МЕДИТЕК

MT3339 GPS All-in-One Solution Data Sheet

Version: 1.05 Release date: 2011-09-19

© 2011 MediaTek Inc. This document contains information that is proprietary to MediaTek Inc. Unauthorized reproduction or disclosure of this information in whole or in part is strictly prohibited.

Specifications are subject to change without notice.

Document Revision History

-				
Revision	Date	Author	Description	
0.01	2010/11/08	Loris Li	Update TFBGA ball map and pin description	
0.02	2010/11/30	Loris Li	Update pin-mux and strap information	
0.03	2010/12/08	Loris Li	Update RF part description	
0.04	2010/12/10	Loris Li	Update System overview	
0.05	2010/12/10	Loris Li	Update RF part electrical characteristics	
0.06	2010/12/14	Loris Li	Update analog part electrical characteristics	
0.07	2010/12/17	Loris Li	Update RF LDO electrical characteristics	
0.08	2010/12/19	Loris Li	Update power scheme	
0.09	2010/12/21	Loris Li	Add RTC domain power scheme	
0.10	2010/12/21	Loris Li	Modify according to YC Chien's suggestion	
0.11	2010/12/21	Loris Li	Update by JN Yang about UART baud rate and SPI/I2C clock	
			rate	
0.12	2010/12/24	Loris Li	Update RF related description	
0.13	2010/12/24	Loris Li	Update system overview by Andy Lee	
0.14	2010/12/29	Loris Li	Update host interface related description	
0.15	2010/12/30	Loris Li	Update power scheme	
0.16	2011/01/03	Loris Li	Update block diagram	
0.17	2011/01/04	Loris Li	Update crystal frequency range	
0.18	2011/01/05	Loris Li	Update external LNA related information	
0.19	2011/01/05	Loris Li	Update power scheme diagram and EEPROM I2C interface	
			timing diagram	
0.20	2011/01/07	Loris Li	Update power related description	
0.21	2011/01/07	Loris Li	Update footprint size	
0.22	2011/01/20	Loris Li	Change minimum input power to 2.7V	
0.23	2011/01/20	Loris Li	Sync PIN naming of DC characteristic table and change	
			minimum input power to 2.8V	
0.24	2011/01/24	Loris Li	Update power scheme and RF information	
0.25	2011/02/08	Loris Li	Update description of 32K_OUT pin	
0.26	2011/02/11	Loris Li	Add ECLK and SYNC description	
0.27	2011/03/15	Loris Li	Add 1.2V IO characteristic for TIMER and 32K_OUT and	
			update serial flash size to 128Mb	
0.28	2011/03/15	Loris Li	Remove description about factory testing and internal SRAM	
			size	
0.29	2011/03/22	Loris Li	Remove description about strap function tcxo on/off	
0.30	2011/03/30	Loris Li	1. Update RTC leakage information to typ	
			2. Update package dimensions information	
			Update RF related descriptions	
0.31	2011/04/01	Loris Li	1. Remove Vcc description in 6.3.1	
			2. Add strap pin tldo_sw_sel description	
0.00	0011/01/07	1 aut = 1 t	Change MAX of VIH for TIMER and 32K_OUT to 3.6V	
0.32	2011/04/07	Loris Li	Change description in 5.20 about CLDO off	
0.33	2011/04/12	Loris Li	Add RF LNA MIN of VGA gain and MAX of noise figure	

© 2011 MediaTek Inc.

0.34	2011/04/27	Loris Li	Update package dimension total height to max 1mm	
0.35	2011/05/19	Loris Li	Change RF LDO related voltage description	
0.36	2011/05/23	Loris Li	Add reset controller power on reset diagram	
0.37	2011/05/25	Linda Chen	Update to MTK standard format	
0.38	2011/06/10	Loris Li	Change LDO I _{max} related description	
0.39	2011/06/13	Loris Li	Review electrical characteristics	
0.40	2011/06/20	Loris Li	Review feature and internal description.	
1.0	2011/07/01	Loris Li	Update TCXO_SW SPEC	
1.01	2011/08/24	Loris Li	1. Change AVDD_RFCORE Vmin SPEC from 1.14 to 1.16	
			2. Change package name TFBGA to VFBGA	
1.02	2011/08/25	Loris Li	Add top mark description	
1.03	2011/09/09	Loris Li	Add power up sequence diagram for external LDO mode	
1.04	2011/09/15	Loris Li	Add power up sequence diagram for low power/cost mode	
1.05	2011/09/19	Loris Li	Remove power up sequence diagram for low power/cost mode	
			and add power on/off reset behavior diagram in chapter 5.10.	

MediaTek Confidential

© 2011 MediaTek Inc.

Table of Contents

_			_
Docu	ment	Revision History	2
Table	e of Co	ontents	4
1	Syste	em Overview	
	1.1	General descriptions	7
	1.2	Features	8
2	Pin A	ssignment and Descriptions	9
	2.1	Pin assignment (top view)	9
	2.2	Pin descriptions	
3	Block	< Diagrams	
	3.1	Architecture of single-chip receiver	14
	3.2	Functional block diagram (RF part)	
4	MT33	39 RF Part	
	4.1	LNA/Mixer	
	4.2	VCO/Synthesizer	
	4.3	IF CSF	
	4.4	PGA	
	4.5	ADC	
5	MT33	39 Digital Part	
	5.1	ARM7EJ-S	
	5.2	Cache	
	5.3	Boot ROM	
	5.4	Battery backed-up memory	
	5.5	SMPS	
	5.6	Timer function	17
	5.7	GPIO in RTC domain	17
	5.8	Low power detection	17
	5.9	Clock module	18
	5.10	Reset controller	18
	5.11	Host interface	19
		5.11.1 UART	19
		5.11.2 SPI	19
		5.11.3 I2C	19
		Interrupt control unit	
		Flash	
		EEPROM	
		EFUSE	
		GPIO unit	
		PPS	
	5.18	ECLK	20

© 2011 MediaTek Inc.

Page 4 of 37

	5.19	SYNC					
			scheme				
6	Elect	trical Characteristics					
	6.1	DC ch	aracteristics				
		6.1.1	Absolute maximum ratings				
		6.1.2	Recommended operating conditions				
		6.1.3	General DC characteristics	26			
		6.1.4	DC electrical characteristics for 2.8 volts operation				
		6.1.5	DC electrical characteristics for 1.8 volts operation				
		6.1.6	DC electrical characteristics for 1.2 volts operation (for TIMER and 32K_OUT)				
	6.2	Analo	g related characteristics				
		6.2.1	SMPS DC characteristics				
		6.2.2	TCXO LDO DC characteristics				
		6.2.3	TCXO SWITCH DC characteristics				
		6.2.4	1.2 volts core LDO DC characteristics				
		6.2.5	1.2 volts RTC LDO DC characteristics				
		6.2.6	32 KHz crystal oscillator (XOSC32)				
	6.3		ated characteristics				
		6.3.1	DC electrical characteristics for RF part				
		6.3.2	RX chain from LNA to PGA, before ADC				
		6.3.3	Receiver front-end part (LNA only)				
		6.3.4	Mixer and channel selection filter (CSF)				
		6.3.5	Programmable gain amplifier (PGA)				
		6.3.6	2-bit and 4-bit quantizer (ADC)				
		6.3.7	Integrated synthesizer				
		6.3.8	Crystal oscillator (XO)				
7	Inter		naracteristics				
	7.1		interface timing				
	7.2	RS-23	2 interface timing	31			
	7.3	SPI in	terface timing	32			
	7.4	I2C int	terface timing	32			
	7.5	EEPR	OM I2C interface timing	33			
8	Pack	-	escription				
	8.1		ark				
	8.2	Packa	ge dimensions	35			

Lists of Figures

Figure 3-1: MT3339 system block diagram	.14
Figure 3-2: MT3339 RF functional block diagram	
Figure 5-1: RTC with internal RTC LDO application circuit 1	.16
Figure 5-2: RTC with internal RTC LDO application circuit 2	.17
Figure 5-3: Power on reset diagram	.18
Figure 5-4: Power on/off reset behavior	.18
Figure 5-5: Flow diagram of SYNC function	21

MediaTek Confidential

© 2011 MediaTek Inc.

Page 5 of 37

Figure 5-6: Power supply connection (low power)
Figure 5-7: Power supply connection (low cost)
Figure 5-8: Power supply connection (external LDO)
Figure 5-9: Power on/off sequence for external LDO mode
Figure 7-1: Timing diagram of JTAG interface
Figure 7-2: Timing diagram of RS-232 interface
Figure 7-3: Timing diagram of SPI interface
Figure 7-4: Timing diagram of HOST I2C interface
Figure 7-5: Timing diagram of EEPROM I2C bus

© 2011 MediaTek Inc.

MEDINTEK

1 System Overview

1.1 General descriptions

MT3339, a high-performance single-chip GPS solution which includes on-chip CMOS RF, digital baseband, ARM7 CPU and an embedded flash (optional). It is able to achieve the industry's highest level of sensitivity, accuracy and Time-to-First-Fix (TTFF) with the lowest power consumption in a small-footprint lead-free package. Its small footprint and minimal BOM requirement provide significant reductions in the design, manufacturing and testing resource required for portable applications.

With built-in LNA to reach total NF to 2.2 dB, you can eliminate antenna requirement and do not need external LNA. With its on-chip image-rejection mixer, the spec of external SAW filter is alleviated. With an on-chip automatic center frequency calibration band pass filter, an external filter is not required. The on-chip power management design allows MT3339 to be easily integrated into your system without extra voltage regulator. With both linear and a highly efficient switching type regulator embedded, MT3339 allows direct battery connection and does not need any external LDO, which gives customers plenty of choices for the application circuit.

Up to 12 multi-tone active interference cancellers (ISSCC2011 award) offer you more flexibility in system design. The integrated PLL with Voltage Controlled Oscillator (VCO) provides excellent phase noise performance and fast locking time. A battery backed-up memory and a real-time clock are also provided to accelerate acquisition at the system restart-up.

MT3339 supports up to 210 PRN channels. With 66 search channels and 22 simultaneous tracking channels, MT3339 acquires and tracks satellites in the shortest time even at indoor signal levels. MT3339 supports various location and navigation applications, including autonomous GPS, SBAS ranging (WAAS, EGNOS, GAGAN, and MSAS), QZSS, DGPS (RTCM) and AGPS.

Through MT3339's excellent low-power consumption characteristic (acquisition 25 mW, track 18 mW), power sensitive devices, especially portable applications, you will not need to worry about the operating time anymore and can have more fun. Combined with many advanced features including AlwaysLocateTM, EASYTM, HotStillTM, EPOTM and logger function, MT3339 provides always-on position with minimal average power consumption. The great features provide you supreme experiences for portable applications such as DSC, cellular phone, PMP and gaming devices.

1.2 Features

- Specifications
 - 22 tracking / 66 acquisition-channel GPS receiver
 - Supports up to 210 PRN channels
 - Supports multi-GNSS incl. QZSS, SBAS ranging
 - Supports
 - WAAS/EGNOS/MSAS/GAGAN
 - 12 multi-tone active interference cancellers (ISSCC2011 award)
 - RTCM ready
 - Indoor and outdoor multi-path detection and compensation
 - Supports FCC E911 compliance and A-GPS
 - Max. fixed update rate up to 10 Hz
- Advanced software features
 - AlwaysLocate[™] advanced location awareness technology
 - EPOTM/HotStillTM orbit prediction
 - EASY[™] self-generated orbit prediction
 - Supports logger function
- Reference oscillator
 - TCXO
 - Frequency: 16.368 MHz, 12.6 ~ 40.0 MHz
 - Frequency variation: ±2.0 ppm
 - Crystal
 - Frequency: 26 MHz, 12.6 ~ 40.0 MHz
 - Frequency accuracy: ±10 ppm
- RF configuration
 - 4-bit IF signal
 - SoC, integrated in single chip with CMOS process
- ARM7EJ-S CPU
 - Up to 98 MHz processor clock
 - Dynamic clock rate control
- Pulse-per-second (PPS) GPS time reference
 - Adjustable duty cycle
 - Typical accuracy: ±10 ns
- Power scheme
 - A 1.8 volts SMPS build-in SOC

MediaTek Confidential

© 2011 MediaTek Inc.

Page 8 of 37

- Direct lithium battery connection (2.8 ~ 4.3 volts)
- Self build 1.2 volts RTC LDO, 1.2 volts core LDO, and 2.8 volts TCXO LDO
- Build-in reset controller
 - Does not need of external reset control IC
- Internal real-time clock (RTC)
 - 32.768 KHz ± 20 ppm crystal
 - Timer pin for external device on/off control
 - 1.2 volts RTC clock output
 - Supports external pin to wake up MT3339
- Serial interface
 - 3 UARTs
 - SPI
 - I2C
 - GPIO interface (up to 16 pins)
- NMEA
 - NMEA 0183 standard V3.01 and backward compliance
 - Supports 219 different data
- Superior sensitivities
 - Acquisition: -148 dBm (cold) / -163 dBm (hot)
 - Tracking: -165 dBm
- Ultra-low power consumption
 - Acquisition: 25 mW
 - Tracking: 18 mW
 - AlwaysLocate[™]: 3 mW
- Package
 - VFBGA: 4.3 mm x 4.3 mm, 57 balls, 0.5 mm pitch
- Slim hardware design
 - 52 mm² solution footprint with all software features inside
 - 9 passive external components

2 Pin Assignment and Descriptions

2.1 Pin assignment (top view)

	4	2	2	4	F		7	8
	1	2	3	4	5	6		ð
А	RFIN	AVSS_HF	EXT_R	HRST_B	DVDD_CO RE2	SCS1	JRST_	NC
В	AVDD_RFC ORE	AVSS_VCO	RFTEST	XTEST	DVDD_IO2	JDO	RX0	ТХ0
с	AVDD_BGX OTHLS	AVSS_LF	NC	EINT0	EINT1	JMS	EINT2	RX2
D	OSC	AVSS28_TL DO	NC	NC	DVSS_SF	JRCK	SCK1	EINT3
E	AVDD43_V BAT	AVDD28_C LDO	NC	NC	DVSS_CO RE	JDI	DVSS_IO	DVDD_IO1
F	VREF	GND_MISC	AVSS12_C LDO	BUCK_FB	DVDD_CO RE1	DVDD_SF	TX2	FSOURCE _WR
G	AVDD28_T LDO	AVDD28_T LDO_SW	PGND_SM PS	NC	TIMER	32K_OUT	JCK	RX1
н	AVDD12_C LDO	LXBK	AVDD43_S MPS	RTCCLK_O	RTCCLK	AVDD43_R TC	AVDD12_R TC	TX1

2.2 Pin descriptions

Pin#	Symbol	Туре	Description			
System	System interface (2 pins)					
A4	HRST_B	2.8V LVTTL input 75K pull-up, SMT	System reset. Active low			
B4	XTEST	2.8V LVTTL input 75K pull-down, SMT	Test mode. <i>Must keep low in normal mode.</i>			
Periphe	ral interface (8 pins)					
В7	RX0/ MM_I2CC/H_SPI_SI	2.8V, LVTTL I/O PPU, PPD, SMT 2mA ~ 16mA PDR	Serial input for UART 0 Default: 75K pull-up Default: 8mA driving			
B8	TX0/MM_I2CD/H_SPI_SO	2.8V, LVTTL I/O PPU, PPD, SMT 2mA ~ 16mA PDR	Serial output for UART 0 Default: 75K pull-up Default: 8mA driving			

MediaTek Confidential

© 2011 MediaTek Inc.

Pin#	Symbol	Туре	Description
G8	RX1/H_SPI_SCK/JCK/CTS0/ MM_I2CC/CXO_TSENS	2.8V, LVTTL I/O PPU, PPD, SMT 2mA ~ 16mA PDR	Serial input for UART 1 Default: 75K pull-up Default: 8mA driving Shared with GIO0
H8	TX1/TXIND/JMS/RTS0/MM_I 2CD/CXO_CS	2.8V, LVTTL I/O PPU, PPD, SMT 2mA ~ 16mA PDR	Serial output for UART 1 Default: 75K pull-up Default: 8mA driving Shared with GO1
C8	RX2/SPI_SI/JDI/DBG_RX/BS I_CK/EEDO/EE_SDA	2.8V, LVTTL I/O PPU, PPD, SMT 2mA ~ 16mA PDR	Serial input for UART 2 Default: 75K pull-up Default: 8mA driving <i>Shared with GO</i> 2
F7	TX2/SPI_SO/JDO/DBG_TX/ EEDI	2.8V, LVTTL I/O PPU, PPD, SMT 2mA ~ 16mA PDR	Serial output for UART 2 Default: 75K pull-up Default: 8mA driving Shared with GO3 Strap pin tldo_sw_sel (not supported on ES1/ES2 version IC) 1'b0: AVDD28_TLDO_SW output 1.8V 1'b1: AVDD28_TLDO_SW output 2.8V
D7	SCK1/SPI_SCK/JRCK/EESK /EE_SCL	2.8V, LVTTL I/O PPU, PPD, SMT 2mA ~ 16mA PDR	SPI clock output Default: 75K pull-up Default: 8mA driving Shared with GO4 Strap pin clk_sel[0] Clk_sel[1:0] Mode 2'b00: XTAL mode 2'b01: External clock mode 2'b10: TCXO mode 2'b11: 16.368MHz TCXO mode
A6	SCS1#/SPI_SCS#/BSI_DAT A/JRST#/SYNC_PULSE/EE CS	2.8V, LVTTL I/O PPU, PPD, SMT 2mA ~ 16mA PDR	SPI slave selection 1 Default: 75K pull-up Default: 8mA driving <i>Shared with GO5</i> Strap pin clk_sel[1]
Debugg	ing interface (6 pins)		
G7	JCK/BSI_CK/MM_I2CC/ECL K	2.8V, LVTTL I/O PPU, PPD, SMT 2mA ~ 16mA PDR	JTAG interface clock Default: 75K pull-down Default: 8mA driving Shared with GIO6
C6	JMS/BSI_CS/MM_I2CD/DUT Y_CYCLE/PPS	2.8V, LVTTL I/O PPU, PPD, SMT 2mA ~ 16mA PDR	JTAG interface mode selection Default: 75K pull-down Default: 8mA driving Shared with GIO7
E6	JDI/FRAME_SYNC/DBG_RX	2.8V, LVTTL I/O PPU, PPD, SMT 2mA ~ 16mA PDR	JTAG interface data input. Default: 75K pull-down Default: 8mA driving Shared with GIO8

Pin#	Symbol	Туре	Description
B6	JDO/PPS/DBG_TX	2.8V, LVTTL I/O PPU, PPD, SMT 2mA ~ 16mA PDR	JTAG interface data output Default: 75K pull-up Default: 8mA driving Shared with GIO9 Strap pin host_sel[0] Host_sel[1:0] Interface 2'b00: I2C 2'b01: UART MEIF 2'b10: SPI 2'b11: UART
D6	JRCK/CXO_CS	2.8V, LVTTL I/O PPU, PPD, SMT 2mA ~ 16mA PDR	JTAG interface return clock Default: 75K pull-up Default: 8mA driving <i>Shared with GIO10</i> Strap pin host_sel[1]
A7	JRST#/H_SPI_SCS#/CXO_T SENS/SYNC_PULSE	2.8V, LVTTL I/O PPU, PPD, SMT 2mA ~ 16mA PDR	JTAG interface reset Default: 75K pull-up Default: 8mA driving Shared with GIO11
Externa	l system interface (4 pins)		
C4	EINT0/MM_I2CC/BSI_CS	2.8V, LVTTL I/O PPU, PPD, SMT 2mA ~ 16mA PDR	External interrupt 0 Default: 75K pull-down Default: 8mA driving Shared with GIO12
C5	EINT1/MM_I2CD/PPS/BSI_D ATA	2.8V, LVTTL I/O PPU, PPD, SMT 2mA ~ 16mA PDR	External interrupt 1 Default: 75K pull-down Default: 8mA driving <i>Shared with GI013</i>
C7	EINT2/DBG_RX/PPS	2.8V, LVTTL I/O PPU, PPD, SMT 2mA ~ 16mA PDR	External interrupt 2 Default: 75K pull-up Default: 8mA driving <i>Shared with GIO14</i>
D8	EINT3/DBG_TX/PPS	2.8V, LVTTL I/O PPU, PPD, SMT 2mA ~ 16mA PDR	External interrupt 3 Default: 75K pull-up Default: 8mA driving Shared with GI015

MediaTek Confidential

Pin#	Symbol	Туре	Description
	GIO0 ~ GIO15		GIO0 shared with TX1 GIO1 shared with RX1 GIO2 shared with RX2 GIO3 shared with RX2 GIO4 shared with SCK1 GIO5 shared with SCS1# GIO6 shared with JCK GIO7 shared with JMS GIO8 shared with JMS GIO8 shared with JDI GIO9 shared with JDO GIO10 shared with JRCK GIO11 shared with JRST# GIO12 shared with EINT0 GIO13 shared with EINT1 GIO14 shared with EINT2 GIO15 shared with EINT3
RTC inte	erface (6 pins)		
H6	AVDD43_RTC	Analog power	RTC LDO input
H7	AVDD12_RTC	Analog power	RTC LDO output
H5	RTCCLK	Analog input	RTC 32KHz XTAL input
H4	RTCCLK_O	Analog output	RTC 32KHz XTAL output
G6	32K_OUT/DR_IN	1.2V LVTTL I/O PPU, PPD, SMT 4mA, 8mA, 12mA, 16mA PDR	RTC domain GPIO pin, can be programmed to 32KHz clock output or DR wake-up signal input Default: 75K pull-down Default: 16mA driving
G5	TIMER	1.2V LVTTL I/O open drain, SMT 4mA, 8mA, 12mA, 16mA PDR	Wake up other devices from RTC. If this pin is not used, tie it to the ground.
RF & an	alog		
B1	AVDDRF_CORE	RF power	1.8V supply for RF core circuits
A3	EXT_R	Analog	External R connection for R calibration
B3	RFTEST	Analog signal	RF testing signal
B2	AVSS_VCO	RF ground	GND pin for SX VCO
C1	AVDD_BGXOTHLS	RF power	1.8V supply for XTAL OSC, bandgap, Thermal sensor and level shifter
C2	AVSS_LF	RF ground	GND pin for low-frequency circuits
D1	OSC	Analog signal	Input for crystal oscillator or TCXO
A2	AVSS_HF	RF ground	GND pin for high-frequency circuits
A1	RF_IN	RF signal	LNA RF Input pin
F5	DVDD_CORE1	Digital power	Digital 1.2V core power input
A5	DVDD_CORE2	Digital power	Digital 1.2V core power input
E5	DVSS_CORE	Digital ground	Digital 1.2V core ground
L	 DVDD_IO1	Digital power	Digital 1.8/2.8V IO power input

© 2011 MediaTek Inc.

Pin#	Symbol	Туре	Description
B5	DVDD_IO2	Digital power	Digital 1.8/2.8V IO power input
E7	DVSS_IO	Digital ground	Digital 1.8/2.8V IO ground
F6	DVDD_SF	Digital power	Digital 2.8V serial flash power input
D5	DVSS_SF	Digital ground	Digital 2.8V serial flash ground
F8	FSOURCE_WR	Digital power	EFUSE 2.8V write power supply
F1	VREF	Analog	Bandgap output pin. Must add 1uF decoupling cap on EVB.
F2	GND_MISC	Analog ground	GND pin for buck controller
D2	AVSS28_TLDO	Analog ground	GND pin for TCXO LDO and start-up block
E1	AVDD43_VBAT	Analog power	TCXO LDO input pin. always be powered by external source. UVLO will detect this PIN to check power status.
G2	AVDD28_TLDO_SW	Analog power	TCXO power switch output pin
G1	AVDD28_TLDO	Analog power	TCXO LDO output pin
E2	AVDD28_CLDO	Analog power	Core LDO input pin. Always powered by external source or SMPS
H1	AVDD12_CLDO	Analog power	Core LDO output pin
F3	AVSS12_CLDO	Analog ground	GND pin for core LDO
G3	PGND_SMPS	SMPS	SMPS GND pin
H2	LXBK	SMPS	SMPS output pin
H3	AVDD43_SMPS	SMPS	SMPS input pin.
F4	BUCK_FB	SMPS	SMPS feedback pin

U

Notes:

- PPU = Programmable pull-up
- PPD = Programmable pull-down
- PSR = Programmable slew rate
- PDR = Programmable driving

MediaTek Confidential

Block Diagrams 3 Architecture of single-chip receiver 3.1 Antenna External LNA (option) Active **RF Front End** Interference Cancellation Battery Power Integrated LNA 2.8~4.3V Integrated LDO & PMU TCXO/Xtal 12.6MHz ~40MHz Fractional-N GPS Synthesizer engine ROM → 3 UARTs/ I2C / SPI Peripheral Controller ▶ 16 GPIOs Wake up signal ARM7 RAM Processor RTC XTAL Serial Flash (MCM) RTC 32.768KHz (optional)

Figure 3-1: MT3339 system block diagram

3.2 Functional block diagram (RF part)

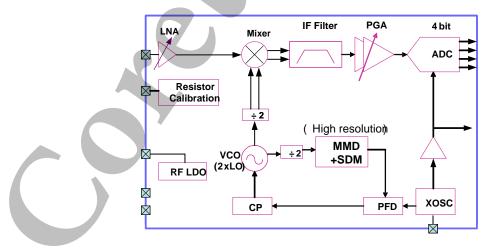


Figure 3-2: MT3339 RF functional block diagram

MediaTek Confidential

MEDI/ITEK

4 MT3339 RF Part

4.1 LNA/Mixer

Upon receiving RF input signal in through either GPS antenna to internal LNA or external antenna and LNA, the mixer down converts the amplified signal (1575.42 MHz) to a 4.092 MHz differential IF signal. The current chip provides 3 configurations to choose from, which are high-gain LNA, mid-gain LNA and low-gain LNA. The high-gain LNA is used for low-cost solution without external LNA. The mid-gain LNA provides moderate noise figure. The low-gain LNA offers extremely low RF current consumption but worst noise figure performance. In the application with external LNA, the external LNA gain ranging from 0 to 36 dB is recommended. The down-conversion mixer is single-ended passive mixer with current mode interface between the mixer and complex CSF.

4.2 VCO/Synthesizer

The entire frequency synthesizer includes crystal oscillator, VCO, divider, phase frequency detector (PFD), charge pump (CP) and loop filter which are all integrated on the MT3339 chip. Upon power-on, VCO is auto-calibrated to its required sub-band. The synthesizer has two topologies (integer-N or fractional-N) selectable through the base band control.

Integer-N synthesizer only supports 16.368 MHz. Other clock modes from 12.6 MHz up to 40 MHz are supported by fractional-N synthesizer, together with a sigma-delta modulator (SDM) and multi-modulus divider (MMD).

4.3 IF CSF

The down converted IF signal from the mixer output passes through a bandpass CSF. Centered at 4.092 MHz, the filter rejects out-of-band (10 MHz) interferences by more than 20 dB and has a pass band ripple of < 0.5 dB. The current-mode mixer and filter also provide a 32 dB pass band gain together to improve noise figure.

4.4 PGA

The PGA has approximately 40 dB of gain control range with approximately 1.6 dB per step. The maximum gain is around 40 dB. HPF circuits are implemented among PGAs to remove DC offset quickly.

4.5 ADC

The differential IF signal is being quantized by a 4-bit ADC. The sampling clock can be provided from OSC direct path or using LO/96.

5 MT3339 Digital Part

5.1 ARM7EJ-S

The ARM7EJ-S processor provides flexibility necessary for building Java-enabled, real-time embedded devices requiring small size, low-power and high performance. It builds on the features and benefits of the established ARM7TDMI core and is delivered in synthesizable form. ARM7EJ-S is supported by a wide variety of development tools and can run at speeding up to 98 MHz.

ARM7EJ-S includes a JTAG interface which provides a standard development and debugging interface. The interface can connect to a variety of off-the-shelf emulators. The emulators provide single-step, trap and access to all the internal registers of the digital part of MT3339.

5.2 Cache

MT3339 provides cache to speed up program execution and reduce external flash access times. It supports up to 64 Kbits cache buffer and can be used as internal memory when it is not fully used.

5.3 Boot ROM

The embedded boot ROM provides a function of loading a set of user code through the host interface into SRAM. The host interface (UART/SPI/I2C) is decided by strap control.

5.4 Battery backed-up memory

MT3339 provides very low leakage (about 5 uA in the backup mode) battery backed-up memory, which contains all the necessary GPS information for quick start-up and a small amount of user configuration variables. There is a built-in 1.2 volts LDO for RTC domain and it can be bypassed while an external LDO is applied. The RTC LDO is a voltage regulator having very low quiescent current, and typical quiescent current < 2.5 uA. The small ceramic capacitor can be used as the output capacitor, and the stable operation region ranges from very light load (~=0) to about 3 mA.

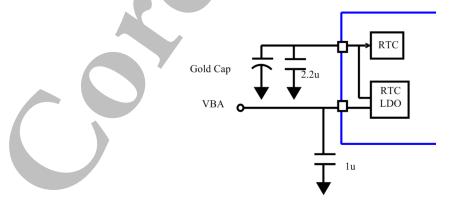


Figure 5-1: RTC with internal RTC LDO application circuit 1

MediaTek Confidential

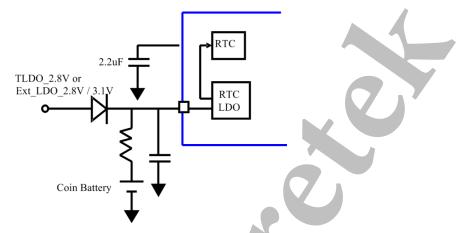


Figure 5-2: RTC with internal RTC LDO application circuit 2

5.5 SMPS

A built-in switching mode power supply provides 1.8 volts power supply for the digital 1.2 volts CLDO and RF input power. In the active mode, SMPS is operated in the PWM mode. In the power saving mode, SMPS is operated with reduced switching frequency in the PFM mode. The recommended L/C value is 4.7 uH / 10 uF.

5.6 Timer function

The timer function supports a time tick generation of 31.25 ms resolution. With the 24-bit counter, the period of timer is from 31.25 ms to 524,287 s. The "PAD_TIMER" pin outputs signal 1'b0 during the timer period and becomes an input pin after time-out. The power control function for the system can be executed by connecting this pin to an external LDO controller and adding external pull-high circuit.

5.7 GPIO in RTC domain

The "32K_OUT" pin in RTC domain can output 32.768 KHz clock which can be used to support low clock rate operation mode for some applications or peripherals that need an external clock source. This pin can also be programmed to be an input pin to receive the signal from an external accelerator sensor IC to be the wake-up signal of MT3339 when it is in the low-power mode.

5.8 Low power detection

A low power detection circuit is implemented. Whenever the independent power source (AVDD12_RTC) becomes low voltage, the low power detection circuit will detect this condition and use an indicator signal (output high in normal condition and low in low-power condition) to reflect this condition.

5.9 Clock module

The clock module generates all internal clocks required by processor, correlator, internal memory, bus interface and so on. The referenced input clock is generated from the RF block. For system flexibility and maximum power saving, it supports various power management modes.

5.10 Reset controller

The built-in reset controller generates reset signals for all digital blocks. It has power-on reset feature and hardware trapping function. The power-on reset level is 2.7 ± 0.1 volts. The software reset function for different circuit blocks are also included for flexible applications.

In Figure 5-4, the voltage drop time T_{drop_vbat} and T_{drop_cldo} depend on the capacitance connection of their power net. But $T_{drop_vbat} > T_{drop_cldo}$ should be guaranteed for the correct operation of reset behavior during power off sequence. It is strongly recommend using external LDOs without output discharged function or make sure $T_{drop_vbat} > 100$ ms.

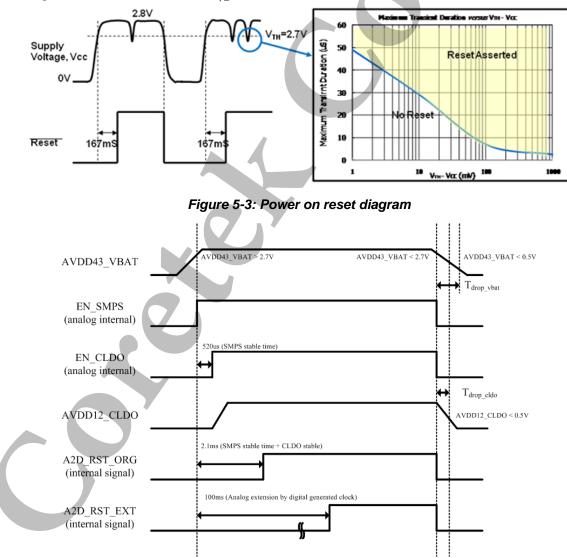


Figure 5-4: Power on/off reset behavior

MediaTek Confidential

© 2011 MediaTek Inc.

5.11 Host interface

MT3339 supports 3 different host interfaces, which are UART, SPI, and I2C. The interface used as the host interface is determined by strap pins.

5.11.1 UART

UART is the abbreviation of "Universal Asynchronous Receiver/Transmitter". MT3339 has 3 full duplex serial ports. It is used for serial data communication. A UART converts bytes of data to and from asynchronous start-stop bit streams represented as binary electrical impulses.

There are several functions in MT3339 related to UART communication, such as UART data transmission/receive and NMEA sentences input/output. In general, UART0 is as NMEA output and PMTK command input, UART1 as RTCM input. You can adjust the UART2 port as desired. The receiver (RX) and transmitter (TX) side of every port contains a 16-byte FIFO, but only UART0 has 256 bytes of URAM. The bit rates are selectable and range from 4.8 to 921.6 kbps. UART provides signal or message outputs.

5.11.2 SPI

The serial peripheral interface port manages the communication between digital BB and external devices. MT3339 supports both master and slave modes. Only 4 bytes of register in the master mode can be transferred. The slave has 4-byte-register mode or URAM mode. In the URAM mode, the transmitted and received data size is 256 bytes. The clock phase and clock polarity are selectable. MT3339 supports manual or automatic indicator for data transfer in the slave mode.

5.11.3 I2C

The I2C interface is mainly connected to external devices. MT3339 supports multi-master and slave modes. Both modes have 256-byte URAM mode and 8-byte FIFO mode for transmitting and receiving data. The multi-master mode supports 7-bit and 10-bit address modes up to 400 Kb/s fast mode and 3.4 Mb/s high-speed mode. In additions, MT3339 supports manual or automatic indicator for data transfer in the slave mode. Device addresses in the slave mode are programmable and support fast mode and high-speed mode data transmission and reception.

5.12 Interrupt control unit

The interrupt control unit manages all internal and external sources of interrupts, which include timer, watch-dog, all interfaces such as UART, I2C and SPI and external user interrupt pins. These interrupt sources can be wake-up events in the power saving mode.

5.13 Flash

An external SPI serial flash up to 128 Mb is supported. Specific MTK Flash Tool is also supported for downloading firmware into the internal flash.

5.14 EEPROM

An external I2C interface EEPROM up to 1 Mb is supported with a dedicated I2C EEPROM interface for reading and writing data into EEPROM.

5.15 EFUSE

EFUSE is one of OTP (One-Time-Programming) memories. The internal EFUSE supports up to 128 bits for user configuration.

5.16 **GPIO** unit

GPIO is the abbreviation of "General-Purpose Input/Output". MT3339 supports a variety of peripherals through maximum 16 GPIO programmable ports. The unit manages all GPIO lines and supports a simple control interface. GPIO provides signal or message outputs.

5.17 PPS

The PPS (Pulse Per Second) signal is provided through designated output pin for many external applications. The pulse is not only limited to being active every second but also allowed to set up the required duration, frequency and active high/low by programming user-defined settings.

5.18 ECLK

ECLK is a clock input pin for introducing an external clock signal to MT3339 and obtaining the relation between the external clock and GPS local clock. With precise external clock input, the clock drift of the GPS local clock can be correctly estimated. Therefore, the doppler search range is narrowed down accordingly. The technology is beneficial to speeding up the satellite acquisition process. Particularly in the cold start case, due to limited priori information about the satellite's location and local clock uncertainty, a receiver will execute a search in full frequency range. Consequently, a longer acquisition time is expected. However, the ECLK technology is able to reduce the frequency uncertainty so that the search process will be completed in a short time. Efficient acquisition and lower power consumption are attained by the ECLK technology.

5.19 SYNC

SYNC is a time stamp signal input pin for introducing an external timing to the GPS receiver and obtaining the relation between the external timing and the GPS receiver local timing. With precise external timing input and the established relation, the GPS time of week (TOW) can be correctly estimated in the GPS receiver. The technology is beneficial for time to first fix (TTFF), particularly in weak signal environments. In hot starts, with priori information about the GPS receiver's location and satellite ephemeris data, the GPS receiver uses the correct GPS TOW to accurately predict the signal code chip/phase. Therefore, the code search range can be narrowed down accordingly. Hence, fast TTFF is achieved by the SYNC technology.

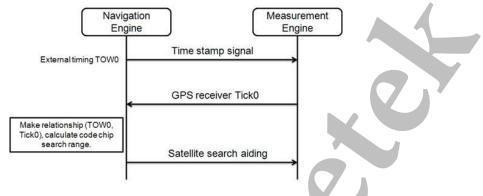


Figure 5-5: Flow diagram of SYNC function

5.20 Power scheme

- Internal SMPS is used as the source power of the internal RF/BB LDO. It is also used as 1.8 volts I/O power. The internal SMPS can switch to the LDO mode to supply power to each of the about block
- External LDO or VBAT can be used as the main power. The minimum/maximum input voltage of AVDD43_VBAT and AVDD43_SMPS is 2.8/4.3 volts.
- The power-on reset voltage threshold of AVDD43_VBAT is 2.7 ± 0.1 volts. The maximum TLDO drop out voltage at half load (25 mA) is 0.25 volts. If one external LDO is used to provide power to MT3339, the 3.3 volts external LDO will be recommended after taking TLDO drop-out into consideration.
- The power efficiency in SMPS mode will be better than that in the internal LDO mode.
- I/O supports 1.8 and 2.8 volts. The power comes from SMPS output for 1.8 volts application or TLDO output (AVDD28_TLDO) for 2.8 volts application.
- The power for internal flash comes from AVDD28_TLDO.
- TCXO power is from AVDD28_TLDO_SW with an internal MUX to select 2.8 volts from AVDD28_TLDO or 1.8 volts from AVDD28_CLDO by setting up power-on strap.
- RTC LDO input power comes from AVDD28_TLDO and uses coin battery as the backup battery. A schottky diode is usually used to avoid leakage from coin battery to TLDO.
- Here are 3 power schemes: low power (Figure 5-6), low cost (Figure 5-7) and external PMU (Figure 5-8).
- In Figure 5-8, if 2.8V TCXO is used, AVDD28_CLDO should be open for saving power.

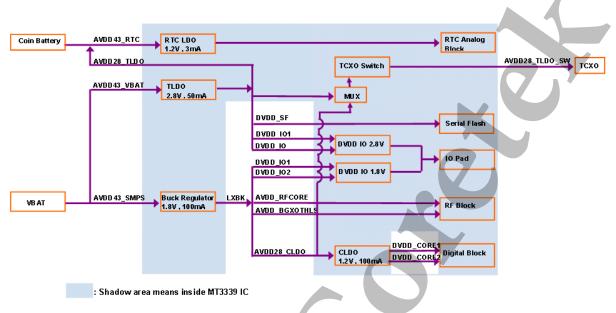
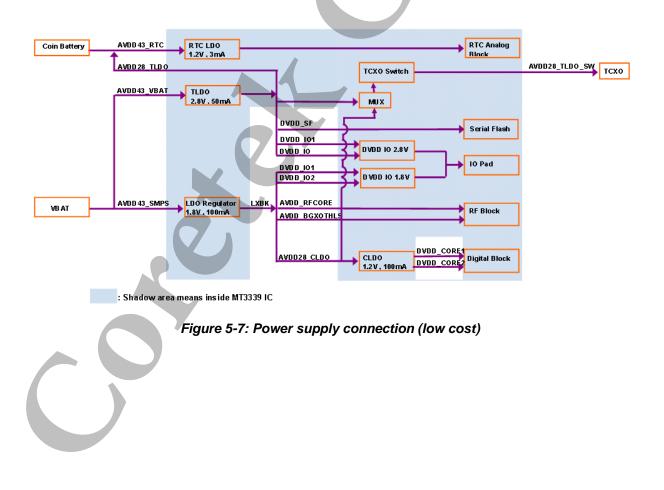



Figure 5-6: Power supply connection (low power)

MediaTek Confidential

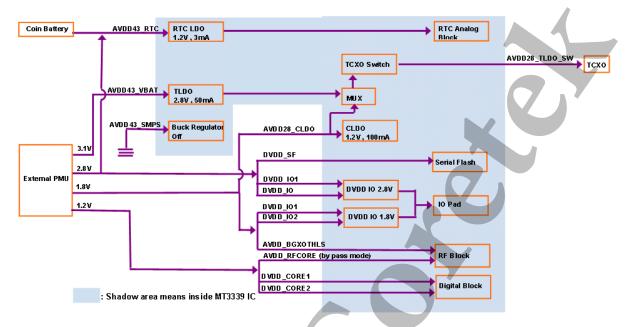
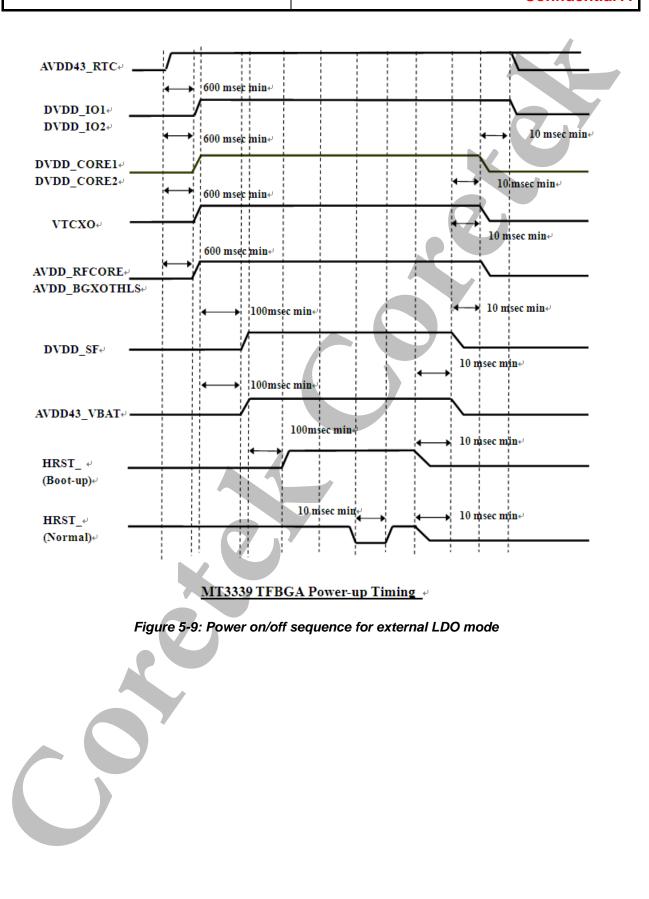



Figure 5-8: Power supply connection (external LDO)

MediaTek Confidential

6 Electrical Characteristics

6.1 **DC** characteristics

6.1.1 Absolute maximum ratings

Symbol	Parameter	Rating	Unit
AVDD43_SMPS	SMPS power supply	-0.3 ~ 4.3	V
AVDD43_VBAT	2.8 volts TLDO power supply	-0.3 ~ 4.3	V
AVDD28_CLDO	1.2 volts CLDO power supply	-0.3 ~ 3.08	V
DVDD_SF	Embedded flash power supply	-0.3 ~ 3.6	V
DVDD_IO1 DVDD_IO2	IO 2.8/1.8 volts power supply	-0.3 ~ 3.6	V
DVDD_CORE1 DVDD_CORE2	Baseband 1.2 volts power supply	-0.3 ~ 1.32	V
AVDD43_RTC	RTC 1.2 volts LDO power supply	-0.3 ~ 4.3	V
AVDD_RFCORE	1.8 volts supply for RF core circuits	-0.3 ~ 3.08	V
AVDD_BGXOTHLS		-0.3 ~ 3.08	V
T _{STG}	Storage temperature	-50 ~ +125	°C
T _A	Operating temperature	-45 ~ +85	°C

6.1.2 Recommended operating conditions

Symbol	Parameter	Min.	Тур.	Max.	Unit
AVDD43_SMPS	SMPS power supply	2.8	3.3	4.3	V
AVDD43_VBAT	2.8 volts TLDO power supply	2.8	3.3	4.3	V
DVDD_CORE1 DVDD_CORE2	1.2 volts baseband core power	1.08	1.2	1.32	V
DVDD_IO1	2.8 volts digital I/O power	2.52	2.8	3.08	V
DVDD_IO2	1.8 volts digital I/O power	1.62	1.8	1.98	V
DVDD_SF	Embedded flash power supply	2.7	2.8	3.6	V
AVDD RFCORE	1.2 volts supply for RF core circuits in bypass mode	1.16	1.2	1.26	V
AVDD_RECORE	1.8 volts supply for RF core circuits in LDO mode	1.62	1.8	3.08	V
AVDD_BGXOTHLS		1.62	1.8	3.08	V
т	Operating temperature	-40	25	85	°C
T _A Tj	Commercial junction operating temperature	0	25	115	°C
	Industry junction operating temperature	-40	25	125	°C

6.1.3 General DC characteristics

Symbol	Parameter	Condition	Min.	Max.	Unit
IIL	Input low current	No pull-up or down	-1	1	uA
I _{IH}	Input high current	No pull-up or down	-1		uA
I _{OZ}	Tri-state leakage current		-10	10	uA

6.1.4 DC electrical characteristics for 2.8 volts operation

Symbol	Parameter	Condition	Min.	Max.	Unit
V _{IL}	Input lower voltage	LVTTL	-0.3	0.8	V
V _{IH}	Input high voltage		2.0	3.6	V
V _{T-}	Schmitt trigger negative going threshold voltage		0.8	1.6	V
V _{T+}	Schmitt trigger positive going threshold voltage	LVTTL	1.6	2.0	V
V _{OL}	Output low voltage	l _{OL} = 1.6 ~ 14 mA	-0.3	0.4	V
V _{OH}	Output high voltage	I _{OH} = 1.6 ~ 14 mA	2.4	VDD28 + 0.3	V
R _{PU}	Input pull-up resistance	PU = high, PD = low	40	190	KΩ
R _{PD}	Input pull-down resistance	PU = low, PD = high	40	190	KΩ

6.1.5 DC electrical characteristics for 1.8 volts operation

Symbol	Parameter	Condition	Min.	Max.	Unit
V _{IL}	Input lower voltage	LVTTL	-0.18	0.4	V
V _{IH}	Input high voltage	LVIIL	1.5	1.98	V
V _{T-}	Schmitt trigger negative going threshold voltage	LVTTL	0.44	0.88	V
V_{T+}	Schmitt trigger positive going threshold voltage		0.88	1.1	V
V _{OL}	Output low voltage	I _{OL} = 1.6 ~ 14 mA	-0.18	0.4	V
V _{OH}	Output high voltage	I _{OH} = 1.6 ~ 14 mA	1.4	VDD18 + 0.18	V
R _{PU}	Input pull-up resistance	PU = high, PD = low	40	190	KΩ
R_{PD}	Input pull-down resistance	PU = low, PD = high	40	190	KΩ

6.1.6 DC electrical characteristics for 1.2 volts operation (for TIMER and 32K_OUT)

Symbol	Parameter	Condition	Min.	Max.	Unit
VIL	Input lower voltage	LVTTL	-0.3	0.54	V
V _{IH}	Input high voltage	LVIIL	0.66	3.6	V
V _{T-}	Schmitt trigger negative going threshold voltage	LVTTL	0.24	0.46	V

MediaTek Confidential

© 2011 MediaTek Inc.

Page 26 of 37

Symbol	Parameter	Condition	Min.	Max.	Unit
V _{T+}	Schmitt trigger positive going threshold voltage		0.64	0.9	V
V _{OL}	Output low voltage	I _{OL} = 0.9 mA		0.42	V
V _{OH}	Output high voltage	I _{OH} = 0.9 mA	0.78		V
R _{PU}	Input pull-up resistance	PU = high, PD = low	130	560	KΩ
R _{PD}	Input pull-down resistance	PU = low, PD = high	130	560	KΩ

6.2 Analog related characteristics

6.2.1 SMPS DC characteristics

Symbol	Parameter	Min.	Тур.	Max.	Unit	Note
AVDD43_SMPS	SMPS input supply voltage	2.8	3.3	4.3	V	
LXBK	SMPS output	1.71	1.8	1.95	V	
I _{max}	SMPS current limit	100			mA	
I _{cc}	For normal operation current		20	70	mA	
∆V_PWM	Ripple of PWM mode			40	mV	With L=4.7uH, C=10uF
ΔV_PFM	Ripple of PFM mode			90	mV	With L=4.7uH, C=10uF
l _q	Quiescent current		50		uA	

6.2.2 TCXO LDO DC characteristics

Symbol	Parameter	Min.	Тур.	Max.	Unit	Note
AVDD43_VBAT	TCXO LDO input supply voltage	2.8	3.3	4.3	V	Will change to bypass mode under 3.1 volts
AVDD28_TLDO	TCXO LDO output	2.7	2.8	2.9	V	
I _{max}	TCXO LDO current limit	50			mΑ	
I _{cc}	For normal operation current		1	30	mA	Not include external devices
	PSRR-30 KHz		40		dB	Co = 1 uF, ESR = 0.05, lload = 25 mA
	Load regulation		10		mV	
Iq	Quiescent current		50		uA	

6.2.3 TCXO SWITCH DC characteristics

Symbol	Parameter	Min.	Тур.	Max.	Unit	Note
AVDD28_TLDO_ SW	TCXO switch output voltage @ TCXO switch input = AVDD28_TLDO	2.66	2.8	2.9	V	

MediaTek Confidential

Symbol	Parameter	Min.	Тур.	Max.	Unit	Note
AVDD28_TLDO_ SW	TCXO switch output voltage @ TCXO switch input = AVDD28_CLDO	1.71	1.8	1.89	V	
I _{max}	TCXO SWITCH current limit	2			mA	

6.2.4 1.2 volts core LDO DC characteristics

Symbol	Parameter	Min.	Тур.	Max.	Unit	Note
AVDD28_CLDO	1.2 volts LDO input supply voltage	1.62	1.8	3.08	V	
AVDD12_CLDO	1.2 volts LDO output	1.1	1.2	1.3	V	
I _{max}	1.2 volts LDO current limit	100			mA	
I _{cc}	For normal core operation current		15	85	mA	
	Load regulation		10		mV	
l _q	Quiescent current		20		uA	

6.2.5 1.2 volts RTC LDO DC characteristics

Symbol	Parameter	Min.	Тур.	Max.	Unit	Note
AVDD43_RTC	RTC LDO input supply voltage	2	2.8	4.3	V	
AVDD12_RTC	RTC LDO output	1.08	1.2	1.32	V	
I _{max}	RTC LDO current limit	3			mΑ	
I _{cc}	For normal RTC operation current			2.7	mA	
l _q	Quiescent current		2		uA	
_{leak}	Leakage current		10		uA	Including LDO and RTC domain circuit

6.2.6 32 KHz crystal oscillator (XOSC32)

Symbol	Parameter	Min.	Тур.	Max.	Unit	Note
AVDD12_RTC	Analog power supply	1.08		1.32	V	
Dcyc	Duty cycle		50		%	

6.3 **RF related characteristics**

6.3.1 DC electrical characteristics for RF part

Symbol	Parameter	Min.	Тур.	Max.	Unit
I _{cc}	Total supply current: High gain LNA		13.5	14.8	mA

MediaTek Confidential

© 2011 MediaTek Inc.

Page 28 of 37

Symbol	Parameter	Min.	Тур.	Max.	Unit
	Total supply current: Middle gain LNA Total supply current: Low gain LNA		8.5 7.3	9.4 8	
	(Total supply current = RX + SX + LDO current)		7.0	9	
I _{cc} (STAND-BY)	Only the PLL, oscillator and regulator are kept powered up.		3.5		mA
I _{cc} (DOZE)	Only the oscillator and regulator are kept powered up.		0.6		mA
I _{cc} (Off)	Power-down state current			2	μΑ

6.3.2 RX chain from LNA to PGA, before ADC

Parameter	Condition	Min.	Тур.	Max.	Unit
	SOC on: High gain LNA		2	2.5	
Noise figure	SOC on: Mid gain LNA		2.5	3	dB
	SOC on: Low gain LNA		5.5	6	
Image rejection ratio			30		dB
V _{cc}		1.16	1.2	1.26	V
Current consumption	RX chain only (LNA, mixer, CSF, PGA, divider, ADC)		5.5		mA

6.3.3 Receiver front-end part (LNA only)

Parameter	Condition	Min.	Тур.	Max.	Unit
RF input frequency			1.57542		GHz
LO frequency			1.57132		GHz
Input return loss			-10		dBm
Voltage gain Av	High gain LNA Mid gain LNA Low gain LNA	27.5 25.5 16	29 27 18		dB
Noise figure	High gain LNA Mid gain LNA Low gain LNA		1.5 2 5	2 2.5 6	dB

6.3.4 Mixer and channel selection filter (CSF)

Parameter	Condition	Min.	Тур.	Max.	Unit
Filter type	3 rd -order butterworth polyphase bandpass (Note 1)				
Voltage	Supply voltage	1.16	1.2	1.26	V
BW _{3dB}	3dB bandwidth		2.5/4		MHz
Filter frequency response (2.5M/4M)	Rejection band attenuation @ f = 3 MHz @ f = 10 MHz @ f = 15 MHz @ f > 20 MHz		23/12 54/45 65/54 72/60		dB

MediaTek Confidential

© 2011 MediaTek Inc.

Page 29 of 37

This document contains information that is proprietary to MediaTek Inc.

Unauthorized reproduction or disclosure of this information in whole or in part is strictly prohibited.

Voltage gain Av	High gain mixer + CSF Low gain mixer + CSF	32 20	dB
	5		

6.3.5 **Programmable gain amplifier (PGA)**

Parameter	Condition	Min.	Тур.	Max.	Unit
Supply voltage	Supply voltage	1.16	1.2	1.26	V
Center frequency	Centre frequency		4.092		MHz
Voltage gain	Voltage gain	0		40	dB
Gain step	Gain step (5 bits)		1.6		dB

6.3.6 2-bit and 4-bit quantizer (ADC)

Parameter	Condition	Min.	Тур.	Max.	Unit
Supply voltage	Supply voltage	1.16	1.2	1.26	V
Input sampling clock	Operating frequency		16.368	30	MHz
Input signal frequency	Input signal center frequency		4.092		MHz
Resolution			4		Bits

6.3.7 Integrated synthesizer

Symbol	Parameter	Min.	Тур.	Max.	Unit
Fosc	VCO oscillation frequency		3,142.6 56		MH z
V	Tuning voltage range	0.2		Vcc-0.2	V
DIV	Programmable divider ratio	32		127	
T _{start}	Circuit start-up time			100	μS

6.3.8 Crystal oscillator (XO)

Symbol	Parameter	Min.	Тур.	Max.	Unit
F _{tcxo}	TCXO oscillation frequency	12.6	16.368	40	MHz
V _{tcxo}	TCXO output swing	0.8	1.2		Vpp

7 Interface Characteristics

7.1 JTAG interface timing

Description	Symbol	Min.	Max.	Unit	Note
TDI input setup to rising TCK	T1	0.35T	- (ns	1
TDI input hold from rising TCK	T2	0.15T	-	ns	1
TMS input setup to rising TCK	T1	0.35T	-	ns	1
TMS input hold from rising TCK	T2	0.15T		ns	1
Rising TCK to TDO valid	T3	-	0.5T	ns	1
TDO hold from rising TCK	T4	0		ns	1

Note: The maximal condition of JTAG clock cycle (TCK) is 50 MHz.

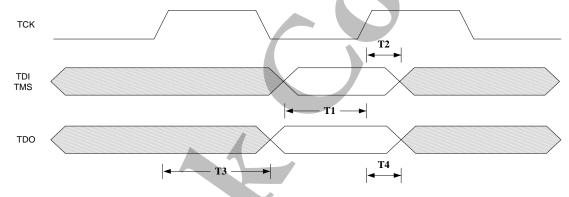


Figure 7-1: Timing diagram of JTAG interface

7.2 RS-232 interface timing

Baudrate required (bps)	Programmed baudrate (bps)	Baudrate error (%)	Baudrate error (%) ³	
4,800	4,800.000	0.0000	0.002	
9,600	9,600.000	0.0000	0.002	
14,400	14,408.451	0.0587	0.0567	
19,200	19,164.319	0.0587	0.0567	
38,400	38,422.535	0.0587	0.0567	
57,600	57,633.803	0.0587	0.0567	
115,200	115,267.606	0.0587	0.0567	
230,400	230,535.211	0.0587	0.0567	
460,800	454,666.667	-1.3310	-1.3330	
921,600	909,333.333	-1.3310	-1.3330	

Notes:

1. UART baud-rate settings with UART_CLK frequency = 16.368 MHz (UART_CLK uses the reference clock of the system).

MediaTek Confidential

© 2011 MediaTek Inc.

Page 31 of 37

- 2. The baudrate error is optimized. Each baudrate needs to adjust counter to obtain the optimized error.
- 3. Suppose TCXO is exactly at 16.368 MHz. If TCXO has 20 PPM, the error will raise slightly.

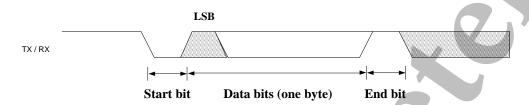


Figure 7-2: Timing diagram of RS-232 interface

7.3 SPI interface timing

Description	Symbol	Min.	Max.	Unit	Note
SCS# setup time	T1	0.5T	-	ns	1
SCS# hold time	T2	0.5T	-	ns	1
SO setup time	Т3	0.5T – 3t	0.5T - 2t	ns	1, 2
SO hold time	T4	0.5T + 2t	0.5T + 3t	ns	1, 2
SIN setup time	T5	3t	-	ns	1, 2
SIN hold time	Т6	10	-	ns	1

Notes:

- 1. The condition of SPI clock cycle (T) is (SPI_IPLLSPI_IPLL/12) MHz ~ (rf_clk/1,020) MHz.
- 2. t indicates the period of SPI controller clock, which is SPISPI_IPLL clock or rf_clk.

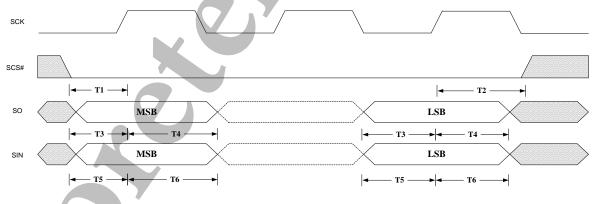


Figure 7-3: Timing diagram of SPI interface

I2C interface timing

Symbol	Period
T1	(MM_CNT_PHASE_VAL0+1)/TCXO_CLK
T2	(MM_CNT_PHASE_VAL1+1)/TCXO_CLK
Т3	(MM_CNT_PHASE_VAL2+1)/TCXO_CLK

MediaTek Confidential

© 2011 MediaTek Inc.

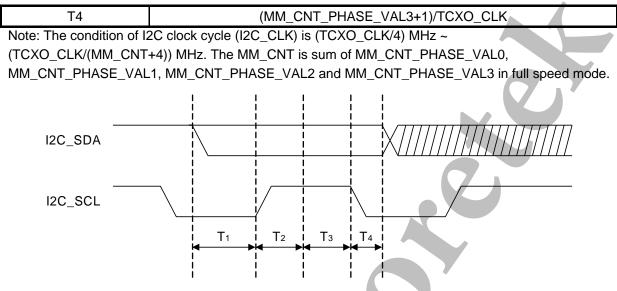
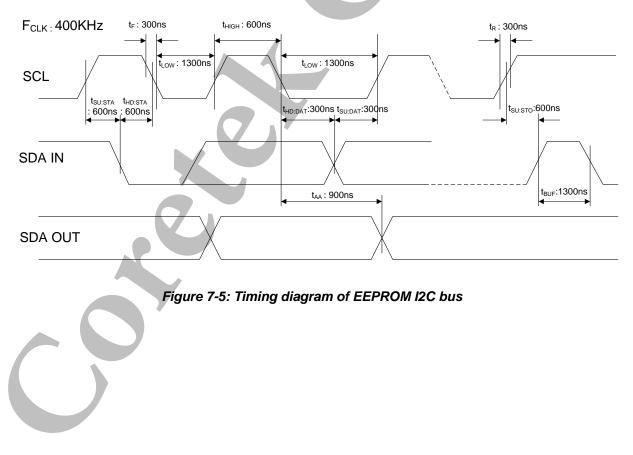
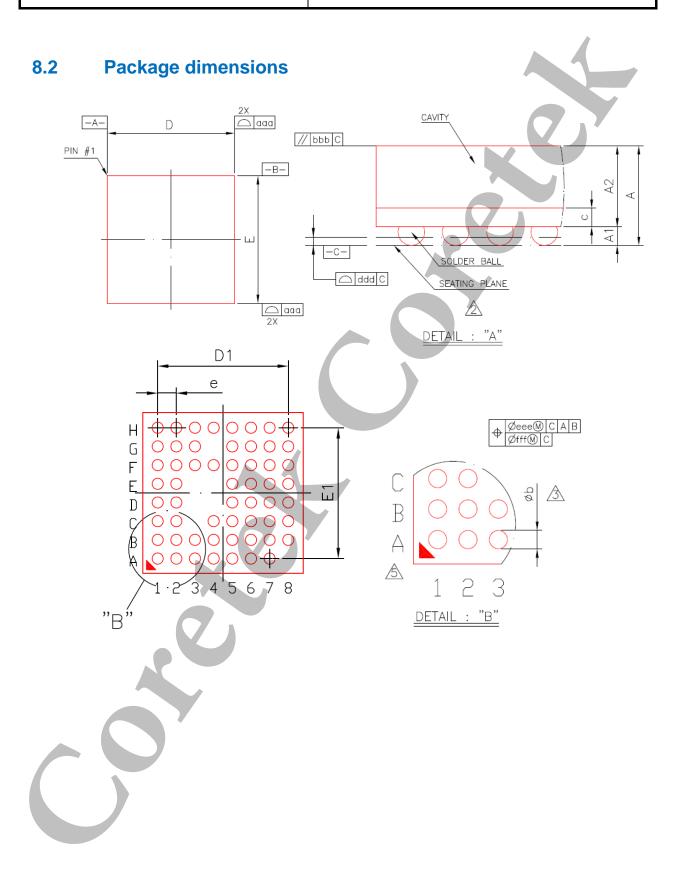



Figure 7-4: Timing diagram of HOST I2C interface


7.5 EEPROM I2C interface timing

Package Description 8 8.1 **Top mark** MTK ARM 3339AV DDDDDD LLLLL FFFFFF A: 8M flash V: VFBGA package DDDDDD: Date code U1 Lot number LLLLLL : FFFFFF: U2 Lot number

MediaTek Confidential

.

ΜΕΟΙΛΤΕΚ

Constant	Dimension in mm		Dimension in inch				
Symbol	MIN	NOM	MAX	MIN	NOM	MAX	
Α			1.00			0.039	
A1	0.16	0.21	0.26	0.006	0.008	0.010	
A2	0.69	0.74	0.79	0.027	0.029	0.031	
С	0.17	0.21	0.25	0.007	0.008	0.010	
D	4.20	4.30	4.40	0.165	0.169	0.173	
E	4.20	4.30	4.40	0.165	0.169	0.173	
D1		3.50			0.138		
E1		3.50			0.138		
е		0.50			0.020		
b	0.25	0.30	0.35	0.010	0.012	0.014	
aaa		0.10			0.004		
bbb		0.10			0.004		
ddd		0.08			0.003		
eee		0.15			0.006		
fff		0.05			0.002		
MD/ME		8/8			8/8		

NOTE :

- 1. CONTROLLING DIMENSION : MILLIMETER.
- PRIMARY DATUM C AND SEATING PLANE ARE DEFINED BY THE SPHERICAL CROWNS OF THE SOLDER BALLS.
- DIMENSION & IS MEASURED AT THE MAXIMUM SOLDER BALL DIAMETER, PARALLEL TO PRIMARY DATUM C.
- 4. SPECIAL CHARACTERISTICS C CLASS: bbb, ddd
- 5. THE PATTERN OF PIN 1 FIDUCIAL IS FOR REFERENCE ONLY.

MediaTek Confidential

ESD CAUTION

MT3339 is ESD (electrostatic discharge) sensitive device and may be damaged with ESD or spike voltage. Although MT3339 is with built-in ESD protection circuitry, please handle with care to avoid permanent malfunction or performance degradation.

Use of the GPS Data and Services at the User's Own Risk

The GPS data and navigation services providers, system makers and integrated circuit manufactures ("Providers") hereby disclaim any and all guarantees, representations or warranties with respect to the Global Positioning System (GPS) data or the GPS services provided herein, either expressed or implied, including but not limited to, the effectiveness, completeness, accuracy, fitness for a particular purpose or the reliability of the GPS data or services.

The GPS data and services are not to be used for safety of life applications, or for any other application in which the accuracy or reliability of the GPS data or services could create a situation where personal injury or death may occur. Any use there with are at the user's own risk. The Providers specifically disclaims any and all liability, including without limitation, indirect, consequential and incidental damages, that may arise in any way from the use of or reliance on the GPS data or services, as well as claims or damages based on the contravention of patents, copyrights, mask work and/or other intellectual property rights.

No part of this document may be copied, distributed, utilized, and transmitted in any form or by any means without expressed authorization of all Providers. The GPS data and services are in part or in all subject to patent, copyright, trade secret and other intellectual property rights and protections worldwide.

MediaTek reserves the right to make change to specifications and product description without notice.

MediaTek Confidential