SYNCHRONOUS SRAM ### 64K x 18 SRAM +3.3V SUPPLY, FULLY REGISTERED I/O AND LINEAR BURST COUNTER ### **FEATURES** - Fast access times: 7, 10, 12 and 15ns - Fast \overline{OE} : 5, 6, 7 and 8ns - Single +3.3V ±5% power supply - 5V-tolerant I/O - Common data inputs and data outputs - Individual BYTE WRITE control - Clock controlled, registered, address, data I/O and control for fully pipelined applications - · Internally self-timed WRITE cycle - WRITE pass-through capability - Burst control pins (linear burst sequence) - · High density, high-speed packages - · Low capacitive bus loading - High 30pF output drive capability at rated access time | OPTIONS | MARKING | |------------------------|---------| | Timing | | | 7ns access/15ns cycle | - 7 | | 10ns access/20ns cycle | -10 | | 12ns access/25ns cycle | -12 | | 15ns access/30ns cycle | -15 | | Packages | | | 52-pin PLCC | EJ | | 100-pin TQFP | LG | Part Number Example: MT58LC64K18A6EJ-10 NOTE: Not all combinations of operating temperature, speed, data retention and low power are necessarily available. Please contact the factory for availability of specific part number combinations. ### GENERAL DESCRIPTION The Micron Synchronous SRAM family employs highspeed, low-power CMOS designs using a four-transistor memory cell. Micron SRAMs are fabricated using doublelayer metal, double-layer polysilicon technology. The MT58LC64K18A6 SRAM integrates a 64K x 18 SRAM core with advanced synchronous peripheral circuitry, a 2-bit burst counter and output register. All synchronous inputs pass through registers controlled by a positive-edge-triggered single clock input (CLK). The synchronous inputs include all addresses, all data inputs, active LOW chip enable ($\overline{\text{CE}}$), burst control inputs ($\overline{\text{ADSC}}$, $\overline{\text{ADSP}}$, $\overline{\text{ADV}}$) and the byte write enables ($\overline{\text{WEH}}$, $\overline{\text{WEL}}$). ### PIN ASSIGNMENT (Top View) ### 52-Pin PLCC (SB-1) ### 100-Pin TQFP (SC-1) ### **GENERAL DESCRIPTION (continued)** Asynchronous inputs include the output enable (\overline{OE}) and the clock (CLK). The data-out (Q), enabled by \overline{OE} , is also asynchronous. The output register is controlled by the clock. WRITE cycles can be from one to two bytes wide as controlled by the byte write enables. Burst operation can be initiated with either address status processor (\overline{ADSP}) or address status controller (\overline{ADSC}) input pins. Subsequent burst addresses can be internally generated as controlled by the burst advance pin (\overline{ADV}). Address and write control are registered on-chip to simplify WRITE cycles. This allows self-timed WRITE cycles WRITE pass-through makes written data immediately available at the output register during the READ cycle following a WRITE as controlled solely by $\overline{\text{OE}}$ to improve cache system response. The MT58LC64K18A6 operates from a +3.3V power sup ply and all inputs and outputs are TTL-compatible and 5V tolerant. The device is ideally suited for PowerPC^{IM} and linear burst pipelined applications. ### **FUNCTIONAL BLOCK DIAGRAM** **NOTE:** The Functional Block Diagram illustrates simplified device operation. See Truth Table, pin descriptions and timing diagrams for detailed information. ### **BURST ADDRESS TABLE** | First Address | Second Address | Third Address | Fourth Address | |---------------|----------------|---------------|----------------| | XX00 | XX01 | XX10 | XX11 | | XX01 | XX10 | XX11 | XX00 | | XX10 | XX11 | XX00 | XX01 | | XX11 | XX00 | XX01 | XX10 | ### **PIN DESCRIPTIONS** | PLCC PINS | TQFP PINS | SYMBOL | TYPE | DESCRIPTION | |---|--|------------|------------------|---| | 26, 25, 24, 23,
22, 21, 7, 6,
49, 48, 47, 33,
32, 31, 30, 29 | 37, 36, 35, 34,
33, 32, 100, 99,
83, 82, 81, 48,
47, 46, 45, 44 | A0-A15 | Input | Synchronous Address Inputs: These inputs are registered and must meet the setup and hold times around the rising edge of CLK. | | 4, 3 | 97, 96 | WEH, WEL | Input | Synchronous Byte Write Enables: These active LOW inputs allow individual bytes to be written and must meet the setup and hold times around the rising edge of CLK. A byte write enable is LOW for a WRITE cycle and HIGH for a READ cycle. WEL controls DQ1-DQ8 and DQP1. WEH controls DQ9-DQ16 and DQP2. Data I/O are tristated if either of these inputs are LOW. | | 51 | 89 | CLK | Input | Clock: This signal registers the address, data, chip enable, byte write enables and burst control inputs on its rising edge. All synchronous inputs must meet setup and hold times around the clock's rising edge. | | 5 | 98 | CE | Input | Synchronous Chip Enable: This active LOW input is used to enable the device. This input is sampled only when a new external address is loaded. | | 50 | 86 | ŌĒ | Input | Output Enable: This active LOW asynchronous input enables the Data I/O output drivers. | | 52 | 93 | ADV | Input | Synchronous Address Advance: This active LOW input is used to advance the internal burst counter, controlling burst access after the external address is loaded. A HIGH on this pin effectively causes wait states to be generated (no address advance). This pin must be HIGH at the rising edge of the first clock after an ADSP cycle is initiated if a WRITE cycle is desired (to ensure use of correct address). | | 1 | 94 | ADSP | Input | Synchronous Address Status Processor: This active LOW input interrupts any ongoing burst, causing a new external address to be registered. A READ is performed using the new address, independent of the byte write enables and ADSC but dependent upon CE being LOW. | | 2 | 95 | ADSC | Input | Synchronous Address Status Controller: This active LOW input interrupts any ongoing burst, causing a new external address to be registered. A READ or WRITE is performed using the new address if \overline{CE} is LOW. \overline{ADSC} is also used to place the chip into power-down state when \overline{CE} is HIGH. | | 34, 35, 38, 39,
40, 41, 44, 45,
8, 9, 12, 13,
14, 15, 18, 19 | 58, 59, 62, 63,
68, 69, 72, 73,
8, 9, 12, 13,
18, 19, 22, 23 | DQ1-DQ16 | Input/
Output | SRAM Data I/O: Low Byte is DQ1-DQ8. High Byte is DQ9-DQ16. Input data must meet setup and hold times around the rising edge of CLK. | | 46, 20 | 74, 24 | DQP1, DQP2 | | Parity Data I/O: Low Byte Parity is DQP1. High Byte Parity is DQP2. | | 28 | 15, 41, 65, 91 | Vcc | Supply | Power Supply: +3.3V ±5% | | 27 | 17, 40, 67, 90 | Vss | Supply | Ground: GND | | 10, 17, 36, 43 | 11, 20, 61, 71 | VccQ | Supply | Isolated Output Buffer Supply: +3.3V ±5% | ### PIN DESCRIPTIONS (continued) | PLCC PINS | TQFP PINS | SYMBOL | TYPE | DESCRIPTION | |----------------|--|--------|--------|---| | 11, 16, 37, 42 | 10, 21, 60, 71 | VssQ | Supply | Isolated Output Buffer Ground: GND | | | 1, 2, 3, 4, 5, 6, 7,
14, 16, 25, 26,
27, 28, 29, 30,
31, 38, 39, 42,
43, 49, 50, 51,
52, 53, 54, 55,
56, 57, 64, 66,
75, 76, 77, 78,
79, 80, 84, 85,
87, 88, 92 | NC | - | No Connect: These signals are not internally connected. These signals may be connected to ground to improve package heat dissipation. | ### TRUTH TABLE | OPERATION | ADDRESS USED | CE | ADSP | ADSC | ADV | WRITE | 0E | CLK | DQ | |------------------------------|--------------|----|------|------|-----|-------|----|-----|--------| | Deselected Cycle, Power-down | None | Н | Х | L | Х | Х | Х | L-H | High-Z | | READ Cycle, Begin Burst | External | L | L | Х | Х | Х | L | L-H | Q | | READ Cycle, Begin Burst | External | L | L | Х | X | X | Н | L-H | High-Z | | WRITE Cycle, Begin Burst | External | L | Η | L | Х | L | Χ | L-H | D | | READ Cycle, Begin Burst | External | L | I | L | Х | Ι | L | L-H | Q | | READ Cycle, Begin Burst | External | L | Η | L | X | Η | Τ | L-H | High-Z | | READ Cycle, Continue Burst | Next | Χ | Н | Н | L | Н | L | L-H | Q | | READ Cycle, Continue Burst | Next | Χ | H | Н | L | I | Н | L-H | High-Z | | WRITE Cycle, Continue Burst | Next | Χ | Н | Н | L | L | Χ | L-H | D | | READ Cycle, Continue Burst | Next | Н | X | Н | L | Н | L | L-H | Q | | READ Cycle, Continue Burst | Next | Н | Х | Н | L | Н | Н | L-H | High-Z | | WRITE Cycle, Continue Burst | Next | Н | X | Н | L | L | Χ | L-H | D | | READ Cycle, Suspend Burst | Current | Χ | Н | Н | Н | Н | L | L-H | Q | | READ Cycle, Suspend Burst | Current | Χ | Н | H | Н | Н | Н | L-H | High-Z | | WRITE Cycle, Suspend Burst | Current | Х | H | Н | Н | L | Χ | L-H | D | | READ Cycle, Suspend Burst | Current | Н | Х | Н | Н | Н | L | L-H | Q | | READ Cycle, Suspend Burst | Current | Н | Х | Н | Н | Н | Н | L-H | High-Z | | WRITE Cycle, Suspend Burst | Current | Н | Х | Н | Н | L | X | L-H | D | ### NOTE: - 1. X means "don't care." H means logic HIGH. L means logic LOW. WRITE=L means any one or more byte write enable signals (WEH, WEL) are LOW. WRITE=H means all byte write enable signals are HIGH. - 2. WEL enables writes to DQ1-DQ8 and DQP1. WEH enables writes to DQ9-DQ16 and DQP2. - 3. All inputs except OE must meet setup and hold times around the rising edge (LOW to HIGH) of CLK. - 4. Wait states are inserted by suspending burst. - 5. For a write operation following a read operation, OE must be HIGH before the input data required setup time and held HIGH throughout the input data hold time. - 6. This device contains circuitry that will ensure the outputs will be in High-Z during power-up. - 7. ADSP LOW always initiates an internal READ at the L-H edge of CLK. A WRITE is performed by setting one or more byte write enable signal LOW for the subsequent L-H edge of CLK. Refer to WRITE timing diagram for clarification. ### **PASS-THROUGH TRUTH TABLE** | PREVIOUS CYCLE | | PRESENT CYCLE | | | | NEXT CYCLE | |--|-------|--|----|-----|----|----------------------------------| | OPERATION | WEs | OPERATION | CE | WEs | ŌE | OPERATION | | Initiate WRITE cycle, all bytes
Address = A(n-1); data = D(n-1) | All L | Initiate READ cycle
Register A(n), Q = D(n-1) | L | Н | L | Read D(n) | | Initiate WRITE cycle, all bytes
Address = A(n-1); data = D(n-1) | All L | No new cycle
Q = D(n-1) | Н | Н | L | No carryover from previous cycle | | Initiate WRITE cycle, all bytes
Address = A(n-1); data = D(n-1) | All L | No new cycle
Q = HIGH-Z | Н | Н | Н | No carryover from previous cycle | | Initiate WRITE cycle, one byte
Address = A(n-1); data = D(n-1) | One L | No new cycle
Q = D(n-1) for one byte | Н | Н | L | No carryover from previous cycle | NOTE: Previous cycle may be either BURST or NONBURST cycle. ### ABSOLUTE MAXIMUM RATINGS* Voltage on Vcc Supply Relative to Vss-0.5V to +4.6V VIN-0.5V to +6V Storage Temperature (plastic)-55°C to +150°C Junction Temperature+150°C Short Circuit Output Current100mA *Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability. ### **ELECTRICAL CHARACTERISTICS AND RECOMMENDED DC OPERATING CONDITIONS** $(0^{\circ}C \le T_{\Delta} \le 70^{\circ}C; T_{C} \le 110^{\circ}C; Vcc = 3.3V \pm 5\%$ unless otherwise noted) | DESCRIPTION | CONDITIONS | SYMBOL | MIN | MAX | UNITS | NOTES | |------------------------------|--|--------|------|-----|-------|-------| | Input High (Logic 1) Voltage | | ViH | 2.0 | 5.5 | V | 1, 2 | | Input Low (Logic 0) Voltage | | VIL | -0.3 | 0.8 | V | 1, 2 | | Input Leakage Current | $0V \le V_{IN} \le V_{CC}$ | ILı | -1 | 1 | μА | | | Output Leakage Current | Output(s) disabled,
$0V \le V_{OUT} \le V_{CC}$ | ILo | -1 | 1 | μА | | | Output High Voltage | lон = -4.0mA | Vон | 2.4 | | V | 1 | | Output Low Voltage | IoL = 8.0mA | Vol | | 0.4 | V | 1 | | Supply Voltage | | Vcc | 3.1 | 3.5 | V | 1 | | | | | | | M | AX | | | | |------------------------------------|---|--------|---------|-----|-----|-----|-----|-------|--------------| | DESCRIPTION | CONDITIONS | SYMBOL | TYPICAL | -7 | -10 | -12 | -17 | UNITS | NOTES | | Power Supply
Current: Operating | Device selected; all inputs \leq VIL OR \geq VIH; cycle time \geq ^t KC min; Vcc = MAX; outputs open | Icc | 150 | 225 | 200 | 175 | 160 | mA | 3, 12,
13 | | Power Supply
Current: Idle | Device selected; \overline{ADSC} , \overline{ADSP} , $\overline{ADV} \ge V_{IH}$; all inputs $\le V_{IL}$ or $\ge V_{IH}$; $V_{CC} = MAX$; cycle time $\ge {}^tKC$ min | Isb1 | 45 | 65 | 55 | 50 | 45 | mA | 12, 13 | | CMOS Standby | Device deselected; Vcc = MAX;
all inputs ≤ Vss +0.2 or ≥ Vcc -0.2;
all inputs static; CLK frequency = 0 | IsB2 | 0.2 | 2 | 2 | 2 | 2 | mA | 12, 13 | | TTL Standby | Device deselected; all inputs \leq VIL OR \geq VIH; all inputs static; Vcc = MAX; CLK frequency = 0 | IsB3 | 10 | 18 | 18 | 18 | 18 | mA | 12, 13 | | Clock Running | Device deselected; all inputs ≤ V _{IL} OR ≥ V _{IH} ;
Vcc = MAX; CLK cycle time ≥ ^t KC min | ISB4 | 20 | 35 | 35 | 30 | 25 | mA | 12, 13 | ### **CAPACITANCE** | DESCRIPTION | CONDITIONS | SYMBOL | TYP | MAX | UNITS | NOTES | |-------------------------------|----------------------------------|--------|-----|-----|-------|-------| | Input Capacitance | T _A = 25°C; f = 1 MHz | Cı | 3 | 4 | pF | 4 | | Input/Output Capacitance (DQ) | Vcc = 3.3V | Co | 5 | 6 | pF | 4 | ### THERMAL CONSIDERATIONS | DESCRIPTION | CONDITIONS | SYMBOL | PLCC TYP | TQFP TYP | UNITS | NOTES | |--|------------|-----------------|----------|----------|-------|-------| | Thermal resistance - Junction to Ambient | Still Air | θ_{JA} | 45 | 65 | °C/W | | | Thermal resistance - Junction to Case | | θ _{JC} | 15 | 6 | °C/W | - | | Maximum Case Temperature | - | TC | 110 | 110 | ç | 11 | ### **ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS** (Note 5) (0°C \leq T_A \leq 70°C; Vcc = 3.3V \pm 5%) | | | | 7 | - | 10 | , | 12 | , | 15 | | | |-------------------------------|-------------------|-----|-----|-----|------|-----|-----|-----|-------|-------|-------| | DESCRIPTION | SYM | MIN | MAX | MIN | MAX | MIN | MAX | MIN | MAX | UNITS | NOTES | | Clock | | | • | | | | | | | | | | Clock cycle time | †KC | 15 | | 20 | | 25 | | 30 | | ns | | | Clock HIGH time | ^t KH | 5 | | 7 | | 9 | | 11 | | ns | | | Clock LOW time | ^t KL | 5 | | 7 | | 9 | | 11 | | ns | | | Output Times | | | | | | | | | | | | | Clock to output valid | ^t KQ | | 7 | | 10 | | 12 | | 15 | ns | | | Clock to output invalid | ^t KQX | 3 | | 3 | | 3 | | 3 | - | ns | | | Clock to output in Low-Z | ^t KQLZ | 2 | | 2 | | 2 | | 2 | - | ns | 6, 7 | | Clock to output in High-Z | †KQHZ | | 5 | | 6 | | 6 | | 6 | ns | 6, 7 | | OE to output valid | ^t OEQ | | 5 | | 6 | | 7 | - | 8 | ns | 9 | | OE to output in Low-Z | ^t OELZ | 0 | - | 0 | | 0 | | 0 | | ns | 6, 7 | | OE to output in High-Z | ^t OEHZ | | 5 | | 6 | | 6 | | 6 | ns | 6, 7 | | Setup Times | | | | | | | | | | | | | Address | t _{AS} | 2.5 | | 3 | | 3 | | 3 | | ns | 8, 10 | | Address Status (ADSC, ADSP) | †ADSS | 2.5 | | 3 | | 3 | | . 3 | | ns | 8, 10 | | Address Advance (ADV) | tAAS | 2.5 | | 3 | | 3 | | 3 | | ns | 8, 10 | | Byte Write Enables (WEH, WEL) | tWS | 2.5 | | 3 | - :- | 3 | | 3 | | ns | 8, 10 | | Data-in | tDS | 2.5 | | 3 | | 3 | | 3 | 0.144 | ns | 8, 10 | | Chip Enable (CE) | tCES | 2.5 | | 3 | | 3 | | 3 | | ns | 8, 10 | | Hold Times | | | | | | | | | | | | | Address | tAH. | 0.5 | | 0.5 | 1 | 0.5 | | 0.5 | | ns | 8, 10 | | Address Status (ADSC, ADSP) | ^t ADSH | 0.5 | | 0.5 | | 0.5 | | 0.5 | | ns | 8, 10 | | Address Advance (ADV) | tAAH | 0.5 | | 0.5 | | 0.5 | | 0.5 | | ns | 8, 10 | | Byte Write Enables (WEH, WEL) | tWH | 0.5 | | 0.5 | 7 | 0.5 | | 0.5 | | ns | 8, 10 | | Data-in | tDH | 0.5 | | 0.5 | | 0.5 | | 0.5 | | ns | 8, 10 | | Chip Enable (CE) | ^t CEH | 0.5 | | 0.5 | 111 | 0.5 | | 0.5 | | ns | 8, 10 | ### **AC TEST CONDITIONS** | Input pulse levelsVss to 3.0V | , | |-----------------------------------|---| | Input rise and fall times1.5ns | 3 | | Input timing reference levels1.5V | / | | Output reference levels1.5V | / | | Output loadSee Figures 1 and 2 | 2 | Fig. 1 OUTPUT LOAD **EQUIVALENT** Fig. 2 OUTPUT LOAD **EQUIVALENT** ### **NOTES** - 1. All voltages referenced to Vss (GND). - Overshoot: VIH $\leq +6.0$ V for $t \leq {}^{t}KC$ /2. Undershoot: $V_{IL} \ge -2.0V$ for $t \le {}^{t}KC /2$. $V_{IH} \le +6.0 \text{V}$ and $V_{CC} \le 3.1 \text{V}$ Power-up: for $t \le 200$ msec. - 3. Icc is given with no output current. Icc increases with greater output loading and faster cycle times. - This parameter is sampled. - Test conditions as specified with the output loading as shown in Fig. 1 unless otherwise noted. - Output loading is specified with CL = 5pF as in Fig. 2. Transition is measured ±500mV from steady state - At any given temperature and voltage condition, ^tKQHZ is less than ^tKQLZ and ^tOEHZ is less than OELZ. - 8. A READ cycle is defined by byte write enables all HIGH or ADSP LOW for the required setup and hold times. A WRITE cycle is defined by at least one byte write enable LOW and ADSP HIGH for the required setup and hold times. - 9. \overline{OE} is a "don't care" when a byte write enable is sampled LOW. - 10. This is a synchronous device. All addresses must meet the specified setup and hold times for all rising edges of CLK when either \overline{ADSP} or \overline{ADSC} is LOW and chip enabled. All other synchronous inputs must meet the setup and hold times with stable logic levels for all rising edges of clock (CLK) when chip is enabled. Chip enable must be valid at each rising edge of CLK (when either ADSP or ADSC is LOW) to remain enabled. - 11. Micron does not warrant the functionality or reliability of any product in which the case temperature exceeds 110°C. Care should be taken to limit case temperature to acceptable levels. - 12. "Device Deselected" means device is in POWER-DOWN mode as defined in the truth table. "Device Selected" means device is active (not in POWER-DOWN mode). - 13. Typical values are measured at 3.3V, 25°C and 20ns cycle time. ### **READ TIMING** DON'T CARE ₩ UNDEFINED NOTE: 1. Q(A2) refers to output from address A2. Q(A2+1) refers to output from the next internal burst address following A2. # NEW 3.3 VOLT SYNCHRONOUS SRAM ### **WRITE TIMING** DON'T CARE ₩ UNDEFINED ### NOTE: - D(A2) refers to input to address A2. D(A2+1) refers to input to the next internal burst address following A2. - 2. Although a LOW on any one of the byte write inputs will tristate the data outputs, OE must be HIGH before the input data setup and held HIGH throughout the the data hold time. This prevents input/output data contention for the time period prior to the byte write enable inputs being latched. - 3. ADV must be HIGH to permit a WRITE to the loaded address. ### **READ/WRITE TIMING** DON'T CARE ₩ UNDEFINED NOTE: 1. Q(A2) refers to output from address A2. Q(A2+1) refers to output from the next internal burst address following A2. MICHON ### **APPLICATION EXAMPLE** Figure 3 512K BYTE SECONDARY CACHE WITH PARITY AND BURST FOR 50 MHz PENTIUM™ OR POWERPC™ USING FOUR MT58LC64K18A6EJ-10 SYNCHRONOUS SRAMs