLK				
		ACLK	ACLK	Timer	NIA		
		SMCLK	SMCLK		NA		
PinOsc	PinOsc	TACLK	INCLK				
P1.1-3	P1.1-3	TA0.0	CCI0A	CCR0		P1.1-3	P1.1-3
		ACLK	CCI0B		TAO	P1.5-7	P1.5-7
		V _{SS}	GND			-	P3.4-15
		V _{CC}	V _{CC}				
P1.2-4	P1.2-4	TA0.1	CCI1A			P1.2-4	P1.2-4
		CAOUT	CCI1B	0004		P1.6-14	P1.6-22
		V _{SS}	GND	CCR1	TA1	P2.6-19	P2.6-27
		V _{CC}	V _{CC}			-	P3.5-19
-	P3.0-9	TA0.2	CCI2A			-	P3.0-9
PinOsc	PinOsc	TA0.2	CCI2B	CCR2	T A0	-	P3.6-20
		V _{SS}	GND		TA2		
		V _{CC}	V _{CC}				

Table 12. Timer0_A3 Signal Connections

INPUT PIN NUMBER		DEVICE INPUT	MODULE	MODULE	MODULE	OUTPUT P	IN NUMBER
PW20	PW28	SIGNAL INPUT NAME BLOCK SIGNAL		PW20	PW28		
-	P3.7-21	TACLK	TACLK				
		ACLK	ACLK	Timer	NA		
		SMCLK	SMCLK	Timer	INA		
-	P3.7-21	TACLK	INCLK				
P2.0-8	P2.0-10	TA1.0	CCI0A			P2.0-8	P2.0-10
P2.3-11	P2.3-16	TA1.0	CCI0B	0000	TAO	P2.3-11	P2.3-16
		V _{SS}	GND	CCR0			P3.1-8
		V _{CC}	V _{CC}				
P2.1-9	P2.1-11	TA1.1	CCI1A			P2.1-9	P2.1-11
P2.2-10	P2.2-12	TA1.1	CCI1B	0004	T 4	P2.2-10	P2.2-12
		V _{SS}	GND	CCR1	TA1		P3.2-13
		V _{CC}	V _{CC}				
P2.4-12	P2.4-17	TA1.2	CCI2A			P2.4-12	P2.4-17
P2.5-13	P2.5-18	TA1.2	CCI2B	0000	TAO	P2.5-13	P2.5-18
		V _{SS}	GND	CCR2	TA2		P3.3-14
		V _{CC}	V _{CC}				

Table 13. Timer1_A3 Signal Connections

8.9.7 Universal Serial Communications Interface (USCI)

The USCI module is used for serial data communication. The USCI module supports synchronous communication protocols such as SPI (3 or 4 pin) and I²C, and asynchronous communication protocols such as UART, enhanced UART with automatic baudrate detection (LIN), and IrDA. Not all packages support the USCI functionality.

USCI_A0 provides support for SPI (3 or 4 pin), UART, enhanced UART, and IrDA.

USCI_B0 provides support for SPI (3 or 4 pin) and I^2C .

8.9.8 ADC10

The ADC10 module supports fast 10-bit analog-to-digital conversions. The module implements a 10-bit SAR core, sample select control, reference generator, and data transfer controller (DTC) for automatic conversion result handling, allowing ADC samples to be converted and stored without any CPU intervention.

8.9.9 Peripheral File Map

MODULE	REGISTER DESCRIPTION	REGISTER NAME	OFFSET
ADC10	ADC data transfer start address	ADC10SA	1BCh
	ADC data transfer start address ADC data transfer start address ADC memory ADC control register 1 ADC control register 0 ADC control register 0 Capture/compare register Capture/compare register Capture/compare register Capture/compare register Capture/compare control Capture/compare control Capture/compare control Capture/compare control Capture/compare register Timer_A control Timer_A interrupt vector A3 Capture/compare register Capture/compare control Capture/compare register Capture/compare control Timer_A interrupt vector A3 Capture/compare register Capture/compare register Capture/compare register Capture/compare register Capture/compare register Capture/compare control Capture/compare control Capture/compare control Capture/compare control	ADC10MEM	1B4h
	ADC control register 1	ADC10CTL1	1B2h
	ADC control register 0	ADC10CTL0	1B0h
Timer1_A3	Capture/compare register	TA1CCR2	0196h
	MODULEREGISTER DESCRIPTIONNAMEC10ADC data transfer start addressADC10SADC memoryADC10MEADC control register 1ADC10CTADC control register 0ADC10CTer1_A3Capture/compare registerTA1CCRCapture/compare registerTA1CCRCapture/compare registerTA1CCRCapture/compare registerTA1CCRCapture/compare controlTA1CCTLCapture/compare controlTA1CCTLCapture/compare controlTA1CCTLCapture/compare controlTA1CCTLCapture/compare registerTA0CCRCapture/compare registerTA0CCTLCapture/compare registerTA0CCRCapture/compare registerTA0CCRCapture/compare registerTA0CCRCapture/compare registerTA0CCRCapture/compare registerTA0CCRCapture/compare registerTA0CCRCapture/compare registerTA0CCRCapture/compare controlTA0CCTLCapture/compare controlTA0CCRCapture/compare controlTA0CCRCapture/compare controlTA0CCTLCapture/compare controlTA0CCTLCapture/compare controlTA0CCTLCapture/compare controlTA0CCTLCapture/compare controlTA0CCTLCapture/compare controlTA0CCTLCapture/compare controlTA0CCTLCapture/compare controlTA0CCTLCapture/compare controlTA0CCTLCapture/compare controlTA0CCTLCapture/	TA1CCR1	0194h
	Capture/compare register	TA1CCR0	0192h
	MODULERegister DescriptionName10ADC data transfer start addressADC for ADC memoryADC for ADC for ADC control register 1ADC for 	TA1R	0190h
	Capture/compare control	TA1CCTL2	0186h
	Capture/compare control	TA1CCTL1	0184h
	Capture/compare control	TA1CCTL0	0182h
	Timer_A control	TA1CTL	0180h
	Timer_A interrupt vector	TA1IV	011Eh
Timer0_A3	Capture/compare register	TA0CCR2	0176h
	Capture/compare register	TA0CCR1	0174h
	Capture/compare register	TA0CCR0	0172h
	Timer_A register	TAOR	0170h
	Capture/compare control	TA0CCTL2	0166h
	Capture/compare control	TA0CCTL1	0164h
	Capture/compare control	TA0CCTL0	0162h
	Timer_A control	TA0CTL	0160h
	Timer_A interrupt vector	TA0IV	012Eh
Flash Memory	Flash control 3	FCTL3	012Ch
	Flash control 2	FCTL2	012Ah
	Flash control 1	FCTL1	0128h
Watchdog Timer+	Watchdog/timer control	WDTCTL	0120h

Table 14. Peripherals With Word Access

Table 15. Peripherals With Byte Access

MODULE	REGISTER DESCRIPTION	REGISTER NAME	OFFSET
USCI_B0	USCI_B0 transmit buffer	UCB0TXBUF	06Fh
	USCI_B0 receive buffer	UCBORXBUF	06Eh
	USCI_B0 status	UCB0STAT	06Dh
	USCI B0 I ² C Interrupt enable	UCB0CIE	06Ch
	USCI_B0 bit rate control 1	UCB0BR1	06Bh
	USCI_B0 bit rate control 0	UCB0BR0	06Ah
	USCI_B0 control 1	UCB0CTL1	069h
	USCI_B0 control 0	UCB0CTL0	068h
	USCI_B0 I ² C slave address	UCB0SA	011Ah
	USCI_B0 I ² C own address	UCB0OA	0118h

MODULE	REGISTER DESCRIPTION	REGISTER NAME	OFFSET
USCI_A0	USCI_A0 transmit buffer	UCA0TXBUF	067h
	USCI_A0 receive buffer	UCA0RXBUF	066h
	USCI_A0 status	UCA0STAT	065h
	USCI_A0 modulation control	UCA0MCTL	064h
	USCI_A0 baud rate control 1	UCA0BR1	063h
	USCI_A0 baud rate control 0	UCA0BR0	062h
	USCI_A0 control 1	UCA0CTL1	061h
	USCI_A0 control 0	UCA0CTL0	060h
	USCI_A0 IrDA receive control	UCA0IRRCTL	05Fh
	USCI_A0 IrDA transmit control	UCA0IRTCTL	05Eh
	USCI_A0 auto baud rate control	UCA0ABCTL	05Dh
ADC10	ADC analog enable 0	ADC10AE0	04Ah
	ADC analog enable 1	ADC10AE1	04Bh
	ADC data transfer control register 1	ADC10DTC1	049h
	ADC data transfer control register 0	ADC10DTC0	048h
Basic Clock System+	Basic clock system control 3	BCSCTL3	053h
	Basic clock system control 2	BCSCTL2	058h
	Basic clock system control 1	BCSCTL1	057h
	DCO clock frequency control	DCOCTL	056h
Port P3	Port P3 selection 2. pin	P3SEL2	043h
(28-pin PW only)	Port P3 resistor enable	P3REN	010h
	Port P3 selection	P3SEL	01Bh
	Port P3 direction	P3DIR	01Ah
	Port P3 output	P3OUT	019h
	Port P3 input	P3IN	018h
Port P2	Port P2 selection 2	P2SEL2	042h
	Port P2 resistor enable	P2REN	02Fh
	Port P2 selection	P2SEL	02Eh
	Port P2 interrupt enable	P2IE	02Dh
	Port P2 interrupt edge select	P2IES	02Ch
	Port P2 interrupt flag	P2IFG	02Bh
	Port P2 direction	P2DIR	02Ah
	Port P2 output	P2OUT	029h
	Port P2 input	P2IN	028h
Port P1	Port P1 selection 2	P1SEL2	041h
	Port P1 resistor enable	P1REN	027h
	Port P1 selection	P1SEL	026h
	Port P1 interrupt enable	P1IE	025h
	Port P1 interrupt edge select	P1IES	024h
	Port P1 interrupt flag	P1IFG	023h
	Port P1 direction	P1DIR	022h
	Port P1 output	P1OUT	021h
	Port P1 input	P1IN	020h
Special Function	SFR interrupt flag 2	IFG2	003h
	SFR interrupt flag 1	IFG1	002h
	SFR interrupt enable 2	IE2	001h
	SFR interrupt enable 1	IE1	000h

Table 15. Peripherals With Byte Access (continued)

Copyright © 2013–2014, Texas Instruments Incorporated

9 Specifications

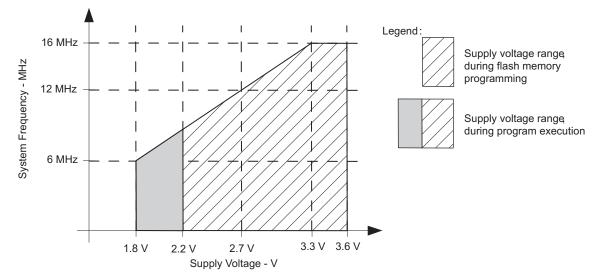
9.1 Absolute Maximum Ratings⁽¹⁾

Voltage applied at V_{CC} to V_{SS}		
Voltage applied to any pin ⁽²⁾		–0.3 V to V _{CC} + 0.3 V
Diode current at any device pin		±2 mA
Starage temperature renge T (3)	Unprogrammed device	–55°C to 150°C
Storage temperature range, T _{stg} ⁽³⁾	Programmed device	–55°C to 150°C

(1) Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

(2) All voltages referenced to V_{SS}. The JTAG fuse-blow voltage, V_{FB}, is allowed to exceed the absolute maximum rating. The voltage is applied to the TEST pin when blowing the JTAG fuse.

(3) Higher temperature may be applied during board soldering according to the current JEDEC J-STD-020 specification with peak reflow temperatures not higher than classified on the device label on the shipping boxes or reels.


9.2 Recommended Operating Conditions

Typical values are specified at V_{CC} = 3.3 V and T_A = 25°C (unless otherwise noted)

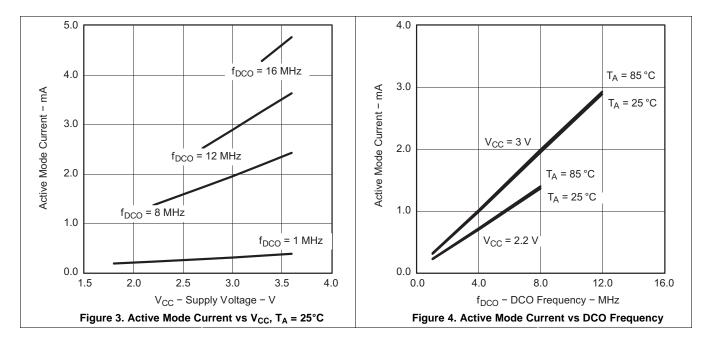
			MIN	NOM	MAX	UNIT
		During program execution	1.8		3.6	
		During flash programming and erase	2.2		3.6	V
V _{SS}	/ _{SS} Supply voltage			0		V
T _A	Γ _A Operating free-air temperature		-40		85	°C
		V _{CC} = 1.8 V, Duty cycle = 50% ± 10%	dc		6	
f _{SYSTEM}	Processor frequency (maximum MCLK frequency using the USART module) $^{(1)(2)}$	$V_{CC} = 2.7 V$, Duty cycle = 50% ± 10%	dc		12	MHz
		$V_{CC} = 3.3 V,$ Duty cycle = 50% ± 10%	dc		16	

(1) The MSP430 CPU is clocked directly with MCLK. Both the high and low phase of MCLK must not exceed the pulse duration of the specified maximum frequency.

(2) Modules might have a different maximum input clock specification. See the specification of the respective module in this data sheet.

Note: Minimum processor frequency is defined by system clock. Flash program or erase operations require a minimum V_{CC} of 2.2 V.

9.3 Active Mode Supply Current Into V_{cc} Excluding External Current


over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)⁽¹⁾⁽²⁾

PARAMETER	TEST CONDITIONS	T _A	V _{cc}	MIN TYP	MAX	UNIT
	$f_{DCO} = f_{MCLK} = f_{SMCLK} = 1 \text{ MHz},$		2.2 V	230		
Active mode (AM) I _{AM,1MHz} current at 1 MHz	$ f_{ACLK} = 0 \text{ Hz}, \\ Program executes in flash, \\ BCSCTL1 = CALBC1_1MHZ, \\ DCOCTL = CALDCO_1MHZ, \\ CPUOFF = 0, SCG0 = 0, SCG1 = 0, \\ OSCOFF = 0 $		3 V	330	420	μΑ

(1) All inputs are tied to 0 V or to V_{CC}. Outputs do not source or sink any current.

(2) The currents are characterized with a Micro Crystal CC4V-T1A SMD crystal with a load capacitance of 9 pF. The internal and external load capacitance is chosen to closely match the required 9 pF.

9.4 Typical Characteristics, Active Mode Supply Current (Into V_{cc})

TEXAS INSTRUMENTS

www.ti.com

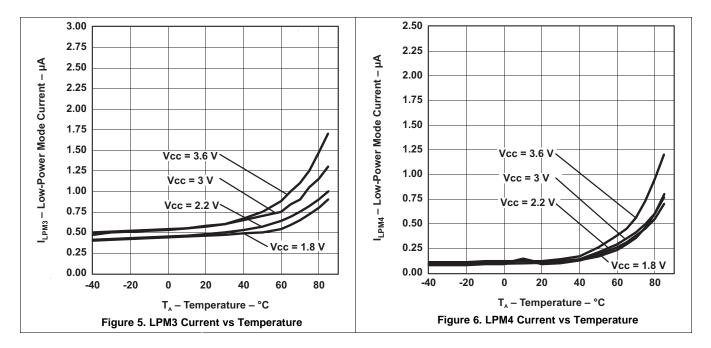
9.5 Low-Power Mode Supply Currents (Into V_{cc}) Excluding External Current

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)^{(1) (2)}

Р	ARAMETER	TEST CONDITIONS	T _A	V _{cc}	MIN	TYP	MAX	UNIT
I _{LPM0,1MHz}	Low-power mode 0 (LPM0) current ⁽³⁾		25°C	2.2 V		56		μA
I _{LPM2}	Low-power mode 2 (LPM2) current ⁽⁴⁾		25°C	2.2 V		22		μA
I _{LPM3,LFXT1}	Low-power mode 3 (LPM3) current ⁽⁴⁾	$ \begin{array}{l} f_{DCO} = f_{MCLK} = f_{SMCLK} = 0 \mbox{ MHz}, \\ f_{ACLK} = 32768 \mbox{ Hz}, \\ CPUOFF = 1, \mbox{ SCG0} = 1, \mbox{ SCG1} = 1, \\ OSCOFF = 0 \end{array} $	25°C	2.2 V		0.7	1.5	μA
I _{LPM3,VLO}	Low-power mode 3 current, (LPM3) ⁽⁴⁾		25°C	2.2 V		0.5	0.7	μA
		$f_{DCO} = f_{MCLK} = f_{SMCLK} = 0 \text{ MHz},$	25°C			0.1	0.5	
I _{LPM4}	Low-power mode 4 (LPM4) current ⁽⁵⁾	f _{ACLK} = 0 Hz, CPUOFF = 1, SCG0 = 1, SCG1 = 1, OSCOFF = 1	85°C	2.2 V		0.8	1.7	μA

(1) All inputs are tied to 0 V or to V_{CC} . Outputs do not source or sink any current.

(2) The currents are characterized with a Micro Crystal CC4V-T1A SMD crystal with a load capacitance of 9 pF. The internal and external load capacitance is chosen to closely match the required 9 pF.


(3) Current for brownout and WDT clocked by SMCLK included.

(4) Current for brownout and WDT clocked by ACLK included.

(5) Current for brownout included.

9.6 Typical Characteristics, Low-Power Mode Supply Currents

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

9.7 Schmitt-Trigger Inputs, Ports Px

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	V _{cc}	MIN	TYP	MAX	UNIT
V	Desitive going input threshold veltage			0.45 V _{CC}		0.75 V _{CC}	V
V _{IT+}	Positive-going input threshold voltage		3 V	1.35		2.25	V
V				0.25 V _{CC}		0.55 V _{CC}	
V _{IT-}	Negative-going input threshold voltage	3 V	0.75		1.65	V	
V _{hys}	Input voltage hysteresis (V _{IT+} – V _{IT-})		3 V	0.3		1	V
R _{Pull}	Pullup/pulldown resistor	For pullup: $V_{IN} = V_{SS}$ For pulldown: $V_{IN} = V_{CC}$	3 V	20	35	50	kΩ
CI	Input capacitance	$V_{IN} = V_{SS}$ or V_{CC}			5		pF

9.8 Leakage Current, Ports Px

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	V _{cc}	MIN MAX	UNIT
I _{lkg(Px.y)}	High-impedance leakage current	(1) (2)	3 V	±50	nA

(1) The leakage current is measured with V_{SS} or V_{CC} applied to the corresponding pin(s), unless otherwise noted.

(2) The leakage of the digital port pins is measured individually. The port pin is selected for input and the pullup/pulldown resistor is disabled.

9.9 Outputs, Ports Px

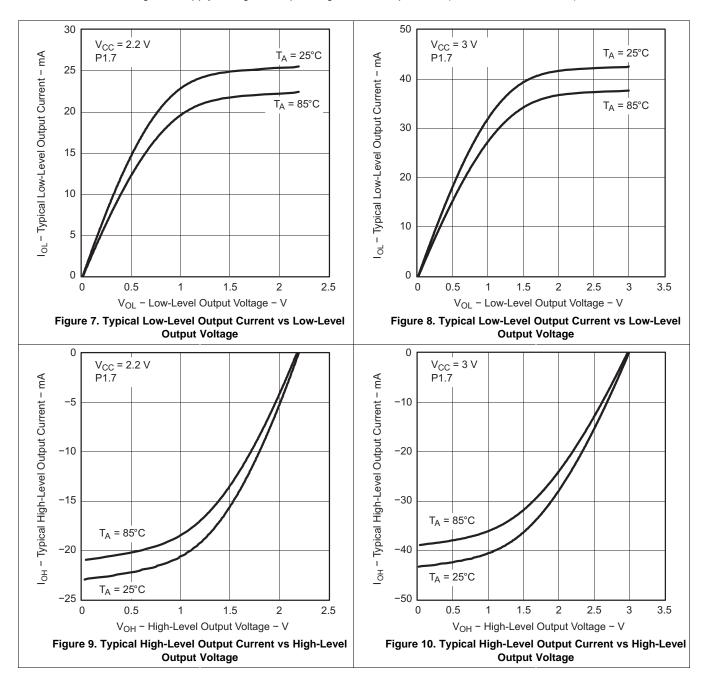
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	V _{cc}	MIN TYP	MAX	UNIT
V _{OH}	High-level output voltage	$I_{(OHmax)} = -6 \text{ mA}^{(1)}$	3 V	$V_{CC} - 0.3$		V
V _{OL}	Low-level output voltage	$I_{(OLmax)} = 6 \text{ mA}^{(1)}$	3 V	V _{SS} + 0.3		V

(1) The maximum total current, I_(OHmax) and I_(OLmax), for all outputs combined should not exceed ±48 mA to hold the maximum voltage drop specified.

9.10 Output Frequency, Ports Px

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)


PARAMETER		TEST CONDITIONS	V _{cc}	MIN TYP	MAX	UNIT
f _{Px.y}	Port output frequency (with load)	Px.y, $C_L = 20 \text{ pF}$, $R_L = 1 \text{ k}\Omega^{(1)}$ ⁽²⁾	3 V	12		MHz
f _{Port_CLK}	Clock output frequency	Px.y, $C_L = 20 \text{ pF}^{(2)}$	3 V	16		MHz

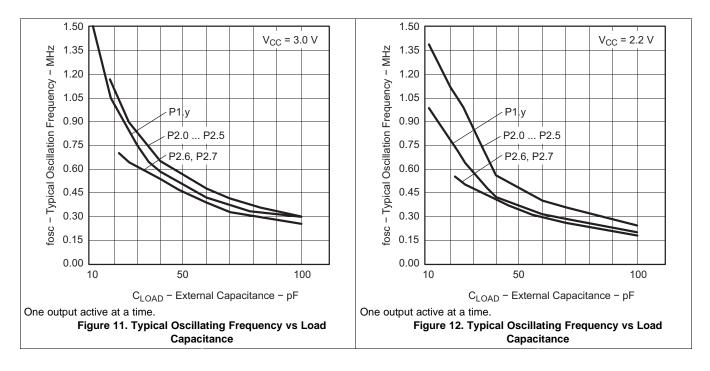
 A resistive divider with two 50-kΩ resistors between V_{CC} and V_{SS} is used as load. The output is connected to the center tap of the divider.

(2) The output voltage reaches at least 10% and 90% V_{CC} at the specified toggle frequency.

9.11 Typical Characteristics, Outputs

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

9.12 Pin-Oscillator Frequency – Ports Px


over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	V _{cc}	MIN 1	ГҮР	MAX	UNIT
fa	Dort output oppillation fragmanay	P1.y, $C_L = 10 \text{ pF}$, $R_L = 100 \text{ k}\Omega^{(1)(2)}$	3 V	1	400		kHz
fo _{P1.x}	Port output oscillation frequency	P1.y, $C_L = 20 \text{ pF}$, $R_L = 100 \text{ k}\Omega^{(1)(2)}$	3 V		900		KITZ
6.		P2.0 to P2.5, C_L = 10 pF, R_L = 100 k $\Omega^{(1)(2)}$	2.1/	1	800		kHz
fo _{P2.x}	Port output oscillation frequency	P2.0 to P2.5, $C_L = 20 \text{ pF}$, $R_L = 100 \text{ k}\Omega^{(1)(2)}$	3 V	1	000		kHz
fo _{P2.6/7}	Port output oscillation frequency	P2.6 and P2.7, C_L = 20 pF, R_L = 100 $k\Omega^{(1)(2)}$	3 V		700		kHz
fa	Dort output oppillation fragmanay	P3.y, $C_L = 10 \text{ pF}$, $R_L = 100 \text{ k}\Omega^{(1)(2)}$	2.1/	1	800		kHz
fo _{P3.x}	Port output oscillation frequency	P3.y, $C_L = 20 \text{ pF}$, $R_L = 100 \text{ k}\Omega^{(1)(2)}$	3 V	1	000		KΠZ

 A resistive divider with two 50-kΩ resistors between V_{CC} and V_{SS} is used as load. The output is connected to the center tap of the divider.

(2) The output voltage reaches at least 10% and 90% V_{CC} at the specified toggle frequency.

9.13 Typical Characteristics, Pin-Oscillator Frequency

9.14 POR, BOR⁽¹⁾⁽²⁾

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	V _{cc}	MIN TYP	MAX	UNIT
V _{CC(start)}	See Figure 13	dV _{CC} /dt ≤ 3 V/s		0.7 × V _(B_IT)		V
V _(B_IT-)	See Figure 13 through Figure 15	dV _{CC} /dt ≤ 3 V/s		1.35		V
V _{hys(B_IT-)}	See Figure 13	dV _{CC} /dt ≤ 3 V/s		140		mV
t _{d(BOR)}	See Figure 13			2000		μs
t _(reset)	Pulse duration needed at RST/NMI pin to accepted reset internally		2.2 V	2		μs

(1) The current consumption of the brownout module is already included in the I_{CC} current consumption data. The voltage level $V_{(B_{IT-})} + V_{hys(B_{IT-})}$ is ≤ 1.8 V.

(2) During power up, the CPU begins code execution following a period of $t_{d(BOR)}$ after $V_{CC} = V_{(B_{-}T_{-})} + V_{hys(B_{-}T_{-})}$. The default DCO settings must not be changed until $V_{CC} \ge V_{CC(min)}$, where $V_{CC(min)}$ is the minimum supply voltage for the desired operating frequency.

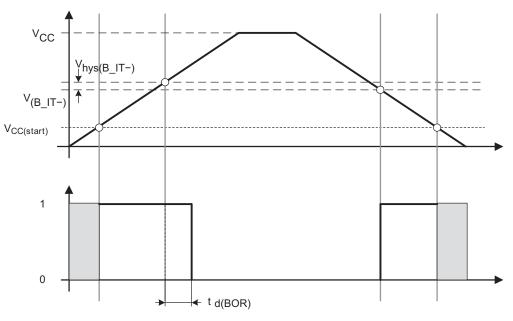
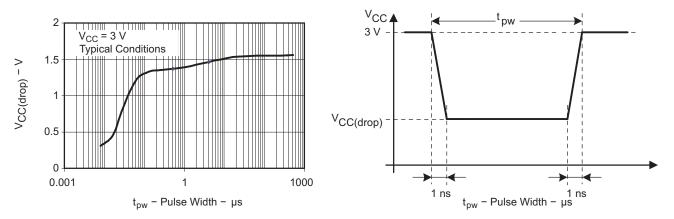



Figure 13. POR and BOR vs Supply Voltage

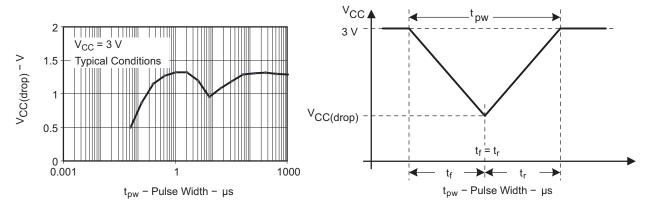


Figure 15. V_{CC(drop)} Level With a Triangle Voltage Drop to Generate a POR or BOR Signal

9.15 Main DCO Characteristics

- All ranges selected by RSELx overlap with RSELx + 1: RSELx = 0 overlaps RSELx = 1, ... RSELx = 14 overlaps RSELx = 15.
- DCO control bits DCOx have a step size as defined by parameter S_{DCO}.
- Modulation control bits MODx select how often $f_{DCO(RSEL,DCO+1)}$ is used within the period of 32 DCOCLK cycles. The frequency $f_{DCO(RSEL,DCO)}$ is used for the remaining cycles. The frequency is an average equal to: $f_{average} = \frac{32 \times f_{DCO(RSEL,DCO)} \times f_{DCO(RSEL,DCO+1)}}{1000}$

 $f_{average} = \frac{1}{MOD \times f_{DCO(RSEL, DCO)} + (32 - MOD) \times f_{DCO(RSEL, DCO+1)}}$

9.16 DCO Frequency

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	V _{cc}	MIN	TYP	MAX	UNIT
		RSELx < 14		1.8		3.6	V
V _{CC}	Supply voltage	RSELx = 14		2.2		3.6	V
		RSELx = 15		3		3.6	V
f _{DCO(0,0)}	DCO frequency (0, 0)	RSELx = 0, $DCOx = 0$, $MODx = 0$	3 V	0.054		0.14	MHz
f _{DCO(0,3)}	DCO frequency (0, 3)	RSELx = 0, $DCOx = 3$, $MODx = 0$	3 V	0.067		0.17	MHz
f _{DCO(1,3)}	DCO frequency (1, 3)	RSELx = 1, $DCOx = 3$, $MODx = 0$	3 V		0.15		MHz
f _{DCO(2,3)}	DCO frequency (2, 3)	RSELx = 2, $DCOx = 3$, $MODx = 0$	3 V		0.21		MHz
f _{DCO(3,3)}	DCO frequency (3, 3)	RSELx = 3, DCOx = 3, MODx = 0	3 V		0.30		MHz
f _{DCO(4,3)}	DCO frequency (4, 3)	RSELx = 4, $DCOx = 3$, $MODx = 0$	3 V		0.41		MHz
f _{DCO(5,3)}	DCO frequency (5, 3)	RSELx = 5, $DCOx = 3$, $MODx = 0$	3 V		0.58		MHz
f _{DCO(6,3)}	DCO frequency (6, 3)	RSELx = 6, $DCOx = 3$, $MODx = 0$	3 V	0.49		1.06	MHz
f _{DCO(7,3)}	DCO frequency (7, 3)	RSELx = 7, $DCOx = 3$, $MODx = 0$	3 V	0.70		1.50	MHz
f _{DCO(8,3)}	DCO frequency (8, 3)	RSELx = 8, $DCOx = 3$, $MODx = 0$	3 V		1.6		MHz
f _{DCO(9,3)}	DCO frequency (9, 3)	RSELx = 9, $DCOx = 3$, $MODx = 0$	3 V		2.3		MHz
f _{DCO(10,3)}	DCO frequency (10, 3)	RSELx = 10, $DCOx = 3$, $MODx = 0$	3 V		3.4		MHz
f _{DCO(11,3)}	DCO frequency (11, 3)	RSELx = 11, DCOx = 3, MODx = 0	3 V		4.25		MHz
f _{DCO(12,3)}	DCO frequency (12, 3)	RSELx = 12, DCOx = 3, MODx = 0	3 V	3.78		7.30	MHz
f _{DCO(13,3)}	DCO frequency (13, 3)	RSELx = 13, DCOx = 3, MODx = 0	3 V	5.24		9.60	MHz
f _{DCO(14,3)}	DCO frequency (14, 3)	RSELx = 14, $DCOx = 3$, $MODx = 0$	3 V	7.73		13.9	MHz
f _{DCO(15,3)}	DCO frequency (15, 3)	RSELx = 15, $DCOx = 3$, $MODx = 0$	3 V	10.65		18.5	MHz
f _{DCO(15,7)}	DCO frequency (15, 7)	RSELx = 15, $DCOx = 7$, $MODx = 0$	3 V	14.65		26.0	MHz
S _{RSEL}	Frequency step between range RSEL and RSEL+1	$S_{RSEL} = f_{DCO(RSEL+1,DCO)}/f_{DCO(RSEL,DCO)}$	3 V		1.35		ratio
S _{DCO}	Frequency step between tap DCO and DCO+1	$S_{DCO} = f_{DCO(RSEL, DCO+1)}/f_{DCO(RSEL, DCO)}$	3 V		1.08		ratio
Duty cycle		Measured at SMCLK output	3 V		50		%

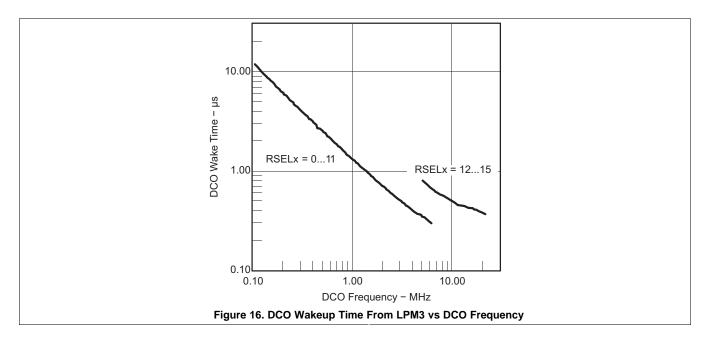
9.17 Calibrated DCO Frequencies, Tolerance

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

PARAMETER	TEST CONDITIONS	T _A	V _{cc}	MIN	TYP	MAX	UNIT
1-MHz tolerance over temperature ⁽¹⁾	BCSCTL1 = CALBC1_1MHZ, DCOCTL = CALDCO_1MHZ, calibrated at 30°C and 3 V	0°C to 85°C	3 V	-3	±0.5	+3	%
1-MHz tolerance over V_{CC}	BCSCTL1 = CALBC1_1MHZ, DCOCTL = CALDCO_1MHZ, calibrated at 30° C and 3 V	30°C	1.8 V to 3.6 V	-3	±2	+3	%
1-MHz tolerance overall	$\begin{array}{l} \text{BCSCTL1} = \text{CALBC1}_1\text{MHZ},\\ \text{DCOCTL} = \text{CALDCO}_1\text{MHZ},\\ \text{calibrated at } 30^\circ\text{C} \text{ and } 3 \text{ V} \end{array}$	-40°C to 85°C	1.8 V to 3.6 V	-6	±3	+6	%
8-MHz tolerance over temperature ⁽¹⁾	BCSCTL1 = CALBC1_8MHZ, DCOCTL = CALDCO_8MHZ, calibrated at 30°C and 3 V	0°C to 85°C	3 V	-3	±0.5	+3	%
8-MHz tolerance over V_{CC}	BCSCTL1 = CALBC1_8MHZ, DCOCTL = CALDCO_8MHZ, calibrated at 30°C and 3 V	30°C	2.2 V to 3.6 V	-3	±2	+3	%
8-MHz tolerance overall	BCSCTL1 = CALBC1_8MHZ, DCOCTL = CALDCO_8MHZ, calibrated at 30°C and 3 V	-40°C to 85°C	2.2 V to 3.6 V	-6	±3	+6	%
12-MHz tolerance over temperature ⁽¹⁾	BCSCTL1 = CALBC1_12MHZ, DCOCTL = CALDCO_12MHZ, calibrated at 30° C and 3 V	0°C to 85°C	3 V	-3	±0.5	+3	%
12-MHz tolerance over V_{CC}	BCSCTL1 = CALBC1_12MHZ, DCOCTL = CALDCO_12MHZ, calibrated at 30° C and 3 V	30°C	2.7 V to 3.6 V	-3	±2	+3	%
12-MHz tolerance overall	BCSCTL1 = CALBC1_12MHZ, DCOCTL = CALDCO_12MHZ, calibrated at 30° C and 3 V	-40°C to 85°C	2.7 V to 3.6 V	-6	±3	+6	%
16-MHz tolerance over temperature ⁽¹⁾	BCSCTL1 = CALBC1_16MHZ, DCOCTL = CALDCO_16MHZ, calibrated at 30° C and 3 V	0°C to 85°C	3 V	-3	±0.5	+3	%
16-MHz tolerance over V_{CC}	BCSCTL1 = CALBC1_16MHZ, DCOCTL = CALDCO_16MHZ, calibrated at 30°C and 3 V	30°C	3.3 V to 3.6 V	-3	±2	+3	%
16-MHz tolerance overall	BCSCTL1 = CALBC1_16MHZ, DCOCTL = CALDCO_16MHZ, calibrated at 30° C and 3 V	-40°C to 85°C	3.3 V to 3.6 V	-6	±3	+6	%

(1) This is the frequency change from the measured frequency at 30°C over temperature.

9.18 Wakeup From Lower-Power Modes (LPM3, LPM4)


over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

PARAMETER		TEST CONDITIONS	V _{cc}	MIN TYP		MAX	UNIT
t _{DCO,LPM3/4}	DCO clock wake-up time from LPM3 or LPM4 ⁽¹⁾	BCSCTL1 = CALBC1_1MHz, DCOCTL = CALDCO_1MHz	3 V		1.5		μs
t _{CPU,LPM3/4}	CPU wake-up time from LPM3 or LPM4 ⁽²⁾			1	1/f _{MCLK} + Clock,LPM3/4		

(1) The DCO clock wake-up time is measured from the edge of an external wake-up signal (e.g., port interrupt) to the first clock edge observable externally on a clock pin (MCLK or SMCLK).

(2) Parameter applicable only if DCOCLK is used for MCLK.

9.19 Typical Characteristics, DCO Clock Wakeup Time From LPM3 or LPM4

9.20 Crystal Oscillator, XT1, Low-Frequency Mode⁽¹⁾

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	V _{cc}	MIN	TYP	MAX	UNIT
f _{LFXT1,LF}	LFXT1 oscillator crystal frequency, LF mode 0, 1	XTS = 0, LFXT1Sx = 0 or 1	1.8 V to 3.6 V		32768		Hz
f _{LFXT1,LF,logic}	LFXT1 oscillator logic level square wave input frequency, LF mode	XTS = 0, XCAPx = 0, LFXT1Sx = 3	1.8 V to 3.6 V	10000	32768	50000	Hz
04	Oscillation allowance for	$\begin{array}{l} XTS = 0, \ LFXT1Sx = 0, \\ f_{LFXT1, LF} = 32768 \ Hz, \ C_{L, eff} = 6 \ pF \end{array}$			500		kΩ
OA _{LF}	LF crystals	$\begin{split} \text{XTS} &= 0, \text{ LFXT1Sx} = 0, \\ \text{f}_{\text{LFXT1,LF}} &= 32768 \text{ Hz}, \text{ C}_{\text{L,eff}} = 12 \text{ pF} \end{split}$			200		K12
		XTS = 0, XCAPx = 0			1		
C	Integrated effective load	XTS = 0, XCAPx = 1			5.5		~ F
C _{L,eff}	capacitance, LF mode ⁽²⁾	XTS = 0, XCAPx = 2			8.5		pF
		XTS = 0, XCAPx = 3			11		
Duty cycle	LF mode	XTS = 0, Measured at P2.0/ACLK, $f_{LFXT1,LF}$ = 32768 Hz	2.2 V	30	50	70	%
f _{Fault,LF}	Oscillator fault frequency, LF mode ⁽³⁾	$XTS = 0, XCAPx = 0, LFXT1Sx = 3^{(4)}$	2.2 V	10		10000	Hz

(1) To improve EMI on the XT1 oscillator, the following guidelines should be observed.

(a) Keep the trace between the device and the crystal as short as possible.

- (b) Design a good ground plane around the oscillator pins.
- (c) Prevent crosstalk from other clock or data lines into oscillator pins XIN and XOUT.
- (d) Avoid running PCB traces underneath or adjacent to the XIN and XOUT pins.
- (e) Use assembly materials and techniques that avoid any parasitic load on the oscillator XIN and XOUT pins.
- (f) If conformal coating is used, ensure that it does not induce capacitive or resistive leakage between the oscillator pins.
 (g) Do not route the XOUT line to the JTAG header to support the serial programming adapter as shown in other documentation. This signal is no longer required for the serial programming adapter.
- (2) Includes parasitic bond and package capacitance (approximately 2 pF per pin). Because the PCB adds additional capacitance, it is recommended to verify the correct load by measuring the ACLK frequency. For a correct setup, the effective load capacitance should always match the specification of the used crystal.
- (3) Frequencies below the MIN specification set the fault flag. Frequencies above the MAX specification do not set the fault flag. Frequencies in between might set the flag.
- (4) Measured with logic-level input frequency but also applies to operation with crystals.

9.21 Internal Very-Low-Power Low-Frequency Oscillator (VLO)

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	PARAMETER	T _A	V _{cc}	MIN	TYP	MAX	UNIT
f _{VLO}	VLO frequency	-40°C to 85°C	3 V	4	12	20	kHz
df_{VLO}/d_{T}	VLO frequency temperature drift	-40°C to 85°C	3 V		0.5		%/°C
df_{VLO}/dV_{CC}	VLO frequency supply voltage drift	25°C	1.8 V to 3.6 V		4		%/V

9.22 Timer_A

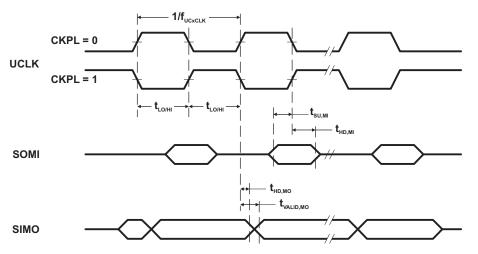
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	V _{cc}	MIN	TYP MA	X UNIT
f _{TA}	Timer_A input clock frequency	SMCLK, duty cycle = $50\% \pm 10\%$			f _{SYSTEM}	MHz
t _{TA,cap}	Timer_A capture timing	TA0, TA1	3 V	20		ns

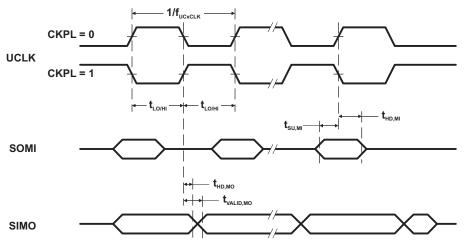
9.23 USCI (UART Mode)

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	V _{cc}	MIN	TYP	MAX	UNIT
f _{USCI}	USCI input clock frequency	SMCLK, duty cycle = $50\% \pm 10\%$			f SYSTEM		MHz
f _{max,BITCLK}	Maximum BITCLK clock frequency (equals baudrate in MBaud) ⁽¹⁾		3 V	2			MHz
t _T	UART receive deglitch time ⁽²⁾		3 V	50	100	600	ns


(1) The DCO wake-up time must be considered in LPM3 and LPM4 for baud rates above 1 MHz.

(2) Pulses on the UART receive input (UCxRX) shorter than the UART receive deglitch time are suppressed. To ensure that pulses are correctly recognized, their width should exceed the maximum specification of the deglitch time.


9.24 USCI (SPI Master Mode)

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 17 and Figure 18)

	PARAMETER	TEST CONDITIONS	V _{cc}	MIN	TYP	MAX	UNIT
f _{USCI}	USCI input clock frequency	SMCLK, duty cycle = $50\% \pm 10\%$				f _{SYSTEM}	MHz
t _{SU,MI}	SOMI input data setup time		3 V	75			ns
t _{HD,MI}	SOMI input data hold time		3 V	0			ns
t _{VALID,MO}	SIMO output data valid time	UCLK edge to SIMO valid, $C_L = 20 \text{ pF}$	3 V			20	ns

Figure 17. SPI Master Mode, CKPH = 0

9.25 USCI (SPI Slave Mode)

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 19 and Figure 20)

	PARAMETER	TEST CONDITIONS	V _{cc}	MIN	TYP	MAX	UNIT
t _{STE,LEAD}	STE lead time, STE low to clock		3 V		50		ns
t _{STE,LAG}	STE lag time, Last clock to STE high		3 V	10			ns
t _{STE,ACC}	STE access time, STE low to SOMI data out		3 V		50		ns
t _{STE,DIS}	STE disable time, STE high to SOMI high impedance		3 V		50		ns
t _{SU,SI}	SIMO input data setup time		3 V	15			ns
t _{HD,SI}	SIMO input data hold time		3 V	10			ns
t _{VALID,SO}	SOMI output data valid time	UCLK edge to SOMI valid, $C_L = 20 \text{ pF}$	3 V		50	75	ns

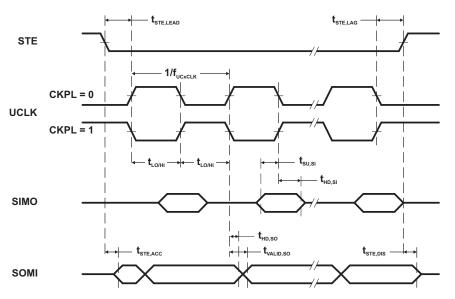
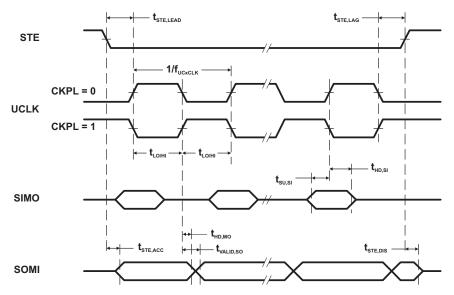



Figure 19. SPI Slave Mode, CKPH = 0

9.26 USCI (I²C Mode)

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 21)

	PARAMETER	TEST CONDITIONS	V _{cc}	MIN	TYP	MAX	UNIT
f _{USCI}	USCI input clock frequency	SMCLK, duty cycle = $50\% \pm 10\%$				f _{SYSTEM}	MHz
f _{SCL}	SCL clock frequency		3 V	0		400	kHz
		f _{SCL} ≤ 100 kHz	2.1/	4.0			
t _{HD,STA}	Hold time (repeated) START	f _{SCL} > 100 kHz	- 3 V	0.6			μs
		f _{SCL} ≤ 100 kHz	2.1/	4.7			
t _{SU,STA}	Setup time for a repeated START	f _{SCL} > 100 kHz	- 3 V	0.6			μs
t _{HD,DAT}	Data hold time		3 V	0			ns
t _{SU,DAT}	Data setup time		3 V	250			ns
t _{SU,STO}	Setup time for STOP		3 V	4.0			μs
t _{SP}	Pulse duration of spikes suppressed by input filter		3 V	50	100	600	ns

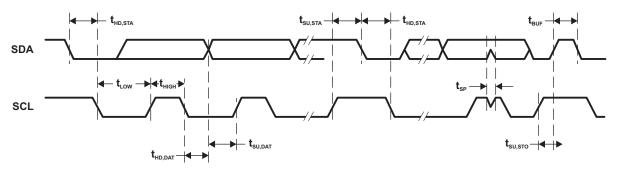


Figure 21. I²C Mode Timing

Copyright © 2013–2014, Texas Instruments Incorporated

9.27 10-Bit ADC, Power Supply and Input Range Conditions

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)⁽¹⁾

	PARAMETER	TEST CONDITIONS	T _A	V _{cc}	MIN	TYP	MAX	UNIT
V _{CC}	Analog supply voltage	$V_{SS} = 0 V$			2.2		3.6	V
V _{Ax}	Analog input voltage ⁽²⁾	All Ax terminals, Analog inputs selected in ADC10AE register		3 V	0		V _{CC}	V
I _{ADC10}	ADC10 supply current ⁽³⁾	$ f_{ADC10CLK} = 5.0 \text{ MHz}, \\ ADC10ON = 1, \text{ REFON} = 0, \\ ADC10SHT0 = 1, \text{ ADC10SHT1} = 0, \\ ADC10DIV = 0 $	25°C	3 V		0.6		mA
	Reference supply current,	$ f_{\text{ADC10CLK}} = 5.0 \text{ MHz}, \\ ADC10ON = 0, \text{ REF2}_5V = 0, \\ REFON = 1, \text{ REFOUT} = 0 $	0500	2.1/		0.25		
I _{REF+}	Reference supply current, reference buffer disabled ⁽⁴⁾	$ f_{ADC10CLK} = 5.0 \text{ MHz}, \\ ADC10ON = 0, \text{ REF2}_5V = 1, \\ REFON = 1, \text{ REFOUT} = 0 $	25°C	3 V	0.25			mA
I _{REFB,0}	Reference buffer supply current with ADC10SR = $0^{(4)}$		25°C	3 V		1.1		mA
I _{REFB,1}	Reference buffer supply current with ADC10SR = $1^{(4)}$	$ f_{ADC10CLK} = 5.0 \text{ MHz}, \\ ADC10ON = 0, \text{ REFON} = 1, \\ \text{REF2}_5V = 0, \text{ REFOUT} = 1, \\ \text{ADC10SR} = 1 $	25°C	3 V		0.5		mA
Cl	Input capacitance	Only one terminal Ax can be selected at one time	25°C	3 V			27	pF
R _I	Input MUX ON resistance	$0 V \le V_{Ax} \le V_{CC}$	25°C	3 V		1000		Ω

(1)

The leakage current is defined in the leakage current table with Px.y/Ax parameter. The analog input voltage range must be within the selected reference voltage range V_{R+} to V_{R-} for valid conversion results. (2)

(3) (4) The internal reference supply current is not included in current consumption parameter I_{ADC10} . The internal reference current is supplied through terminal V_{CC}. Consumption is independent of the ADC10ON control bit, unless a conversion is active. The REFON bit enables the built-in reference to settle before starting an A/D conversion.

9.28 10-Bit ADC, Built-In Voltage Reference

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	V _{cc}	MIN	TYP	MAX	UNIT
V	Positive built-in reference	I _{VREF+} ≤ 1 mA, REF2_5V = 0		2.2			V
$V_{CC,REF+}$	analog supply voltage range	$I_{VREF+} \le 1 \text{ mA}, \text{REF2}_5\text{V} = 1$		2.9			v
M	Positive built-in reference	$I_{VREF+} \le I_{VREF+}$ max, REF2_5V = 0	- 3 V	1.41	1.5	1.59	V
V _{REF+}	voltage	$I_{VREF+} \le I_{VREF+}$ max, REF2_5V = 1	3 V	2.35	2.5	2.65	v
I _{LD,VREF+}	Maximum VREF+ load current		3 V			±1	mA
		$I_{VREF+} = 500 \ \mu A \pm 100 \ \mu A$, Analog input voltage $V_{Ax} \neq 0.75 \ V$, REF2_5V = 0	- 3 V			±2	LSB
	VREF+ load regulation	$I_{VREF+} = 500 \ \mu A \pm 100 \ \mu A$, Analog input voltage $V_{Ax} \approx 1.25 \ V$, REF2_5V = 1	- 3V			±2	LOD
	V _{REF+} load regulation response time	$\begin{split} &I_{VREF+} = 100 \ \mu A \rightarrow 900 \ \mu A, \\ &V_{Ax} \approx 0.5 \ x \ VREF+, \\ &Error \ of \ conversion \ result \leq 1 \ LSB, \\ &ADC10SR = 0 \end{split}$	3 V			400	ns
C _{VREF+}	Maximum capacitance at pin VREF+	$I_{VREF+} \le \pm 1$ mA, REFON = 1, REFOUT = 1	3 V			100	pF
TC _{REF+}	Temperature coefficient	$I_{VREF+} = const with 0 mA \le I_{VREF+} \le 1 mA$	3 V			±100	ppm/ °C
t _{REFON}	Settling time of internal reference voltage to 99.9% VREF	$I_{VREF+} = 0.5 \text{ mA}, \text{REF2}_5\text{V} = 0, \text{REFON} = 0 \rightarrow 1$	3.6 V			30	μs
t _{REFBURST}	Settling time of reference buffer to 99.9% VREF	I _{VREF+} = 0.5 mA, REF2_5V = 1, REFON = 1, REFBURST = 1, ADC10SR = 0	3 V			2	μs

9.29 10-Bit ADC, External Reference⁽¹⁾

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	V _{cc}	MIN	TYP	MAX	UNIT
VEREF+	Positive external reference input	VEREF+ > VEREF–, SREF1 = 1, SREF0 = 0		1.4		V _{CC}	M
	voltage range ⁽²⁾	VEREF- \leq VEREF+ \leq V _{CC} - 0.15 V, SREF1 = 1, SREF0 = 1 ⁽³⁾		1.4		3	V
VEREF-	Negative external reference input voltage range ⁽⁴⁾	VEREF+ > VEREF-		0		1.2	V
ΔVEREF	Differential external reference input voltage range, ΔVEREF = VEREF+ – VEREF–	VEREF+ > VEREF- ⁽⁵⁾		1.4		V _{CC}	V
1		$0 V \le VEREF + \le V_{CC}$, SREF1 = 1, SREF0 = 0	3 V		±1		
IVEREF+	Static input current into VEREF+	$0 V \le VEREF + \le V_{CC} - 0.15 V \le 3 V$, SREF1 = 1, SREF0 = 1 ⁽³⁾	3 V		0		μA
I _{VEREF-}	Static input current into VEREF-	$0 V \leq VEREF - \leq V_{CC}$	3 V		±1		μA

(1) The external reference is used during conversion to charge and discharge the capacitance array. The input capacitance, C₁, is also the dynamic load for an external reference during conversion. The dynamic impedance of the reference supply should follow the recommendations on analog-source impedance to allow the charge to settle for 10-bit accuracy.

(2) The accuracy limits the minimum positive external reference voltage. Lower reference voltage levels may be applied with reduced accuracy requirements.

(3) Under this condition the external reference is internally buffered. The reference buffer is active and requires the reference buffer supply current I_{REFB}. The current consumption can be limited to the sample and conversion period with REBURST = 1.

(4) The accuracy limits the maximum negative external reference voltage. Higher reference voltage levels may be applied with reduced accuracy requirements.

(5) The accuracy limits the minimum external differential reference voltage. Lower differential reference voltage levels may be applied with reduced accuracy requirements.

9.30 10-Bit ADC, Timing Parameters

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIO	ONS	V _{cc}	MIN	TYP	MAX	UNIT
4	ADC10 input clock	For specified performance of	ADC10SR = 0	3 V	0.45		6.3	MHz
TADC10CLK	frequency	ADC10 linearity parameters ADC1	ADC10SR = 1	3 V	0.45		1.5	
f _{ADC10OSC}	ADC10 built-in oscillator frequency	ADC10DIVx = 0, ADC10SSELx = 0, $f_{ADC10CLK} = f_{ADC10OSC}$		3 V	2.6		6.8	MHz
t _{CONVERT}		ADC10 built-in oscillator, ADC1 $f_{ADC10CLK} = f_{ADC10OSC}$	0SSELx = 0,	3 V	1.91		5.00	
	Conversion time	f _{ADC10CLK} from ACLK, MCLK, o ADC10SSELx ≠ 0	r SMCLK:		13 × ADC10DIV × 1/f _{ADC10CLK}		μs	
t _{ADC10ON}	Turn-on settling time of the ADC	(1)					100	ns

The condition is that the error in a conversion started after t_{ADC10ON} is less than ±0.5 LSB. The reference and input signal are already settled.

9.31 10-Bit ADC, Linearity Parameters

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	V _{cc}	MIN TYP	MAX	UNIT
EI	Integral linearity error		3 V		±1.1	LSB
E_D	Differential linearity error		3 V		±1	LSB
Eo	Offset error	Source impedance $R_S < 100 \Omega$	3 V		±1	LSB
E_G	Gain error		3 V	±1.′	±2	LSB
Ε _T	Total unadjusted error		3 V	±ź	2 ±5.1	LSB

9.32 10-Bit ADC, Temperature Sensor and Built-In V_{MID}

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	V _{cc}	MIN	ТҮР	MAX	UNIT
I _{SENSOR}	Temperature sensor supply current ⁽¹⁾	$\begin{array}{l} REFON = 0, \ INCHx = 0Ah, \\ T_A = 25^\circC \end{array}$	3 V		60		μA
TC _{SENSOR}		ADC10ON = 1, INCHx = $0Ah^{(2)}$	3 V		3.55		mV/°C
t _{Sensor(sample)}	Sample time required if channel 10 is selected ⁽³⁾	ADC10ON = 1, INCHx = 0Ah, Error of conversion result \leq 1 LSB	3 V	30			μs
I _{VMID}	Current into divider at channel 11	ADC10ON = 1, INCHx = 0Bh	3 V			(4)	μA
V _{MID}	V _{CC} divider at channel 11	ADC10ON = 1, INCHx = 0Bh, $V_{MID} \neq 0.5 \times V_{CC}$	3 V		1.5		V
t _{VMID(sample)}	Sample time required if channel 11 is selected ⁽⁵⁾	ADC10ON = 1, INCHx = 0Bh, Error of conversion result \leq 1 LSB	3 V	1220			ns

(1) The sensor current I_{SENSOR} is consumed if (ADC10ON = 1 and REFON = 1) or (ADC10ON = 1 and INCH = 0Ah and sample signal is high). When REFON = 1, I_{SENSOR} is included in I_{REF+}. When REFON = 0, I_{SENSOR} applies during conversion of the temperature sensor input (INCH = 0Ah).

(2) The following formula can be used to calculate the temperature sensor output voltage:

 $V_{\text{Sensor,typ}} = TC_{\text{Sensor}} (273 + T [^{\circ}C]) + V_{\text{Offset,sensor}} [mV] \text{ or}$

 $V_{\text{Sensor,typ}} = \text{TC}_{\text{Sensor}} \text{T} [^{\circ}\text{C}] + V_{\text{Sensor}} (\text{T}_{\text{A}} = 0^{\circ}\text{C}) [\text{mV}]$ (3) The typical equivalent impedance of the sensor is 51 k Ω . The sample time required includes the sensor-on time t_{SENSOR(on)}.

(4) No additional current is needed. The V_{MID} is used during sampling.

(5) The on-time t_{VMID(on)} is included in the sampling time t_{VMID(sample)}; no additional on time is needed.

9.33 Flash Memory

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	V _{cc}	MIN	TYP	MAX	UNIT
V _{CC(PGM/ERASE)}	Program and erase supply voltage			2.2		3.6	V
f _{FTG}	Flash timing generator frequency			257		476	kHz
I _{PGM}	Supply current from V _{CC} during program		2.2 V/3.6 V		1	5	mA
I _{ERASE}	Supply current from V _{CC} during erase		2.2 V/3.6 V		1	7	mA
t _{CPT}	Cumulative program time ⁽¹⁾		2.2 V/3.6 V			10	ms
t _{CMErase}	Cumulative mass erase time		2.2 V/3.6 V	20			ms
	Program and erase endurance			10 ⁴	10 ⁵		cycles
t _{Retention}	Data retention duration	$T_J = 25^{\circ}C$		15			years
t _{Word}	Word or byte program time	(2)			30		t _{FTG}
t _{Block, 0}	Block program time for first byte or word	(2)			25		t _{FTG}
t _{Block, 1-63}	Block program time for each additional byte or word	(2)			18		t _{FTG}
t _{Block, End}	Block program end-sequence wait time	(2)			6		t _{FTG}
t _{Mass Erase}	Mass erase time	(2)			10593		t _{FTG}
t _{Seg Erase}	Segment erase time	(2)			4819		t _{FTG}

(1) The cumulative program time must not be exceeded when writing to a 64-byte flash block. This parameter applies to all programming methods: individual word/byte write and block write modes.

(2) These values are hardwired into the Flash Controller's state machine ($t_{FTG} = 1/f_{FTG}$).

www.ti.com

9.34 RAM

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN MAX	UNIT
V _(RAMh)	RAM retention supply voltage ⁽¹⁾	CPU halted	1.6	V

(1) This parameter defines the minimum supply voltage V_{CC} when the data in RAM remains unchanged. No program execution should happen during this supply voltage condition.

9.35 JTAG and Spy-Bi-Wire Interface

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

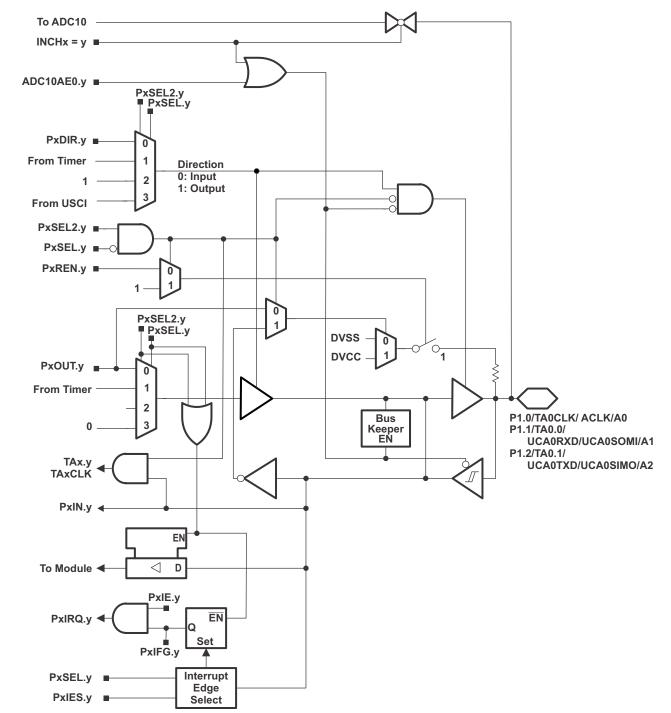
	PARAMETER	TEST CONDITIONS	V _{cc}	MIN	TYP	MAX	UNIT
f _{SBW}	Spy-Bi-Wire input frequency		2.2 V	0		20	MHz
t _{SBW,Low}	Spy-Bi-Wire low clock pulse length		2.2 V	0.025		15	μs
t _{SBW,En}	Spy-Bi-Wire enable time (TEST high to acceptance of first clock edge ⁽¹⁾)		2.2 V			1	μs
t _{SBW,Ret}	Spy-Bi-Wire return to normal operation time		2.2 V	15		100	μs
f _{TCK}	TCK input frequency ⁽²⁾		2.2 V	0		5	MHz
R _{Internal}	Internal pulldown resistance on TEST		2.2 V	25	60	90	kΩ

(1) Tools accessing the Spy-Bi-Wire interface need to wait for the maximum t_{SBW,En} time after pulling the TEST/SBWCLK pin high before applying the first SBWCLK clock edge.

(2) f_{TCK} may be restricted to meet the timing requirements of the module selected.

9.36 JTAG Fuse⁽¹⁾

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)


	PARAMETER	TEST CONDITIONS	MIN	MAX	UNIT
V _{CC(FB)}	Supply voltage during fuse-blow condition	$T_A = 25^{\circ}C$	2.5		V
V _{FB}	Voltage level on TEST for fuse blow		6	7	V
I _{FB}	Supply current into TEST during fuse blow			100	mA
t _{FB}	Time to blow fuse			1	ms

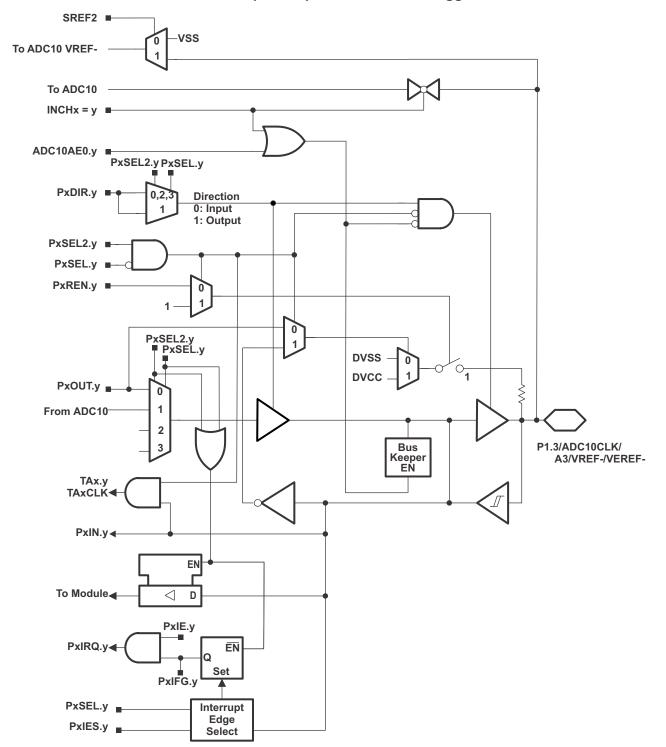
(1) Once the fuse is blown, no further access to the JTAG/Test, Spy-Bi-Wire, and emulation feature is possible, and JTAG is switched to bypass mode.

MSP430G2333-Q1

SLAS802A-OCTOBER 2013-REVISED MARCH 2014

10 I/O Port Schematics

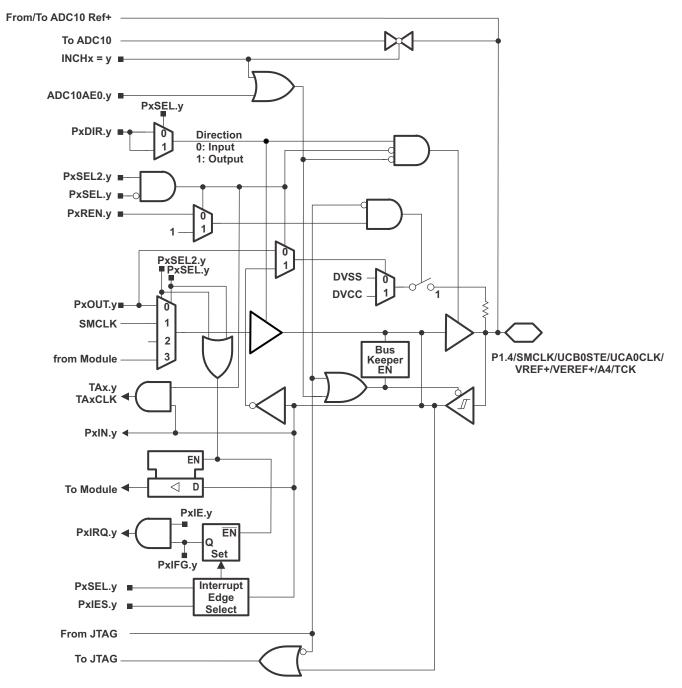
10.1 Port P1 Pin Schematic: P1.0 to P1.2, Input/Output With Schmitt Trigger



Port P1 Pin Schematic: P1.0 to P1.2, Input/Output With Schmitt Trigger (continued) Table 16. Port P1 (P1.0 to P1.2) Pin Functions

				CONTROL BIT	S / SIGNALS ⁽¹⁾	
PIN NAME (P1.x)	x	FUNCTION	P1DIR.x	P1SEL.x	P1SEL2.x	ADC10AE.x (INCH.y = 1) 0 0 0 1 (y = 0) 0 0 0 0 0 0 0 0 0 0 1 (y = 1) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
P1.0/		P1.x (I/O)	l: 0; O: 1	0	0	0
TA0CLK/		TA0.TACLK	0	1	0	0
ACLK/	0	ACLK	1	1	0	0
A0/		A0	Х	Х	Х	1 (y = 0)
Pin Osc		Capacitive sensing	Х	0	1	0
P1.1/		P1.x (I/O)	l: 0; O: 1	0	0	0
TA0.0/		TA0.0	1	1	0	0
		TA0.CCI0A	0	1	0	0
UCA0RXD/	1	UCA0RXD	from USCI	1	1	0
UCA0SOMI/		UCA0SOMI	from USCI	1	1	0
A1/		A1	Х	Х	Х	1 (y = 1)
Pin Osc		Capacitive sensing	Х	0	1	0
P1.2/		P1.x (I/O)	l: 0; O: 1	0	0	0
TA0.1/		TA0.1	1	1	0	0
		TA0.CCI1A	0	1	0	0
UCA0TXD/	2	UCA0TXD	from USCI	1	1	0
UCA0SIMO/		UCA0SIMO	from USCI	1	1	0
A2/		A2	Х	Х	Х	1 (y = 2)
Pin Osc		Capacitive sensing	Х	0	1	0

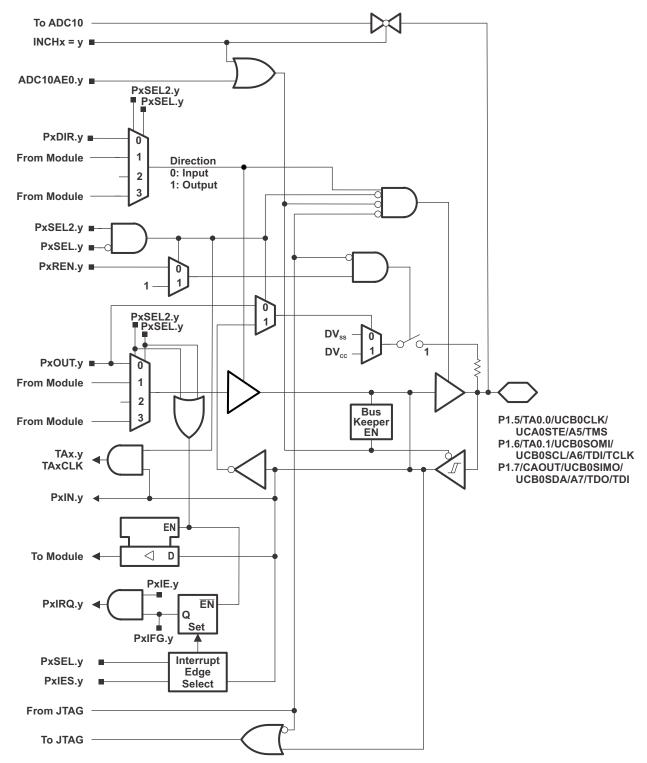
10.2 Port P1 Pin Schematic: P1.3, Input/Output With Schmitt Trigger



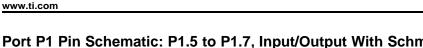
Port P1 Pin Schematic: P1.3, Input/Output With Schmitt Trigger (continued) Table 17. Port P1 (P1.3) Pin Functions

PIN NAME				CONTROL BIT	S / SIGNALS ⁽¹⁾	
(P1.x)	x	FUNCTION	P1DIR.x	P1SEL.x	P1SEL2.x	ADC10AE.x (INCH.x = 1)
P1.3/		P1.x (I/O)	I: 0; O: 1	0	0	0
ADC10CLK/		ADC10CLK	1	1	0	0
A3/	2	A3	Х	Х	Х	1 (y = 3)
VREF-/	3	VREF-	Х	Х	Х	1
VEREF-/		VEREF-	Х	Х	Х	1
Pin Osc		Capacitive sensing	Х	0	1	0

10.3 Port P1 Pin Schematic: P1.4, Input/Output With Schmitt Trigger



Copyright © 2013-2014, Texas Instruments Incorporated



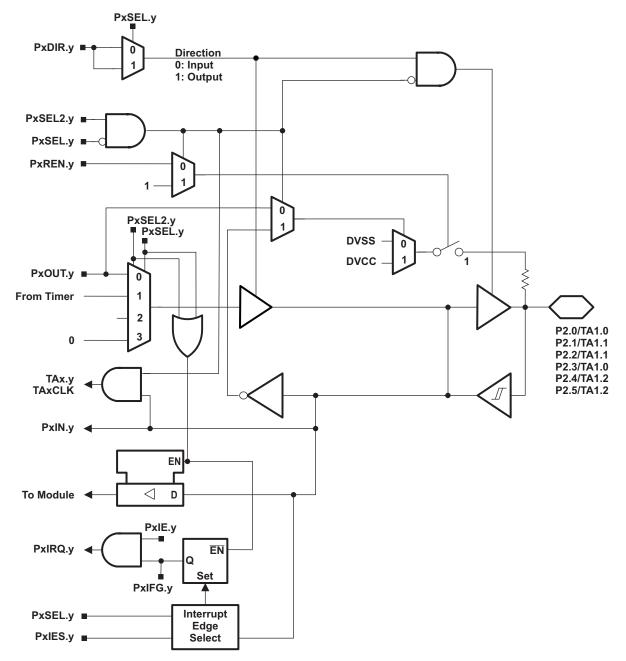
Port P1 Pin Schematic: P1.4, Input/Output With Schmitt Trigger (continued) Table 18. Port P1 (P1.4) Pin Functions

PIN NAME				CONTR	ROL BITS / SIGN	IALS ⁽¹⁾	
(P1.x)	x	FUNCTION	P1DIR.x	P1SEL.x	P1SEL2.x	ADC10AE.x (INCH.x = 1)	JTAG Mode 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
P1.4/		P1.x (I/O)	I: 0; O: 1	0	0	0	0
SMCLK/		SMCLK	1	1	0	0	0
UCB0STE/		UCB0STE	from USCI	1	1	0	0
UCA0CLK/		UCA0CLK	from USCI	1	1	0	0
VREF+/	4	VREF+	Х	Х	Х	1	0
VEREF+/		VEREF+	Х	Х	Х	1	0
A4/		A4	Х	Х	Х	1 (y = 4)	0
TCK/		ТСК	Х	Х	Х	0	1
Pin Osc		Capacitive sensing	Х	0	1	0	0

10.4 Port P1 Pin Schematic: P1.5 to P1.7, Input/Output With Schmitt Trigger

Port P1 Pin Schematic: P1.5 to P1.7, Input/Output With Schmitt Trigger (continued) Table 19. Port P1 (P1.5 to P1.7) Pin Functions

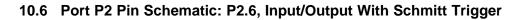
				CONT	ROL BITS / SIGN	NALS ⁽¹⁾	
PIN NAME (P1.x)	x	FUNCTION	P1DIR.x	P1SEL.x	P1SEL2.x	ADC10AE.x (INCH.x = 1)	JTAG Mode
P1.5/		P1.x (I/O)	I: 0; O: 1	0	0	0	0
TA0.0/		TA0.0	1	1	0	0	0
UCB0CLK/		UCB0CLK	from USCI	1	1	0	0
UCA0STE/	5	UCA0STE	from USCI	1	1	0	0
A5/		A5	Х	Х	Х	1 (y = 5)	0
TMS		TMS	Х	х	Х	0	1
Pin Osc		Capacitive sensing	Х	0	1	0	0
P1.6/		P1.x (I/O)	I: 0; O: 1	0	0	0	0
TA0.1/		TA0.1	1	1	0	0	0
UCB0SOMI/		UCB0SOMI	from USCI	1	1	0	0
UCB0SCL/	6	UCB0SCL	from USCI	1	1	0	0
A6/		A6	Х	Х	Х	1 (y = 6)	0
TDI/TCLK/		TDI/TCLK	Х	Х	Х	0	1
Pin Osc		Capacitive sensing	Х	0	1	0	0
P1.7/		P1.x (I/O)	I: 0; O: 1	0	0	0	0
UCB0SIMO/		UCB0SIMO	from USCI	1	1	0	0
UCB0SDA/	7	UCB0SDA	from USCI	1	1	0	0
A7/	/	A7	Х	Х	х	1 (y = 7)	0
TDO/TDI/		TDO/TDI	Х	Х	Х	0	1
Pin Osc		Capacitive sensing	Х	0	1	0	0

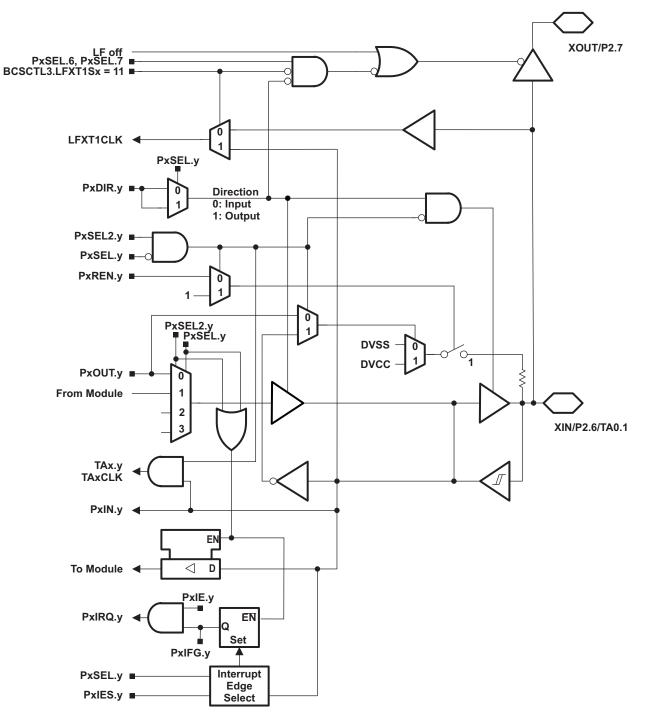

(1) X = don't care

EXAS

NSTRUMENTS

10.5 Port P2 Pin Schematic: P2.0 to P2.5, Input/Output With Schmitt Trigger

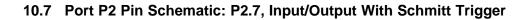


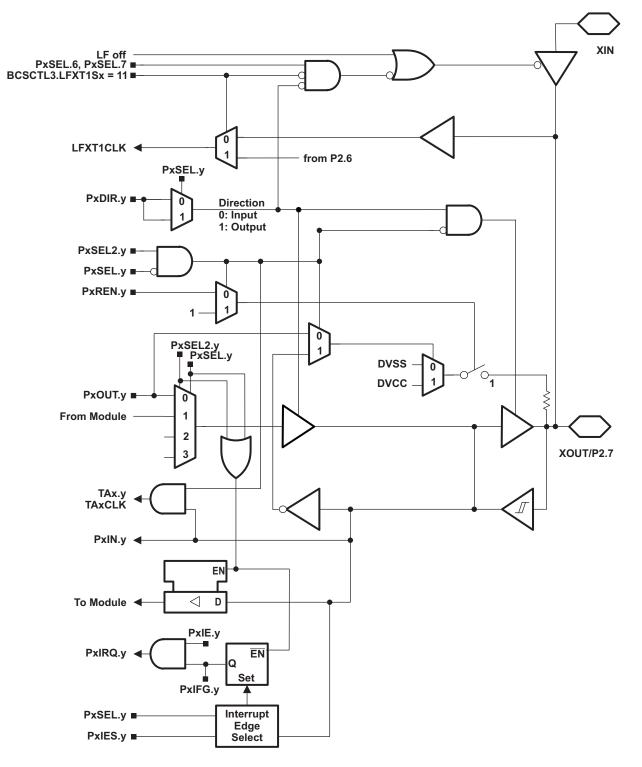

Copyright © 2013-2014, Texas Instruments Incorporated

Port P2 Pin Schematic: P2.0 to P2.5, Input/Output With Schmitt Trigger (continued) Table 20. Port P2 (P2.0 to P2.5) Pin Functions

PIN NAME		FUNCTION	CONTR	ROL BITS / SIG	NALS ⁽¹⁾
(P2.x)	x	FUNCTION	P2DIR.x	P2SEL.x	P2SEL2.x
P2.0/		P2.x (I/O)	l: 0; 0: 1	0	0
TA1.0/	0	Timer1_A3.CCI0A	0	1	0
	0	Timer1_A3.TA0	1	1	0
Pin Osc		Capacitive sensing	Х	0	1
P2.1/		P2.x (I/O)	l: 0; 0: 1	0	0
TA1.1/	4	Timer1_A3.CCI1A	0	1	0
	1	Timer1_A3.TA1	1	1	0
Pin Osc		Capacitive sensing	Х	0	1
P2.2/		P2.x (I/O)	l: 0; 0: 1	0	0
TA1.1/	2	Timer1_A3.CCI1B	0	1	0
	2	Timer1_A3.TA1	1	1	0
Pin Osc		Capacitive sensing	Х	0	1
P2.3/		P2.x (I/O)	l: 0; 0: 1	0	0
TA1.0/	2	Timer1_A3.CCI0B	0	1	0
	3	Timer1_A3.TA0	1	1	0
Pin Osc		Capacitive sensing	Х	0	1
P2.4/		P2.x (I/O)	l: 0; 0: 1	0	0
TA1.2/		Timer1_A3.CCI2A	0	1	0
	4	Timer1_A3.TA2	1	1	0
Pin Osc		Capacitive sensing	Х	0	1
P2.5/		P2.x (I/O)	l: 0; 0: 1	0	0
TA1.2/	F	Timer1_A3.CCI2B	0	1	0
	5	Timer1_A3.TA2	1	1	0
Pin Osc		Capacitive sensing	Х	0	1

TEXAS INSTRUMENTS www.ti.com





Port P2 Pin Schematic: P2.6, Input/Output With Schmitt Trigger (continued) Table 21. Port P2 (P2.6) Pin Functions

PIN NAME			CONTR	ROL BITS / SIGN	IALS ⁽¹⁾
(P2.x)	x	FUNCTION	P2DIR.x	P2SEL.6 P2SEL.7	P2SEL2.6 P2SEL2.7
XIN		XIN	0	1 1	0 0
P2.6	6	P2.x (I/O)	l: 0; 0: 1	0 X	0 0
TA0.1	6	Timer0_A3.TA1	1	1 0	0 0
Pin Osc		Capacitive sensing	х	0 X	1 X

TEXAS INSTRUMENTS www.ti.com

Port P2 Pin Schematic: P2.7, Input/Output With Schmitt Trigger (continued) Table 22. Port P2 (P2.7) Pin Functions

PIN NAME			CONT	ROL BITS / SIGN	IALS ⁽¹⁾
(P2.x)	x	FUNCTION	P2DIR.x	P2SEL.6 P2SEL.7	P2SEL2.6 P2SEL2.7
XOUT/		XOUT	1	1 1	0 0
P2.7/	7	P2.x (I/O)	l: 0; 0: 1	0 X	0 0
Pin Osc		Capacitive sensing	х	0 X	1 X

11 Device and Documentation Support

11.1 Device Support

11.1.1 Development Tools Support

All MSP430[™] microcontrollers are supported by a wide variety of software and hardware development tools. Tools are available from TI and various third parties. See them all at www.ti.com/msp430tools.

11.1.1.1 Hardware Features

See the Code Composer Studio for MSP430 User's Guide (SLAU157) for details on the available features.

MSP430 Architecture	4-Wire JTAG	2-Wire JTAG	Break- points (N)	Range Break- points	Clock Control	State Sequencer	Trace Buffer	LPMx.5 Debugging Support
MSP430	Yes	Yes	2	No	Yes	No	No	No

11.1.1.2 Recommended Hardware Options

11.1.1.2.1 Target Socket Boards

The target socket boards allow easy programming and debugging of the device using JTAG. They also feature header pin outs for prototyping. Target socket boards are orderable individually or as a kit with the JTAG programmer and debugger included. The following table shows the compatible target boards and the supported packages.

Package	Target Board and Programmer Bundle	Target Board Only	
28-pin TSSOP (PW)	MSP-FET430U28A	MSP-TS430PW28A	

11.1.1.2.2 Experimenter Boards

Experimenter Boards and Evaluation kits are available for some MSP430 devices. These kits feature additional hardware components and connectivity for full system evaluation and prototyping. See www.ti.com/msp430tools for details.

11.1.1.2.3 Debugging and Programming Tools

Hardware programming and debugging tools are available from TI and from its third party suppliers. See the full list of available tools at www.ti.com/msp430tools.

11.1.1.2.4 Production Programmers

The production programmers expedite loading firmware to devices by programming several devices simultaneously.

Part Number	PC Port	Features	Provider	
MSP-GANG	Serial and USB	Program up to eight devices at a time. Works with PC or standalone.	Texas Instruments	

11.1.1.3 Recommended Software Options

11.1.1.3.1 Integrated Development Environments

Software development tools are available from TI or from third parties. Open source solutions are also available.

This device is supported by Code Composer Studio[™] IDE (CCS).

11.1.1.3.2 MSP430Ware

MSP430Ware is a collection of code examples, data sheets, and other design resources for all MSP430 devices delivered in a convenient package. MSP430Ware is available as a component of CCS or as a standalone package.

www.ti.com

11.1.1.3.3 Command-Line Programmer

MSP430 Flasher is an open-source, shell-based interface for programming MSP430 microcontrollers through a FET programmer or eZ430 using JTAG or Spy-Bi-Wire (SBW) communication. MSP430 Flasher can be used to download binary files (.txt or .hex) files directly to the MSP430 Flash without the need for an IDE.

11.1.1.4 Community Resources

The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

TI E2E Community

TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas, and help solve problems with fellow engineers.

TI Embedded Processors Wiki

Texas Instruments Embedded Processors Wiki. Established to help developers get started with embedded processors from Texas Instruments and to foster innovation and growth of general knowledge about the hardware and software surrounding these devices.

11.1.2 Device and Development Tool Nomenclature

To designate the stages in the product development cycle, TI assigns prefixes to the part numbers of all MSP430[™] MCU devices and support tools. Each MSP430[™] MCU commercial family member has one of three prefixes: MSP, PMS, or XMS (for example, MSP430F5259). Texas Instruments recommends two of three possible prefix designators for its support tools: MSP and MSPX. These prefixes represent evolutionary stages of product development from engineering prototypes (with XMS for devices and MSPX for tools) through fully gualified production devices and tools (with MSP for devices and MSP for tools).

Device development evolutionary flow:

XMS – Experimental device that is not necessarily representative of the final device's electrical specifications

PMS – Final silicon die that conforms to the device's electrical specifications but has not completed quality and reliability verification

MSP – Fully qualified production device

Support tool development evolutionary flow:

MSPX – Development-support product that has not yet completed Texas Instruments internal qualification testing.

MSP – Fully-qualified development-support product

XMS and PMS devices and MSPX development-support tools are shipped against the following disclaimer:

"Developmental product is intended for internal evaluation purposes."

MSP devices and MSP development-support tools have been characterized fully, and the quality and reliability of the device have been demonstrated fully. TI's standard warranty applies.

Predictions show that prototype devices (XMS and PMS) have a greater failure rate than the standard production devices. Texas Instruments recommends that these devices not be used in any production system because their expected end-use failure rate still is undefined. Only qualified production devices are to be used.

TI device nomenclature also includes a suffix with the device family name. This suffix indicates the package type (for example, PZP) and temperature range (for example, T). Figure 22 provides a legend for reading the complete device name for any family member.

MSP 430	F 5 438 A I Z	QW T	XX			
Processor Family			Optional: Additional Features			
430 MCU Platform			Optional: Tape and Reel			
Dovice T		Packaging				
Device Ty						
	eries Optional: Temperature Range					
Feature Set Optional: A = Revision						
Processor Family	CC = Embedded RF Radio MSP = Mixed Signal Processor					
	XMS = Experimental Silicon					
430 MCU Platform	PMS = Prototype Device TI's Low Power Microcontroller Platform					
Device Type	Memory Type		Specialized Application			
	C = ROM		AFE = Analog Front End			
	F = Flash FR = FRAM		BT = Preprogrammed with Bluetooth BQ = Contactless Power			
	G = Flash or FRAM (Val		CG = ROM Medical			
	L = No Nonvolatile Mem	ory	FE = Flash Energy Meter FG = Flash Medical			
			FW = Flash Electronic Flow Meter			
Series	1 Series = Up to 8 MHz	.	5 Series = Up to 25 MHz 6 Series = Up to 25 MHz w/ LCD			
	2 Series = Up to 16 MHz 3 Series = Legacy		0 = Low Voltage Series			
	4 Series = Up to 16 MHz w/ LCD					
Feature Set	Various Levels of Integration Within a Series					
Optional: A = Revision	N/A					
Optional: Temperature Range	S = 0°C to 50°C C = 0°C to 70°C					
	I = -40°C to 85°C					
	T = -40°C to 105°C					
Packaging	www.ti.com/packaging					
Optional: Tape and Reel	T = Small Reel (7 inch) R = Large Reel (11 inch) No Markings = Tube or Tray					
Optional: Additional Features	s -EP = Enhanced Product (-40°C to 105°C)					
	-HT = Extreme Temperature Parts (-55°C to 150°C) -Q1 = Automotive Q100 Qualified					

Figure 22. Device Nomenclature

11.2 Documentation Support

11.2.1 Related Documents

The following documents describe the MSP430G2333 device. Copies of these documents are available on the Internet at www.ti.com.

- SLAU144 MSP430x2xx Family User's Guide. Detailed information on the modules and peripherals available in this device family.
- SLAZ427 MSP430G2333 Device Erratasheet. Describes the known exceptions to the functional specifications for the MSP430G2333 device.

11.3 Community Resources

The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

TI E2E Community

TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas, and help solve problems with fellow engineers.

www.ti.com

Community Resources (continued)

TI Embedded Processors Wiki

Texas Instruments Embedded Processors Wiki. Established to help developers get started with embedded processors from Texas Instruments and to foster innovation and growth of general knowledge about the hardware and software surrounding these devices.

11.4 Trademarks

MSP430, Code Composer Studio are trademarks of Texas Instruments. All other trademarks are the property of their respective owners.

11.5 Electrostatic Discharge Caution

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

11.6 Glossary

SLYZ022 — TI Glossary.

This glossary lists and explains terms, acronyms and definitions.

12 Mechanical, Packaging, and Orderable Information

The following pages include mechanical packaging and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

29-Jan-2014

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package	Pins	Package	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking	Samples
	(1)		Drawing		Qty	(2)	(6)	(3)		(4/5)	
MSP430G2333IPW8RQ1	ACTIVE	TSSOP	PW	28	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	G2333Q1	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

⁽²⁾ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. **Pb-Free (RoHS Exempt):** This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

(⁶⁾ Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

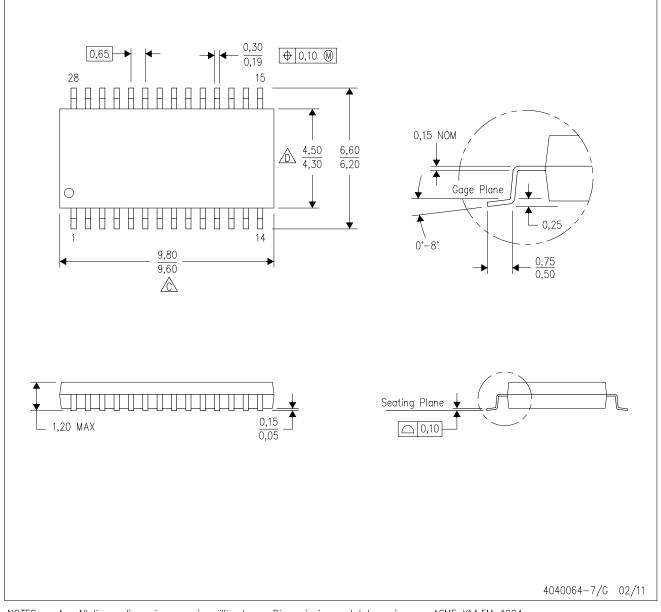
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

www.ti.com

PACKAGE OPTION ADDENDUM

29-Jan-2014

OTHER QUALIFIED VERSIONS OF MSP430G2333-Q1 :


• Catalog: MSP430G2333

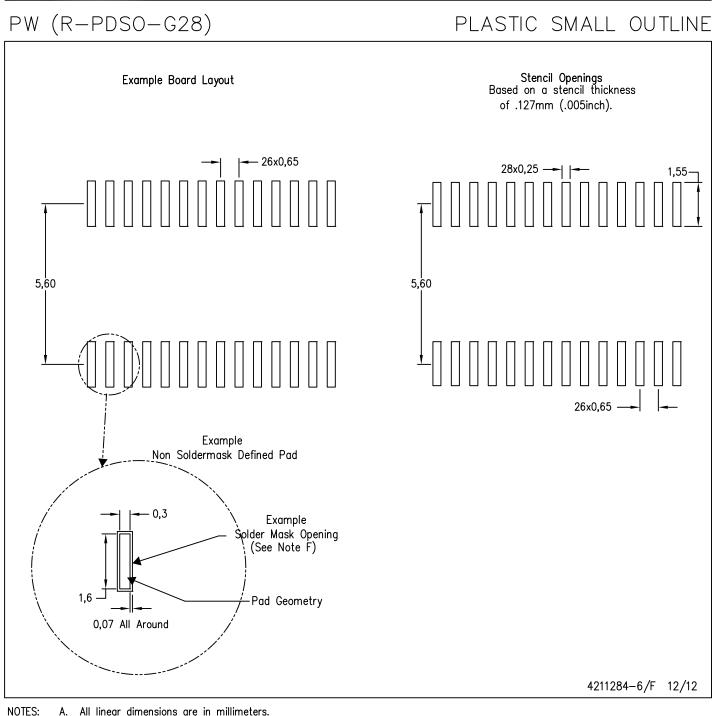
NOTE: Qualified Version Definitions:

Catalog - TI's standard catalog product

PW (R-PDSO-G28)

PLASTIC SMALL OUTLINE

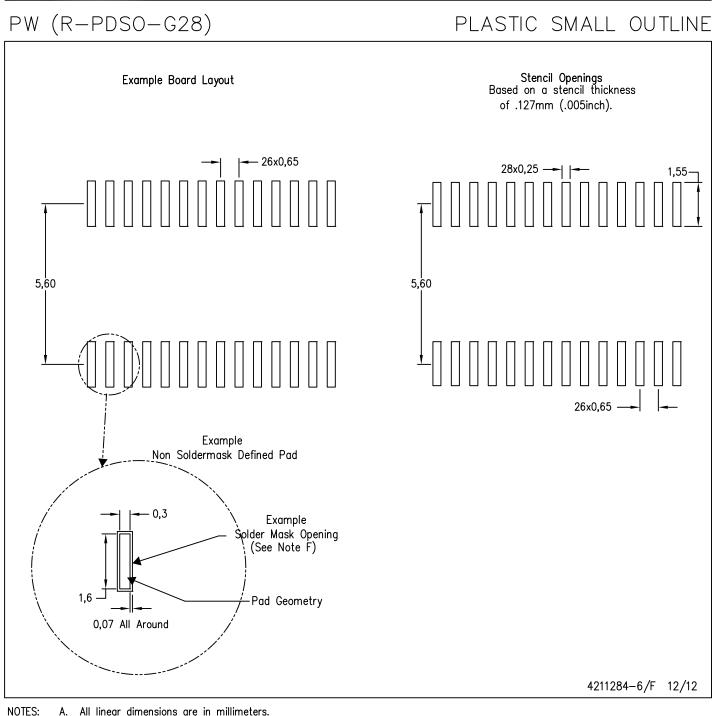
NOTES:


A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M-1994.
 B. This drawing is subject to change without notice.

Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0,15 each side.

Body width does not include interlead flash. Interlead flash shall not exceed 0,25 each side.

E. Falls within JEDEC MO-153



All linear dimensions are in millimeters. Α.

- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate design.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations. E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

All linear dimensions are in millimeters. Α.

- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate design.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations. E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products		Applications	
Audio	www.ti.com/audio	Automotive and Transportation	www.ti.com/automotive
Amplifiers	amplifier.ti.com	Communications and Telecom	www.ti.com/communications
Data Converters	dataconverter.ti.com	Computers and Peripherals	www.ti.com/computers
DLP® Products	www.dlp.com	Consumer Electronics	www.ti.com/consumer-apps
DSP	dsp.ti.com	Energy and Lighting	www.ti.com/energy
Clocks and Timers	www.ti.com/clocks	Industrial	www.ti.com/industrial
Interface	interface.ti.com	Medical	www.ti.com/medical
Logic	logic.ti.com	Security	www.ti.com/security
Power Mgmt	power.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense
Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video
RFID	www.ti-rfid.com		
OMAP Applications Processors	www.ti.com/omap	TI E2E Community	e2e.ti.com
Wireless Connectivity	www.ti.com/wirelessconne	ectivity	

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2014, Texas Instruments Incorporated