

1 Product Description

The MagnTek® MT9221 product series is a fully integrated Hall Effect-based isolated linear current sensor device family designed for AC or DC current sensing in industrial, commercial, and communications systems. Each of the MT9221 consists of a precise, low-offset, linear Hall circuit with a low-resistance current conductor path located near the surface of the die. Applied current flowing through this low-resistance current conductor path generates a magnetic field that the Hall IC converts into a proportional voltage. The current is sensed differentially in order to reject common-mode fields, improving accuracy in magnetically noisy environments. Device accuracy is optimized through the close proximity of the magnetic field to the Hall transducer.

A precise, proportional voltage is provided by the low-offset, chopper-stabilized BCD Hall IC, which has been accurately calibrated when it is manufactured. The output of the device has a positive slope ($>V_{OQ}$) when an increasing current flows through the primary current conduction path (from pins 1 and 2, to pins 3 and 4). The internal resistance of this conductive path is 1.5 mΩ typical, providing low-power loss. The terminals of the conductive path are electrically isolated from the signal leads (pins 5 through 8). This allows the MT9221 current sensor IC to be used in high-side current sense applications without use other costly isolation techniques.

The MT9221 family provides a SOP-8 package for surface mount device to customers. The packages is RoHS compliant.

2 Features

- ±1.9% Typical Total Output Error
- ±0.5% Typical Linearity Over Temperature
- Fast Output Response Time: 4 µs (typ.)
- 150kHz Signal Bandwidth
- 5.0V Single Supply Operation
- -40°C~125°C Operating Temperature
- Primary Conductor Resistance
---1.0mΩ (SOP-8)
- Sensing Current Range:
---±10A, ±20A, ±25A, ±30A
---+20A, +30A
- Output Voltage Proportional to AC or DC Current
- Ratiometric Output from Supply Voltage
- Extremely Stable Quiescent Output Voltage
- Low-Noise Analog Signal Path
- Device Bandwidth is Set via FILTER Pin
- Near Zero Magnetic Hysteresis
- Isolation Voltage:
---2.5kVrms Dielectric Surge Isolation (SOP-8)
- Package Option:
---SOP-8
- RoHS Compliant: (EU)2015/863

3 Applications

- Low-power inverter current sensing
- Motor phase and rail current sensing
- PV String Inverters
- Chargers and Converters
- Switching Power Supplies
- Overcurrent Protection

Certificate Number:
UL-US-2242572-0
UL-CA-2240641-0

Not to scale

4 Product Overview of MT9221

Part No.	Description
MT9221CT	SOP-8, tape & reel (3000pcs/bag)

Table of Contents

1	Product Description.....	1
2	Features.....	1
3	Applications.....	1
4	Product Overview of MT9221.....	1
5	Functional Block Diagram	3
6	Naming Specification.....	3
7	Output Voltage vs. Input Current.....	4
8	Typical Application Circuit.....	4
9	Pin Configuration and Functions.....	5
10	Electrical and Magnetic Characteristics.....	6
10.1	Absolute Maximum Ratings.....	6
10.2	Isolation and Package Characteristics.....	6
10.3	Life Time Characteristics	6
10.4	ESD Rating.....	7
10.5	Electrical Characteristics.....	7
10.6	Accuracy Specifications.....	8
11	Characteristic Definitions.....	12
12	Package Material Information.....	15
12.1	SOP-8 Package Information.....	15
13	Copy Rights and Disclaimer.....	16

Reversion History

1.	Originally Version	
2.	1.1 Version	Update $\pm 25A$ Range
3.	1.2 Version	Update Package Marking
4.	1.3 Version	Update Output Voltage vs. Input Current Curve
5.	1.4 Version	Update Absolute Maximum Ratings
6.	1.5 Version	Add $\pm 5A$ Range & update Isolation and Package Characteristics
7.	1.6 Version	Update Electrical Specifications, Life Time Drift and Typical Application Circuit
8.	1.7 Version	Add $+10A$ Range, Del $+12A$ Range and Update New logo
9.	1.8 Version	Add TUV certification, update Clearance Distance
10.	1.9 Version	Correct parameter A information in "Package Material Information"
11.	2.0 Version	Delete 05BR5/10UR5 and QFN-12 Package

5 Functional Block Diagram

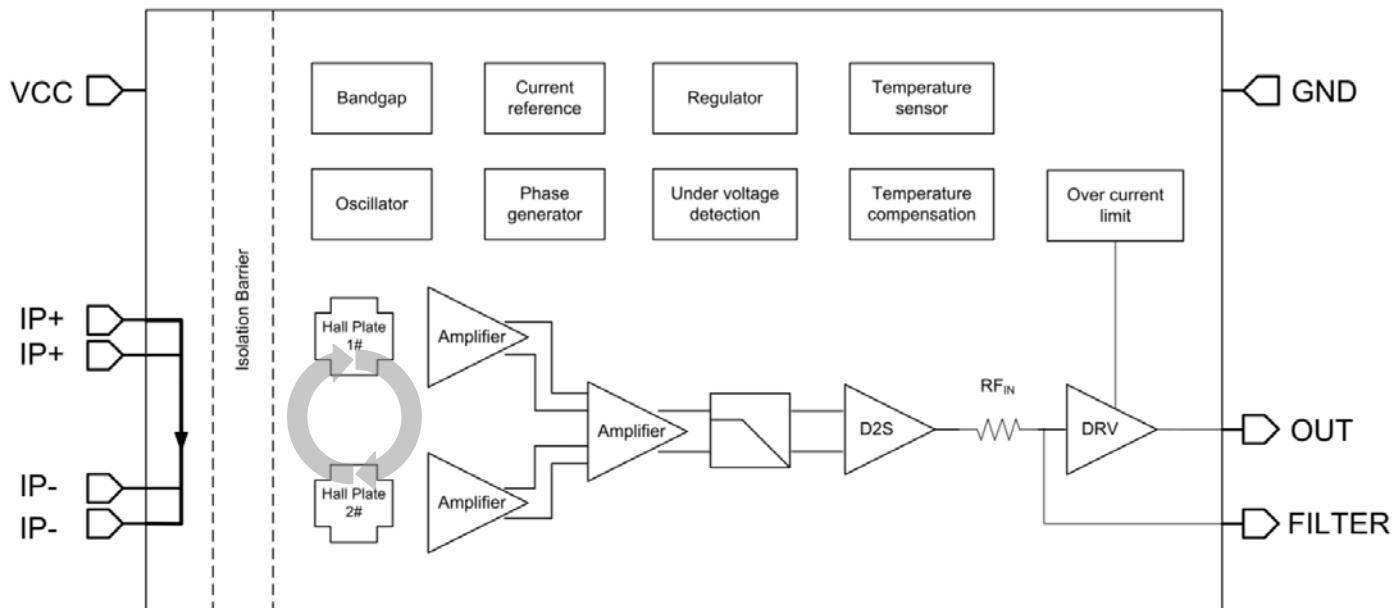


Figure.1 Functional Block Diagram

6 Naming Specification

Part Number	MT9221	CT	-	10	B	R	5
	1	2	3	4	5	6	

① Series Name

② Package Type

Type	Package Type
CT	SOP-8

④ Current Polarity

Type	Current Polarity
B	Bidirectional
U	Unidirectional

③ Input Current Range

Type	Input Current Range
10	Full scale sensing range: 10A
20	Full scale sensing range: 20A
25	Full scale sensing range: 25A
30	Full scale sensing range: 30A

⑤ Output Mode

Type	Output Mode
R	Ratiometry output

⑥ Power Supply

Type	Power Supply
5	VCC=5V

7 Output Voltage vs. Input Current

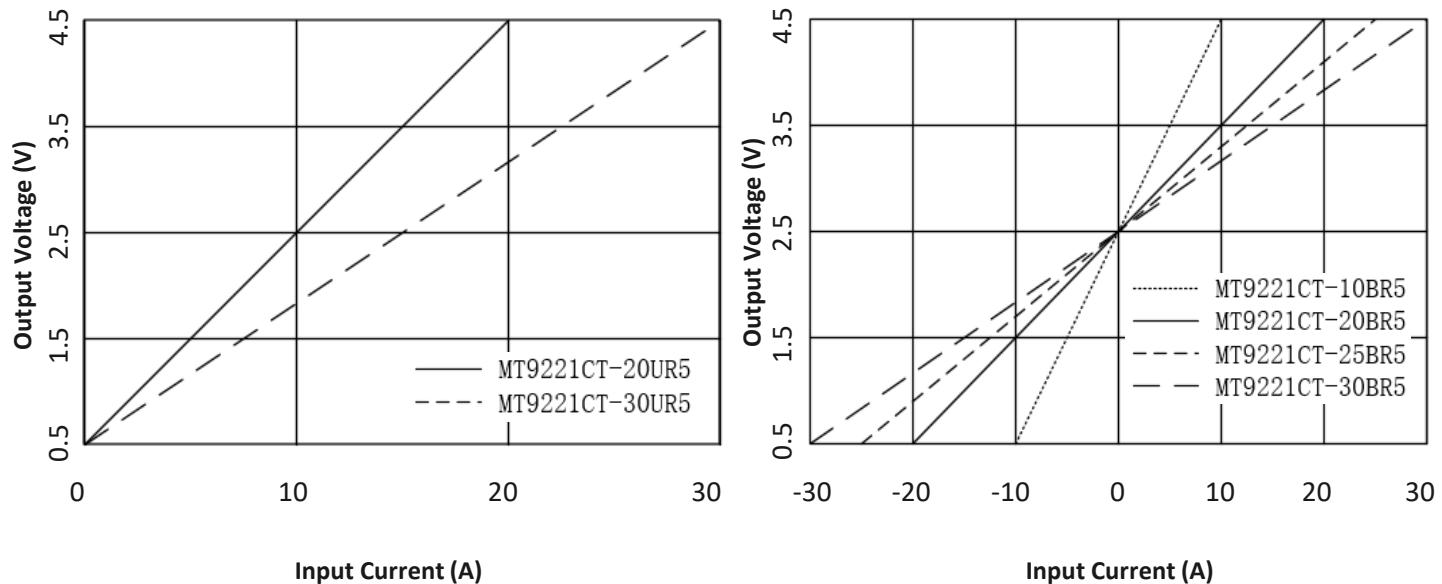


Figure.2 Output Voltage vs. Input Current

8 Typical Application Circuit

The typical application circuits of MT9221 series products include a bypass capacitor (**C_{BYPASS} capacitor between V_{CC} and GND is necessary**) and a filter capacitor as an additional external components. On the input side, pins 1 and 2 are shorted together, pins 3 and 4 are shorted together. The analog signal output is measured directly from the V_{OUT} pin. The signal is proportional to the IP of the primary sensing current of AC or DC within the specified measurement range. **The FILTER pin can be used to reduce bandwidth to optimize noise performance, but at the same time proportionally increase response time. C_{FILTER} Recommends “Open”, and the response time is the fastest.**

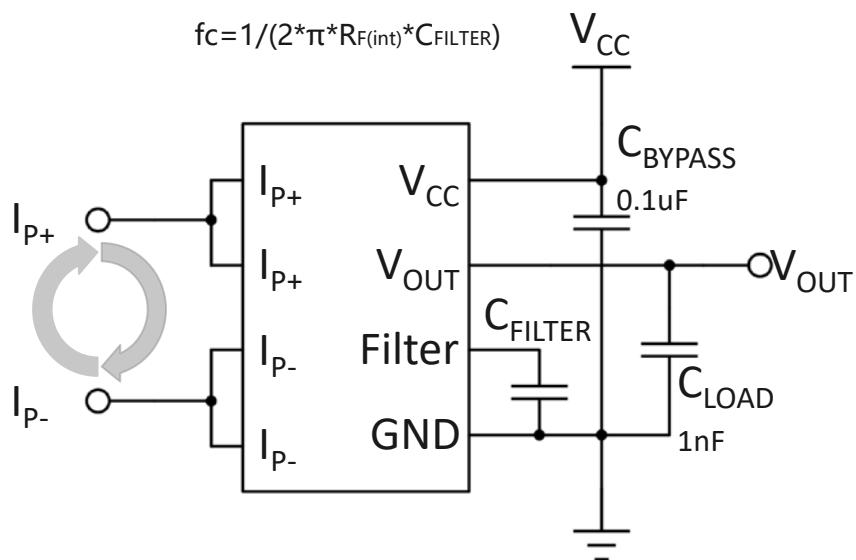


Figure.3 Typical Application Circuit

9 Pin Configuration and Functions

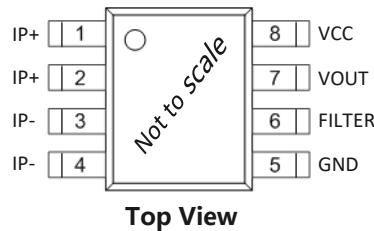


Figure.4 Pin Configuration & Functions (SOP-8)

No.	Name	Description
1, 2	IP+	Input Current Positive Pin
3, 4	IP-	Input Current Negative Pin
5	GND	Signal Ground
6	FILTER	Filter Pin to Set Bandwidth
7	VOUT	Analog Output Signal
8	VCC	Power Supply

10 Electrical Magnetic Characteristics

10.1 Absolute Maximum Ratings

Absolute maximum ratings are limited values to be applied individually, and beyond which the serviceability of the circuit may be impaired. Functional operability is not necessarily implied. Exposure to absolute maximum rating conditions for an extended period of time may affect device reliability.

Symbol	Parameters	Min	Max	Units
VCC	Supply Voltage	-	6	V
VRCC	Reverse Battery Voltage	-0.1	-	V
VOUT	Output Voltage	-	VCC+0.5	V
VROUT	Reverse Output Voltage	-0.1	-	V
IOUT(source)	Continuous Output Current	-	80	mA
IOUT(sink)	Continuous Output Current	-	40	mA
TA	Operating Ambient Temperature	-40	125	°C
TS	Storage Temperature	-50	150	°C
TJ	Junction Temperature	-	165	°C

10.2 Isolation and Package Characteristics

Symbol	Parameters	Test Conditions	Value	Units
V _{SURGE}	Dielectric Surge Strength Test Voltage	Tested ± 5 pulses at 30 seconds in compliance to IEC 61000-4-5 1.2 / 50 μ s (width).	6000	V
V _{ISO}	Dielectric Strength Test Voltage	Test method per UL standard 60950-1 (edition 2). V _{TEST} = V _{ISO} , t = 60 s (qualification); V _{TEST} = 1.2 \times V _{ISO} , t = 1 s (100% production)	SOP-8 2500	Vrms
V _{IOWM}	Maximum Working Isolation Voltage	Maximum working isolation voltage according to UL60950-1	540 382	V _{PK} or V _{DC} Vrms
CTI	Comparative Tracking Index	Comparative tracking index according to IEC60112:2009	550	V
D _{CL}	External Clearance	Measured from input terminals to output terminals, shortest distance through air.	4.2	mm
D _{CR}	External Creepage	Measured from input terminals to output terminals, shortest distance path along body.	4.2	mm

10.3 Life Time Characteristics

Symbol	Parameters	Test Condition	Min	Typ	Max	Unit
ESNST_DRIFT	Sensitivity Error Lifetime Drift	TA=-40~125°C	-3	-	3	%
ETOT_DRIFT	Total Output Error Lifetime Drift	TA=-40~125°C	-3	-	3	%

* Based on characterization data obtained during AEC-Q100 stress testing.

10.4 ESD Ratings

Parameters	Reference	Grade
Human-body model (HBM)	AEC-Q100-002	Class IIIA
Charged-device model (CDM)	AEC-Q100-011	Class C3
Latch up	AEC-Q100-004	Class IIA

10.5 Electrical Specifications

At $T_A = -40 \sim 125^\circ\text{C}$, $V_{CC} = 5\text{V}$ (unless otherwise specified)

Symbol	Parameters	Test Condition	Min	Typ	Max	Unit
V _{CC}	Supply Voltage	-	4.5	5	5.5	V
I _{CC}	Supply Current	$TA = 25^\circ\text{C}$	-	14	20	mA
R _{IP}	Primary Conductor Resistance	$TA = 25^\circ\text{C}$ SOP-8	-	1.0	-	$\text{m}\Omega$
BW	Internal Bandwidth	Small signal -3 dB ; $CL = 1\text{nF}$	-	150	-	KHz
T _{PO}	Power on time	$TA = 25^\circ\text{C}$, $CL = 1\text{nF}$, $IP = I_{PR}(\text{max})$ applied	-	190	-	us
T _R	Rise time	$IP = I_{PR}(\text{max})$, $A = 25^\circ\text{C}$, $CL = 1\text{nF}$	-	3	-	us
T _{PD}	Propagation Delay	$IP = I_{PR}(\text{max})$, $TA = 25^\circ\text{C}$, $CL = 1\text{nF}$	-	2	-	us
T _{RESP}	Response Time	$IP = I_{PR}(\text{max})$, $TA = 25^\circ\text{C}$, $CL = 1\text{nF}$	-	4	5	us
V _{OLO}	Analog Output Low Saturation Level	$RL >= 4.7\text{K}\Omega$	-	-	0.3	V
V _{OHI}	Analog Output High Saturation Level	$RL >= 4.7\text{K}\Omega$	V _{CC} -0.3	-	-	V
C _L	Output CAP Load	OUT to GND	-	1	10	nF
R _{OUT}	DC Output resistance		-	-	5	Ω
R _L	Output RES Load	Pull-down to Ground Pull-up to V _{CC}	4.7 4.7	- -	- -	$\text{K}\Omega$
R _{F(int)}	Internal filter resistance		-	1.8	-	$\text{K}\Omega$
I _{ND}	Noise Density	Input-referenced noise density; $TA = 25^\circ\text{C}$, $CL = 1\text{nF}$, SOP-8	-	119	-	$\text{uA}/\sqrt{\text{Hz}}$
E _{LIN}	Nonlinearity error	Through full range of IP	-1.5	-	1.5	%
E _{RAT_SNST}	Ratiometry Sensitivity Error	$V_{CC} = 4.5 \text{ to } 5.5\text{ V}$, $TA = 25^\circ\text{C}$	-	± 1.5	-	%
E _{RAT_VOQ}	Ratiometry Quiescent Voltage Output Error	$V_{CC} = 4.5 \text{ to } 5.5\text{ V}$, $TA = 25^\circ\text{C}$	-	± 1	-	%

* Device may be operated at higher primary current levels, ambient temperatures, and internal leadframe temperatures, provided the Maximum Junction Temperature, is not exceeded.

Continued on the next page...

Electrical Specifications (continued)At $T_A = -40\text{~}125^\circ\text{C}$, $V_{CC}=5\text{V}$ (unless otherwise specified)

Symbol	Parameters	Test Condition	Min	Typ	Max	Unit
CMFRR	Common Mode Field Rejection Ratio	Uniform external magnetic field	-	40	-	dB
SNST(match)	Hall Plate Sensitivity Matching	$T_A = 25^\circ\text{C}$		± 1	-	%
VPORH	Power-On Reset High Voltage	$T_A = 25^\circ\text{C}$, V_{CC} rising	3.75	4	4.25	V
VPORL	Power-On Reset Low Voltage	$T_A = 25^\circ\text{C}$, V_{CC} falling	-	3.5	-	V
VPORHYS	Power-On Reset Hysteresis	$T_A = 25^\circ\text{C}$	-	0.5	-	V
TPORR	Power-On Reset Release Time	$T_A = 25^\circ\text{C}$, V_{CC} rising	-	30	-	us
TPORA	Power-On Reset Analog Delay	$T_A = 25^\circ\text{C}$, V_{CC} rising	-	5	-	us
ISCLP	Source Current of Over-Current-Limit	-	-	80	-	mA
ISCLN	Sink Current of Over-Current-Limit	-	-	40	-	mA
TSCLD	Detect Time for Over-Current-Limit	$T_A = 25^\circ\text{C}$, $I_{OUT} > ISCLP$ or $I_{OUT} < ISCLN$	-	7	-	us
TSCLR	Release Time for Over-Current-Limit	$T_A = 25^\circ\text{C}$	-	0.62	-	ms

* Device may be operated at higher primary current levels, ambient temperatures, and internal leadframe temperatures, provided the Maximum Junction Temperature, is not exceeded.

10.6 Accuracy SpecificationsMT9221CT-06BR5 At $T_A = -40\text{~}125^\circ\text{C}$, $V_{CC}=5\text{V}$ (unless otherwise specified)

Symbol	Parameters	Test Condition	Min	Typ	Max	Unit
IPR	Optimized Input Current Range		-6	-	6	A
SNST	Sensitivity	$-6\text{A} \leq I_P \leq 6\text{A}$	-	333	-	mV/A
VOQ	Zero-Current Output Voltage		-	$V_{CC} \times 0.5$	-	V
VOE	Zero-Current Output Error	$I_P=0\text{ A}$, $T_A=25^\circ\text{C}$	-10	-	10	mV
		$I_P=0\text{ A}$, $T_A=-40^\circ\text{C}$ to 25°C	-25	-	25	mV
		$I_P=0\text{ A}$, $T_A=25^\circ\text{C}$ to 125°C	-25	-	25	mV
ESNST	Sensitivity Error	$I_P=6\text{A}$, $T_A=25^\circ\text{C}$	-1.5	-	1.5	%
		$I_P=6\text{A}$, $T_A=-40^\circ\text{C}$ to 25°C	-2.5	-	2.5	%
		$I_P=6\text{A}$, $T_A=25^\circ\text{C}$ to 125°C	-2.5	-	2.5	%
ETOT	Total Output Error	$I_P=6\text{A}$, $T_A=25^\circ\text{C}$	-1.9	-	1.9	%
		$I_P=6\text{A}$, $T_A = -40^\circ\text{C}$ to 25°C	-3.5	-	3.5	%
		$I_P=6\text{A}$, $T_A = 25^\circ\text{C}$ to 125°C	-3.5	-	3.5	%

* Device may be operated at higher primary current levels, ambient temperatures, and internal leadframe temperatures, provided the Maximum Junction Temperature, is not exceeded.

MT9221CT-10BR5 At $T_A = -40\text{~}125^\circ\text{C}$, $V_{CC} = 5\text{V}$ (unless otherwise specified)

Symbol	Parameters	Test Condition	Min	Typ	Max	Unit
IPR	Optimized Input Current Range		-10	-	10	A
SNST	Sensitivity	$-10\text{A} \leq I_P \leq 10\text{A}$	-	200	-	mV/A
VOQ	Zero-Current Output Voltage		-	$V_{CC} \times 0.5$	-	V
VOE	Zero-Current Output Error	$I_P = 0\text{ A}, T_A = 25^\circ\text{C}$ $I_P = 0\text{ A}, T_A = -40^\circ\text{C} \text{ to } 25^\circ\text{C}$ $I_P = 0\text{ A}, T_A = 25^\circ\text{C} \text{ to } 125^\circ\text{C}$	-10 -25 -25	-	10 25 25	mV
ESNST	Sensitivity Error	$I_P = 10\text{A}, T_A = 25^\circ\text{C}$ $I_P = 10\text{A}, T_A = -40^\circ\text{C} \text{ to } 25^\circ\text{C}$ $I_P = 10\text{A}, T_A = 25^\circ\text{C} \text{ to } 125^\circ\text{C}$	-1.5 -2.5 -2.5	-	1.5 2.5 2.5	%
ETOT	Total Output Error	$I_P = 10\text{A}, T_A = 25^\circ\text{C}$ $I_P = 10\text{A}, T_A = -40^\circ\text{C} \text{ to } 25^\circ\text{C}$ $I_P = 10\text{A}, T_A = 25^\circ\text{C} \text{ to } 125^\circ\text{C}$	-1.9 -3.5 -3.5	-	1.9 3.5 3.5	%

* Device may be operated at higher primary current levels, ambient temperatures, and internal leadframe temperatures, provided the Maximum Junction Temperature, is not exceeded.

MT9221CT-20UR5 At $T_A = -40\text{~}125^\circ\text{C}$, $V_{CC} = 5\text{V}$ (unless otherwise specified)

Symbol	Parameters	Test Condition	Min	Typ	Max	Unit
IPR	Optimized Input Current Range		0	-	20	A
SNST	Sensitivity	$0\text{A} \leq I_P \leq 20\text{A}$	-	200	-	mV/A
VOQ	Zero-Current Output Voltage		-	$V_{CC} \times 0.1$	-	V
VOE	Zero-Current Output Error	$I_P = 0\text{ A}, T_A = 25^\circ\text{C}$ $I_P = 0\text{ A}, T_A = -40^\circ\text{C} \text{ to } 25^\circ\text{C}$ $I_P = 0\text{ A}, T_A = 25^\circ\text{C} \text{ to } 125^\circ\text{C}$	-10 -25 -25	-	10 25 25	mV
ESNST	Sensitivity Error	$I_P = 20\text{A}, T_A = 25^\circ\text{C}$ $I_P = 20\text{A}, T_A = -40^\circ\text{C} \text{ to } 25^\circ\text{C}$ $I_P = 20\text{A}, T_A = 25^\circ\text{C} \text{ to } 125^\circ\text{C}$	-1.5 -2.5 -2.5	-	1.5 2.5 2.5	%
ETOT	Total Output Error	$I_P = 20\text{A}, T_A = 25^\circ\text{C}$ $I_P = 20\text{A}, T_A = -40^\circ\text{C} \text{ to } 25^\circ\text{C}$ $I_P = 20\text{A}, T_A = 25^\circ\text{C} \text{ to } 125^\circ\text{C}$	-1.9 -3.5 -3.5	-	1.9 3.5 3.5	%

* Device may be operated at higher primary current levels, ambient temperatures, and internal leadframe temperatures, provided the Maximum Junction Temperature, is not exceeded.

MT9221CT-20BR5 At $T_A = -40\text{~}125^\circ\text{C}$, $V_{CC} = 5\text{V}$ (unless otherwise specified)

Symbol	Parameters	Test Condition	Min	Typ	Max	Unit
IPR	Optimized Input Current Range		-20	-	20	A
SNST	Sensitivity	$-20\text{A} \leq I_P \leq 20\text{A}$	-	100	-	mV/A
VOQ	Zero-Current Output Voltage		-	$V_{CC} \times 0.5$	-	V
VOE	Zero-Current Output Error	$I_P = 0\text{ A}, TA = 25^\circ\text{C}$ $I_P = 0\text{ A}, TA = -40^\circ\text{C to } 25^\circ\text{C}$ $I_P = 0\text{ A}, TA = 25^\circ\text{C to } 125^\circ\text{C}$	-10 -25 -25	-	10 25 25	mV
ESNST	Sensitivity Error	$I_P = 20\text{A}, TA = 25^\circ\text{C}$ $I_P = 20\text{A}, TA = -40^\circ\text{C to } 25^\circ\text{C}$ $I_P = 20\text{A}, TA = 25^\circ\text{C to } 125^\circ\text{C}$	-1.5 -2.5 -2.5	-	1.5 2.5 2.5	%
ETOT	Total Output Error	$I_P = 20\text{A}, TA = 25^\circ\text{C}$ $I_P = 20\text{A}, TA = -40^\circ\text{C to } 25^\circ\text{C}$ $I_P = 20\text{A}, TA = 25^\circ\text{C to } 125^\circ\text{C}$	-1.9 -3.5 -3.5	-	1.9 3.5 3.5	%

* Device may be operated at higher primary current levels, ambient temperatures, and internal leadframe temperatures, provided the Maximum Junction Temperature, is not exceeded.

MT9221CT-25BR5 At $T_A = -40\text{~}125^\circ\text{C}$, $V_{CC} = 5\text{V}$ (unless otherwise specified)

Symbol	Parameters	Test Condition	Min	Typ	Max	Unit
IPR	Optimized Input Current Range		-25	-	25	A
SNST	Sensitivity	$-25\text{A} \leq I_P \leq 25\text{A}$	-	80	-	mV/A
VOQ	Zero-Current Output Voltage		-	$V_{CC} \times 0.5$	-	V
VOE	Zero-Current Output Error	$I_P = 0\text{ A}, TA = 25^\circ\text{C}$ $I_P = 0\text{ A}, TA = -40^\circ\text{C to } 25^\circ\text{C}$ $I_P = 0\text{ A}, TA = 25^\circ\text{C to } 125^\circ\text{C}$	-10 -25 -25	-	10 25 25	mV
ESNST	Sensitivity Error	$I_P = 25\text{A}, TA = 25^\circ\text{C}$ $I_P = 25\text{A}, TA = -40^\circ\text{C to } 25^\circ\text{C}$ $I_P = 25\text{A}, TA = 25^\circ\text{C to } 125^\circ\text{C}$	-1.5 -2.5 -2.5	-	1.5 2.5 2.5	%
ETOT	Total Output Error	$I_P = 25\text{A}, TA = 25^\circ\text{C}$ $I_P = 25\text{A}, TA = -40^\circ\text{C to } 25^\circ\text{C}$ $I_P = 25\text{A}, TA = 25^\circ\text{C to } 125^\circ\text{C}$	-1.9 -3.5 -3.5	-	1.9 3.5 3.5	%

* Device may be operated at higher primary current levels, ambient temperatures, and internal leadframe temperatures, provided the Maximum Junction Temperature, is not exceeded.

MT9221CT-30UR5 At $T_A = -40 \sim 125^\circ C$, $V_{CC} = 5V$ (unless otherwise specified)

Symbol	Parameters	Test Condition	Min	Typ	Max	Unit
IPR	Optimized Input Current Range		0	-	30	A
SNST	Sensitivity	$0A \leq IP \leq 30A$	-	133.3	-	mV/A
VOQ	Zero-Current Output Voltage		-	$V_{CC} \times 0.1$	-	V
VOE	Zero-Current Output Error	$IP = 0A, TA = 25^\circ C$ $IP = 0A, TA = -40^\circ C \text{ to } 25^\circ C$ $IP = 0A, TA = 25^\circ C \text{ to } 125^\circ C$	-10 -25 -25	-	10 25 25	mV
ESNST	Sensitivity Error	$IP = 30A, TA = 25^\circ C$ $IP = 30A, TA = -40^\circ C \text{ to } 25^\circ C$ $IP = 30A, TA = 25^\circ C \text{ to } 125^\circ C$	-1.5 -2.5 -2.5	-	1.5 2.5 2.5	%
ETOT	Total Output Error	$IP = 30A, TA = 25^\circ C$ $IP = 30A, TA = -40^\circ C \text{ to } 25^\circ C$ $IP = 30A, TA = 25^\circ C \text{ to } 125^\circ C$	-1.9 -3.5 -3.5	-	1.9 3.5 3.5	%

* Device may be operated at higher primary current levels, ambient temperatures, and internal leadframe temperatures, provided the Maximum Junction Temperature, is not exceeded.

MT9221CT-30BR5 At $T_A = -40 \sim 125^\circ C$, $V_{CC} = 5V$ (unless otherwise specified)

Symbol	Parameters	Test Condition	Min	Typ	Max	Unit
IPR	Optimized Input Current Range		-30	-	30	A
SNST	Sensitivity	$-30A \leq IP \leq 30A$	-	66.7	-	mV/A
VOQ	Zero-Current Output Voltage		-	$V_{CC} \times 0.5$	-	V
VOE	Zero-Current Output Error	$IP = 0A, TA = 25^\circ C$ $IP = 0A, TA = -40^\circ C \text{ to } 25^\circ C$ $IP = 0A, TA = 25^\circ C \text{ to } 125^\circ C$	-10 -25 -25	-	10 25 25	mV
ESNST	Sensitivity Error	$IP = 30A, TA = 25^\circ C$ $IP = 30A, TA = -40^\circ C \text{ to } 25^\circ C$ $IP = 30A, TA = 25^\circ C \text{ to } 125^\circ C$	-1.5 -2.5 -2.5	-	1.5 2.5 2.5	%
ETOT	Total Output Error	$IP = 30A, TA = 25^\circ C$ $IP = 30A, TA = -40^\circ C \text{ to } 25^\circ C$ $IP = 30A, TA = 25^\circ C \text{ to } 125^\circ C$	-1.9 -3.5 -3.5	-	1.9 3.5 3.5	%

* Device may be operated at higher primary current levels, ambient temperatures, and internal leadframe temperatures, provided the Maximum Junction Temperature, is not exceeded.

11 Characteristic Definitions

Power On Time---TPO

When the supply is ramped to its operating voltage, the device requires a finite time to power its internal components before responding to an input magnetic field.

The Power-On Time (TPO) is defined as the time taken between the supply reaching the minimum operating voltage $V_{CC\min}$ (t_1), and the output voltage to settling to within $\pm 10\%$ of its steady state value under an applied magnetic field (t_2) (See Figure 6).

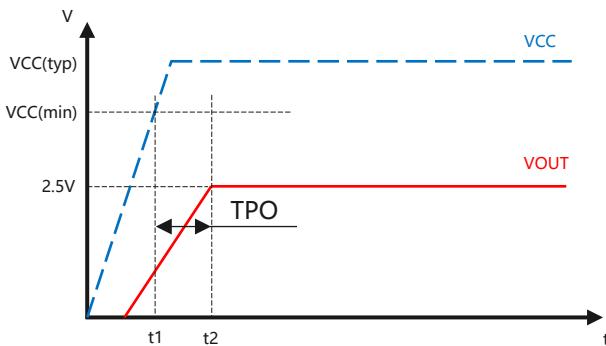


Figure.5 Power On Time Definition

Propagation Delay---TPD

The time interval between a) when the primary current signal reaches 20% of its final value, and b) when the output reaches 20% of its final value (see Figure 7).

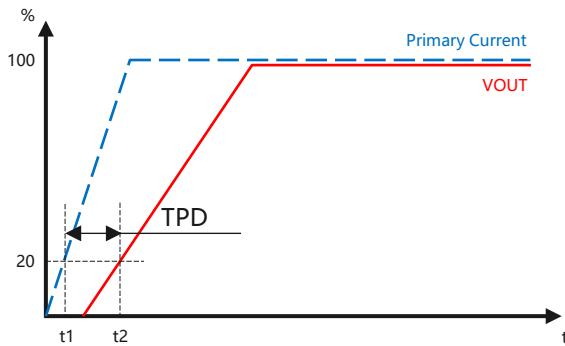


Figure.6 Propagation Delay Definition

Rise Time---TR

Rise Time is the time interval between the sensor V_{OUT} reaching 10% of its full scale value (t_1), and it reaching 90% of its full scale value (t_2). (see Figure 8). Both TR and TRESP can be negatively affected by any eddy current losses created if a conductive ground plane is used.

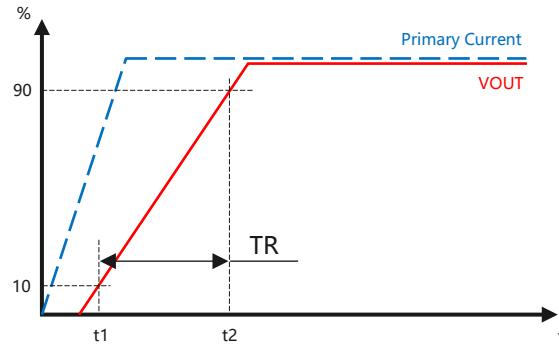


Figure.7 Rise Time Definition

Response Time---TRESP

The time interval between a) when the primary current signal reaches 80% of its final value, and b) when the sensor reaches 80% of its output corresponding to the applied current. (see Figure 9). Both TR and TRESP can be negatively affected by any eddy current losses created if a conductive ground plane is used.

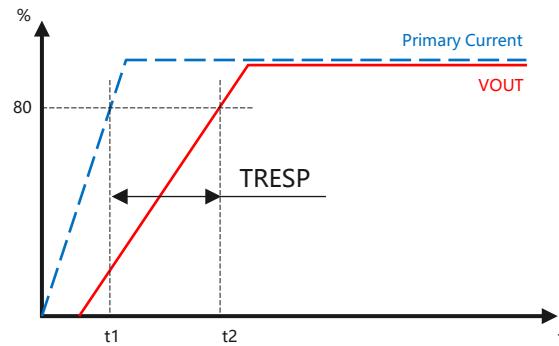


Figure.8 Response Time Definition

Zero-Current Output Voltage---VOQ

VOQ is the voltage output when the primary current is zero. For a unipolar supply voltage, it nominally remains at $0.5 \times VCC$ for a bidirectional device and $0.1 \times VCC$ for a unidirectional device. For example, in the case of a bidirectional output device, $VCC=5V$ translates into $VOQ=2.5V$. Variation in VOQ from the nominal value is due to thermal drift and the resolution limits of voltage offset trimming in the factory.

Zero-Current Output Error---VOE

The deviation of the device output from its ideal quiescent value of $0.5 \times VCC$ (bidirectional) or $0.1 \times VCC$ (unidirectional) due to nonmagnetic causes. To convert this voltage to amp, divide by the device sensitivity (SNST).

Sensitivity---SNST

The Sensitivity in mV/A indicates how much the output changes when the primary current changes. It is the product of the magnetic circuit sensitivity (G/A) (1G = 0.1mT) and the linear IC amplifier gain (mV/G). The linear IC amplifier gain is programmed at the factory to optimize the sensitivity (mV/A) for the full-scale current of the device.

$$SNST = \left(\frac{VOUT_IPOSx - VOUT_INEGx}{IPOSx - INEGx} \right)$$

where IPOSx and INEGx are two current values with opposite polarities.

Total Output Error---ETOT

The accuracy represents the maximum deviation of the actual current output from its ideal current value. This is equivalent to the difference between the actual output voltage and the ideal output voltage, divided by the ideal sensitivity, relative to the current flowing through the primary conduction path:

$$ETOT(IP) = \left(\frac{VOUT_IP - VOUT_ideal(IP)}{SNST_ideal * IP} \right) * 100\%$$

Nonlinearity Sensitivity Error---ELIN

Ideally the primary current vs sensor output function is a straight line. The non-linearity is an indication of the worst deviation from this straight line. The ELIN in % is defined as:

$$ELIN = \left(\frac{SNST_I1}{SNST_I2} - 1 \right) * 100\%$$

Where:

$$SNST_I1 = \left(\frac{VOUT_IPOS1 - VOUT_INEG1}{IPOS1 - INEG1} \right)$$

$$SNST_I2 = \left(\frac{VOUT_IPOS2 - VOUT_INEG2}{IPOS2 - INEG2} \right)$$

and IPOSx and INEGx are positive and negative current values, with respect to the quiescent voltage output such that $|IPOS2| = |INEG2| = IPRmax$, and $|IPOS2| = 2 \times |IPOS1|$ and $|INEG2| = 2 \times |INEG1|$.

Ratiometry Error---ERAT

The MT9221 device features ratiometric output. This means that the Quiescent Voltage Output (VOQ) and sensitivity (SNST), are proportional to the Supply Voltage, VCC. In other words, when the supply voltage increases or decreases by a certain percentage, each characteristic also increases or decreases by the same percentage. Error is the difference between the measured change in the supply voltage relative to 5 V, and the measured change in each characteristic.

Ratiometry Quiescent Voltage Output Error---ERAT_VOQ

ERAT_VOQ, for a given supply voltage, is defined as:

$$ERAT_VOQ = \left(\frac{VOQ(VCC)/VCC}{VOQ(5V)/5V} - 1 \right) * 100\%$$

Ratiometry Sensitivity Error---ERAT_SNST

ERAT_SNST, for a given supply voltage, is defined as:

$$ERAT_SNST = \left(\frac{SNST_I1(VCC)/VCC}{SNST_I1(5V)/5V} - 1 \right) * 100\%$$

Power-On Reset---POR

The descriptions in this section assume temperature = 25°C, no output load (RL, CL), and no the applied current is present.

Power-Up. At power-up, as VCC ramps up, the output is in a high-impedance state. When VCC crosses VPORH, the output will go to VCC/2 after POR Release counter (TPORR) + POR Analog delay (TPORA).

VCC drops below VCC(min) = 4.5 V. If VCC drops below VPORL, the output will be in a high-impedance state. If VCC recovers and exceeds VPORH, the output will go back to normal operation after POR Release counter (TPORR) + POR Analog delay (TPORA) (See Figure. 10).

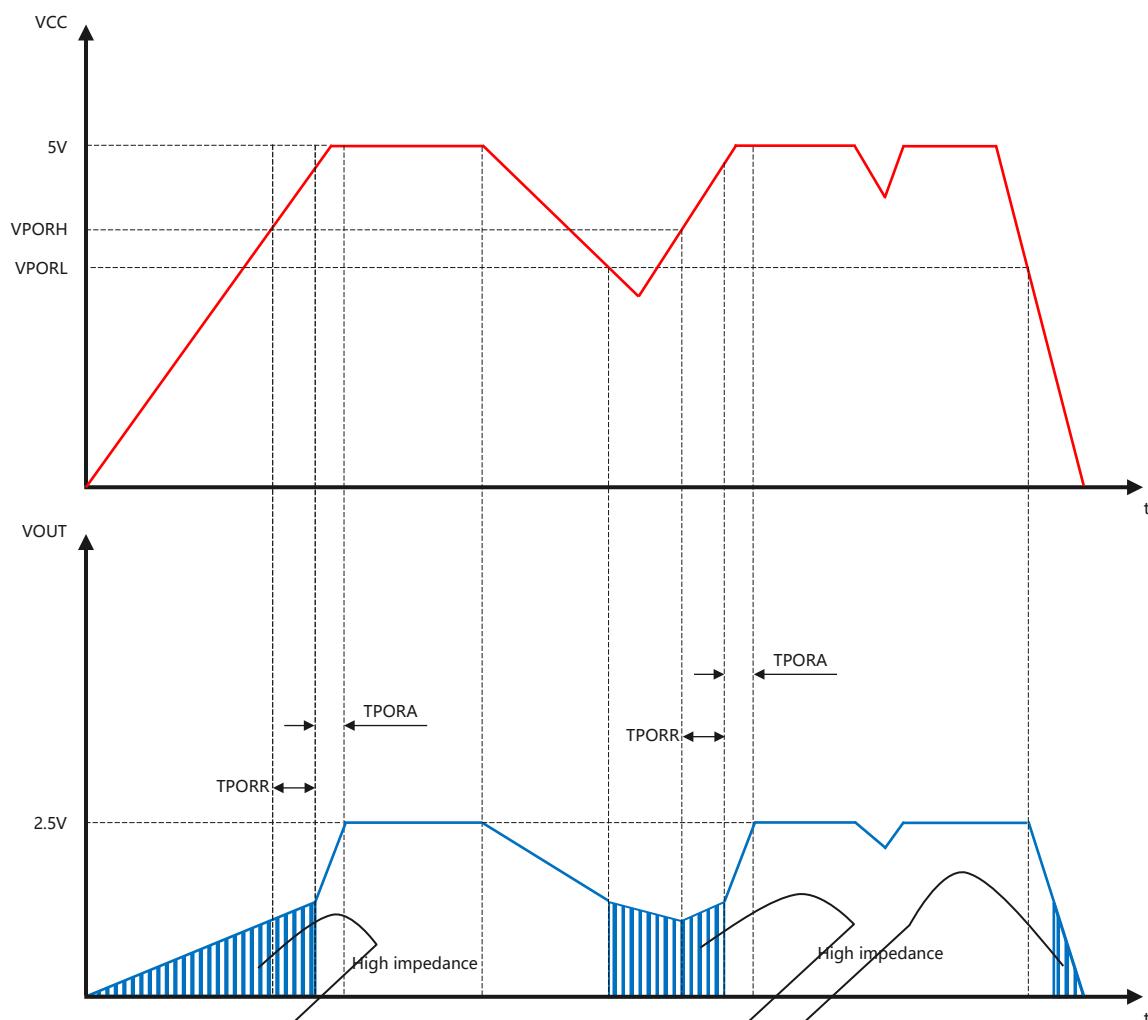
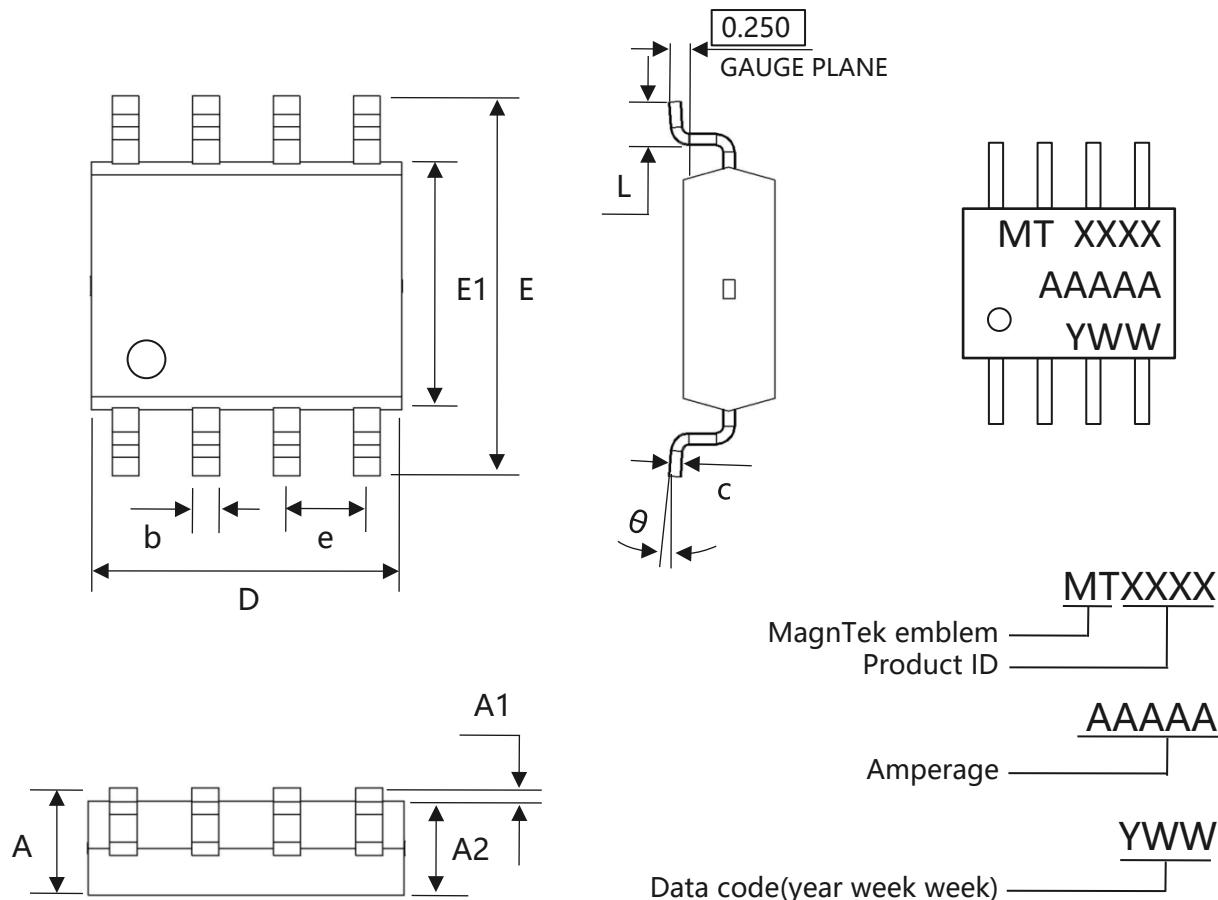



Figure.9 Power-On Reset Definition

12 Package Material Information (For Reference Only – Not for Tooling Use)

12.1 SOP-8 Package Information

Symbol	Dimensions in Millimeters		Dimensions in Inches	
	Min	Max	Min	Max
A	1.450	1.750	0.057	0.069
A1	0.100	0.250	0.004	0.010
A2	1.350	1.550	0.053	0.061
b	0.330	0.510	0.013	0.020
c	0.170	0.250	0.007	0.010
D	4.700	5.100	0.185	0.201
E	5.800	6.200	0.228	0.244
E1	3.800	4.000	0.150	0.157
e	1.270(BSC)		0.050(BSC)	
L	0.400	1.270	0.016	0.050
θ	0°	8°	0°	8°

13 Copy Rights and Disclaimer

1. This document may not be reproduced or duplicated, in any form, in whole or in part without prior written consent of MagnTek . Copyrights © 2019, MagnTek Incorporated.
2. MagnTek reserves the right to make changes to the information published in this document at anytime without notice.
3. MagnTek' s products are limited for use in normal commercial applications. MagnTek' s products are not to be used in any device or system, including but not limited to medical life support equipment and system.

For the latest version of this document, please visit our website: www.magntek.com.cn