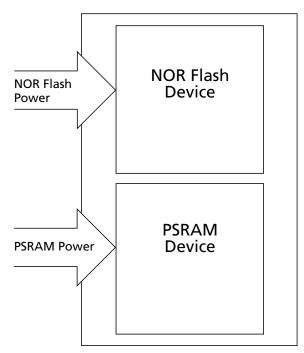


Parallel NOR and PSRAM 56-Ball MCP Combination Memory

MT38L3031AA03JVZZI.X7A


Features

- Micron[®] Parallel NOR Flash and PSRAM components
- RoHS-compliant, "green" package
- · Multiplexed address/data bus NOR Flash and **PSRAM** interfaces
- Space-saving multichip package (MCP)
- Low-voltage operation (1.70–1.95V)
- Industrial temperature range: -40°C to +85°C

NOR Flash-Specific Features

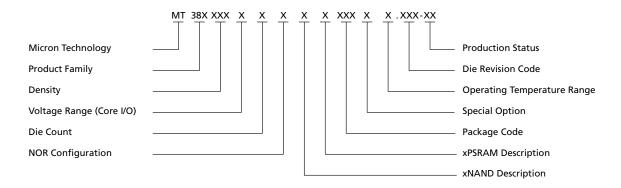
- Multiple-bank, Parallel NOR Flash memory
- · Synchronous/asynchronous read
 - Synchronous burst read mode: 66 MHz
- Random access times: 70ns
- Asynchronous page mode read: 20ns
- Programming times
 - 2.5µs typical word program time using buffer enhanced factory program command
 - Fast program with 9VVpp
- · Memory blocks
 - Multiple bank memory array: 8Mb banks
 - Top or bottom location parameter blocks¹
- · Synchronous burst read suspend
- **Dual operations**
 - Program erase in 1 bank, read in others
 - No delay between READ and WRITE operations
- Block locking
 - All blocks locked at power-up
 - Any combination of blocks can be locked
 - WP# for block lock-down
- Security
 - 2112-bit user programmable OTP cells
 - 64-bit unique device number
- Common Flash interface
- 100,000 PROGRAM/ERASE cycles per block
- Electronic signature
- Manufacturer code: 20h
- 128Mb Flash code: 882Eh (top boot)

Figure 1: MCP Block Diagram

PSRAM-Specific Features

- Synchronous/asynchronous read
 - Synchronous burst read mode: 83 MHz
 - Random access: 70ns
 - Asynchronous page mode: 20ns
- Partial-array self refresh (PAR)
- Deep power-down (DPD) mode
- Automatic temperature-compensated self-refresh (TCR)
 - Notes: 1. Contact factory for availability of version.
 - 2. For physical part markings, see Part Numbering Information (page 2).

PDF: 09005aef85ddc5b5 56ball_nor_psram_jx7a.pdf - Rev. C 11/14 EN 1


Micron Technology, Inc. reserves the right to change products or specifications without notice. © 2014 Micron Technology, Inc. All rights reserved.

Part Numbering Information

Micron NOR Flash and PSRAM devices are available in different configurations and densities. The MCP/PoP part numbering guide is available at www.micron.com/numbering.

Figure 2: Part Number Chart

Device Marking

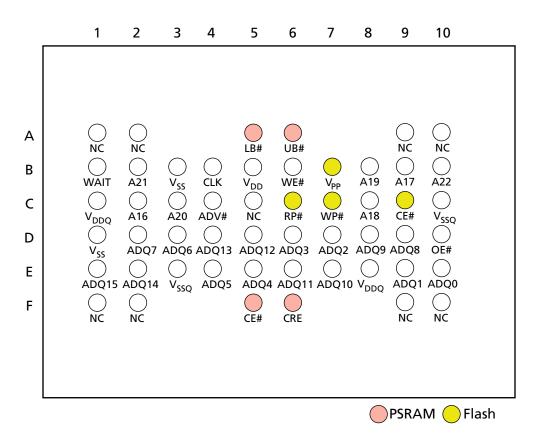
Due to the size of the package, the Micron-standard part number is not printed on the top of the device. Instead, an abbreviated device mark consisting of a 5-digit alphanumeric code is used. The abbreviated device marks are cross-referenced to the Micron part numbers at the FBGA Part Marking Decoder site: www.micron.com/decoder. To view the location of the abbreviated mark on the device, refer to customer service note CSN-11, "Product Mark/ Label," at www.micron.com/csn.

MCP General Description

Micron MCP products combine NOR Flash and PSRAM devices in a single MCP.

Operational characteristics for the NOR Flash and PSRAM devices are found in the standard data sheets for each of the discrete devices.

Recommended operating conditions do not allow more than one device to be active at a time. A common example of this scenario is running simultaneous READ operations on the NOR device and on the PSRAM device. Doing this results in data bus contention. To prevent this, one device must be High-Z when reading the selected device.


The NOR Flash device is M58LR128KC70. For device specifications and complete Micron NOR Flash features documentation, contact your local Micron sales office.

The PSRAM ADM device is W956D6H. For device specifications and complete PSRAM features documentation, contact your local Micron sales office.

Ball Assignments and Descriptions

Figure 3: 56-Ball TFBGA (NOR x16; PSRAM x16) Ball Assignments (Top View Through Package)

Table 1: x16 NOR Ball Descriptions

Symbol	Alternate Symbol	Туре	Description
CE#	E#	Input	Chip enable: Activates the memory control logics, input buffers, decoders, and sense amplifiers. When CE# is LOW and RESET is HIGH, the device is in active mode. When HIGH, the NOR device is deselected, the outputs are High-Z, and the power consump- tion is reduced to the standby level.
WP#	_	Input	Write protect: Provides additional hardware protection for each block. When WP# is LOW, lock-down is enabled and the protec- tion status of the locked-down blocks cannot be changed. When WP# is HIGH, lock-down is disabled and the locked-down blocks can be locked or unlocked.

56-Ball MCP: 128Mb Parallel NOR and 64Mb PSRAM Ball Assignments and Descriptions

Table 1: x16 NOR Ball Descriptions (Continued)

Symbol	Alternate Symbol	Туре	Description
RP#	_	Input	Reset: Provides a hardware reset of the memory. When RP# is LOW, the device is in reset mode; the outputs are High-Z and the current consumption is reduced to _{IDD2} . After RP#, all blocks are in the locked state and the configuration register is reset. When RP# is HIGH, the device is in normal operation. Upon exiting reset mode, the device enters asynchronous read mode, but a negative transition of CE# or ADV# is required to ensure valid data outputs.
V _{PP}	_	Supply	Both a NOR control input and power supply pin. The two func- tions are selected by the voltage range applied to the pin. When $V_{PP} = 0V - V_{DDQ}$, it functions as a control input. In this case, a voltage lower than V_{PPLKF} provides absolute protection against program or erase, while $V_{PP} > V_{PP1F}$ enables these functions. V_{PP} is only sampled at the beginning of a program or erase; a change in its value after the operation has started does not have any effect, and PROGRAM or ERASE operations continue. When V_{PP} is in the range of V_{PPH} , it acts as a power supply pin. In this condition, V_{PP} must be stable until the program/erase algorithm is completed.

Table 2: x16 PSRAM Ball Descriptions

Symbol	Alternate Symbol	Туре	Description
CE#	E#	Input	Chip enable: When LOW, CE# activates the memory state ma- chine, address buffers and decoders, enabling READ and WRITE operations. When HIGH, all other pins are ignored and the de- vice is automatically put in low-power standby mode.
CRE	CR	Input	Configuration register enable: When HIGH, bus READ or WRITE operations access either the value of the refresh configuration register or the bus configuration register, according to the value of A19.
UB#	_	Input	Upper byte enable: Gates the data on the upper byte data I/Os (DQ[15:8]) to or from the upper part of the selected address dur- ing a WRITE or READ operation.
LB#	_	Input	Lower byte enable: Gates the data on the lower byte data I/Os (DQ[7:0]) to or from the lower part of the selected address dur- ing a WRITE or READ operation.

Table 3: NOR/PSRAM Shared Ball Descriptions

Symbol	Туре	Description
A[MAX:16]	Input	Shared address: Select the cells in the memory array to access during bus READ operations. During bus WRITE operations they control the commands sent to the command interface of NOR memory program/erase controller, and they select the cells to access in the PSRAM.
ADQ[15:0]	Input/ Output	Shared data inputs/outputs: The bidirectional I/Os output the data stor- ed at the selected address during a NOR bus READ operation or inputs a command or the data to be programmed during a bus WRITE operation.
		For both NOR and PSRAM, the ADQ[15:0], in conjunction with A[23:16] address lines, select the cells in the memory array to access during bus READ operations.
		The upper byte data inputs/outputs carry the data to or from the upper part of the selected address during a PSRAM WRITE or READ operation, when UB# is driven LOW. Likewise, the lower byte data I/Os carry the da- ta to or from the lower part of the selected address during a WRITE or READ operation, when LB# is driven LOW.
CLK	Input	Shared clock.
WE#	Input	Common to Flash memory and PSRAM components. Refer to the respec- tive memory component data sheets for details.
OE#	Input	Shared output enable.
ADV#	Input	Shared latch enable input.
WAIT	Output	Shared WAIT data in burst mode.
V _{SS}	Supply	Shared ground.
V _{DD}	Supply	Shared power supply.
V _{DDQ}	Supply	Shared I/O power supply.
NC	_	Not connected.

Note: 1. Each device in a system should have V_{DD} , V_{DDQ} , and V_{PP} decoupled with a 0.1µF ceramic capacitor close to the pin (high-frequency, inherently low inductance capacitors should be as close as possible to the package). The PCB track widths should be sufficient to carry the required V_{PP} program and erase currents.

Electrical Specifications

Stresses greater than those listed may cause permanent damage to the device. This is a stress rating only, and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

Table 4: Absolute Maximum Ratings

Parameters/Conditions	Symbol	Min	Мах	Unit
Ambient operating temperature	T _A	-40	85	°C
	T _{BIAS}	-40	85	°C
Storage temperature range	T _{STG}	-55	125	°C
Input voltage	V _{IN}	-0.2	2.45	V
Core supply voltage	V _{DD}	-0.2	2.45	V
I/O supply voltage	V _{DDQ}	-0.2	2.45	V
Flash V _{PP} program voltage	V _{PP}	-0.2	10	V
Output short circuit current	Ι _Ο		100	mA
Time for V_{PP} at V_{PPH}	tVPPH		100	hours

Table 5: Recommended Operating Conditions

Parameters	Symbol	Min	Мах	Unit
Core supply voltage	V _{DD}	1.70	1.95	V
I/O supply voltage	V _{DDQ}	1.70	1.95	V
Flash V _{PP} supply voltage (application environment)	V _{PP}	-0.4	V _{DDQ} + 0.4	V
Flash V _{PP} supply voltage (factory environment)	V _{PP}	8.5	9.5	V
Operating temperature range	_	-40	+85	°C

Table 6: Operating Modes – Standard Asynchronous Operation

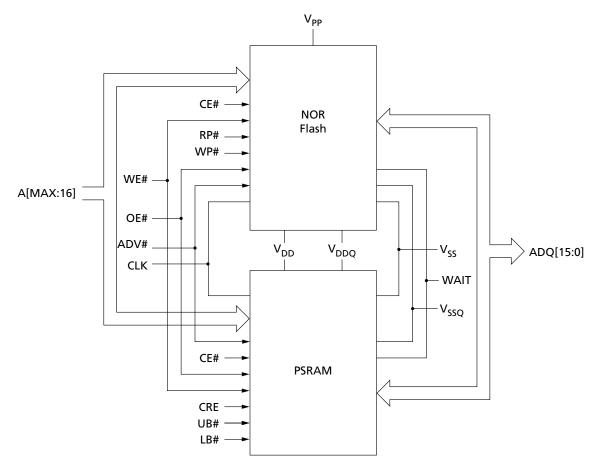
X = "Don't Care"

Operation	RP#	CE#	OE#	WE#	ADV#	CLK ¹	UB#	LB#	CRE	CE#	ADQ[15:0]	WAIT ²
FLASH	1		1				1	!	!	1		1
READ	V _{IH}	V _{IL}	V _{IL}	V _{IH}	V _{IH}	V _{IL}	X	X	X	V _{IH}	Address in/ data out	Low-Z
WRITE	V _{IH}	V _{IL}	V _{IH}	V _{IL}	V _{IH}	V _{IL}	X	x	X	V _{IH}	Address in/ data in	Low-Z
ADDRESS LATCH	V _{IH}	V _{IL}	V _{IH}	Х	V _{IL}	V _{IL}	X	x	X	V _{IH}	Data out or High-Z ³	Low-Z
OUTPUT DISABLE	V _{IH}	V _{IL}	V _{IH}	V _{IH}	V _{IH}	V _{IL}	Х	Х	Х	V _{IH}	High-Z	Low-Z
STANDBY	V _{IH}	V _{IH}	Х	Х	Х	V _{IL}	Any P	Any PSRAM mode allowed			High-Z	High-Z
RESET	V _{IL}	Х	Х	Х	Х	V _{IL}	-			High-Z	High-Z	
PSRAM												•
READ	X	V _{IH}	V _{IL}	V _{IH}		V _{IL}	V _{IL}	V _{IL}	VIL	V _{IL}	Address in/ data out	Low-Z
WRITE	X	V _{IH}	V _{IH}	V _{IL}	\vee	V _{IL}	V _{IL}	V _{IL}	V _{IL}	V _{IL}	Address in/ data in	High-Z
READ CONFIGURATION REGISTER	x	V _{IH}	V _{IL}	V _{IH}	V	V _{IL}	VIL	VIL	V _{IH}	V _{IL}	Address in/ BCR, RCR, or DIDR content	Low-Z
SET CONFIGURATION REGISTER 4	X	V _{IH}	V _{IH}	V _{IL}	V	V _{IL}	X	x	V _{IH}	V _{IL}	BCR/RCR data	Low-Z
OUTPUT DISABLE (No operation)	X	V _{IH}	V _{IH}	Х	Х	Х	x	x	V _{IL}	V _{IL}	High-Z	Low-Z
DEEP POWER DOWN ⁵	Any Flash		Х	Х	Х	V _{IL}	Х	Х	Х	V _{IH}	High-Z	High-Z
STANDBY		ode wed	Х	Х	Х	V _{IL}	X	х	х	V _{IH}	High-Z	High-Z

Notes: 1. CLK must remain LOW when the PSRAM device is operating in asynchronous mode.

2. For the Flash device, WAIT polarity is configured using the SET CONFIGURATION REGIS-TER command.

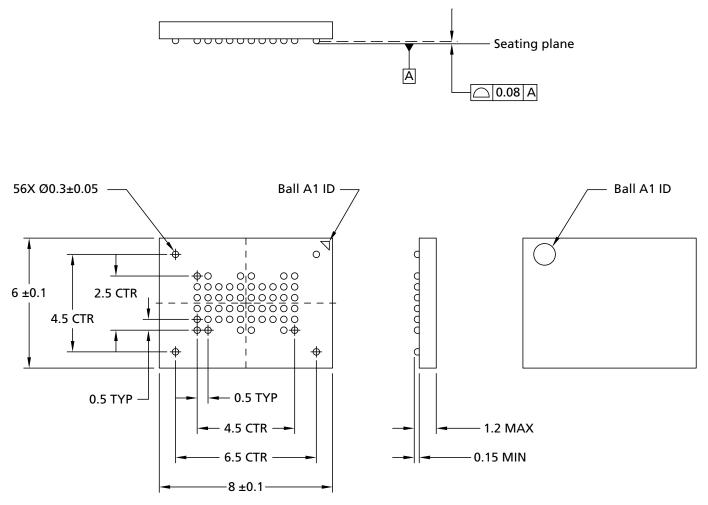
3. See the NOR data sheet for more information.


4. BCR and RCR only.

 The device enters deep power-down mode by driving the CE# from LOW to HIGH, with bit 4 of the RCR set to 0. The device remains in deep power-down mode until CE# goes LOW again and is held LOW for ^tDPDX.

Device Diagrams

Figure 4: Functional Block Diagram (NOR with PSRAM)



Note: 1. The devices share the same power supplies and the same ground. They are distinguished by two CE# inputs. Recommended operating conditions do not allow more than one device to be active at a time, which would result in a data bus contention. One device should be placed in High-Z when the selected device is operating.

Package Dimensions

Figure 5: 56-Ball TFBGA (Package Code: JVZ)

Note: 1. All dimensions are in millimeters.

Revision History

Rev. C – 11/14

Production

Rev. B – 09/14

• Removed references to VSSQ since this node is connected to VSS inside the package.

Rev. A – 08/14

• Initial release

8000 S. Federal Way, P.O. Box 6, Boise, ID 83707-0006, Tel: 208-368-4000 www.micron.com/products/support Sales inquiries: 800-932-4992 Micron and the Micron logo are trademarks of Micron Technology, Inc. All other trademarks are the property of their respective owners. This data sheet contains minimum and maximum limits specified over the power supply and temperature range set forth herein.

Although considered final, these specifications are subject to change, as further product development and data characterization sometimes occur.