Messrs.						
Product Specification	Model: MTF-T057AMSLN-V4 –		Rev. No.	Issued Date.	Page.	
		А	Mar.20, 08	1 / 32		

LIQUID CRYSTAL DISPLAY MODULE MODEL: MTF-T057AMSLN-V4 Customer's No.:

Microtips Technology Inc. 12F. No.31 Lane 169, Kang Ning St., His-Chih, Taipei Hsien, Taiwan FAX: 886-2-26958625

Approved and Checked by

Approved by	Check	Made by	
微端	微端	微端	微端
2008/03/20	2008/03/20	2008/03/20	2008/03/20
李剛	連俊傑	蔡宜夢	陳雅靖

Messrs.					
Product Specification	Model:	MTF-T057AMSLN-V4	Rev. No.	Issued Date.	Page.
Product Specification			А	Mar.20, 08	2 / 32

Revise Records

Rev.	Date	Contents	Written	Approved
А	2008/03/20	Specification released	Sherry Chen	Steele Lee

Special Notes

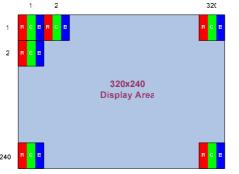
Note1.	The LCD module is compliant with RoHS.
Note2.	
Note3.	
Note4.	
Note5.	

Messrs.					
Product Specification	Model:	MTF-T057AMSLN-V4	Rev. No.	Issued Date.	Page.
			Α	Mar.20, 08	3 / 32

Contents

1.	GENE	RAL DESCRIPTION AND FEATURES	4
	1.1	Features	4
	1.2	General Specifications	4
2.	INPU	T TERMINAL PIN ASSIGNMENT	5
	2.1	Pin Assignment	5
	2.2	Back-light Unit (BLU)	6
3.	BLOO	CK DIAGRAM	7
4.	OPTI	CAL CHARACTERISTICS	8
5.	ABSC	DLUTE MAXIMUM RATINGS	11
	5.1	Absolute Ratings of Environment	11
	5.2	Electrical Absolute Maximum Rating	12
6.	ELEC	TRICAL CHARACTERISTICS	13
	6.1	DC Electrical Characteristics	13
	6.2	AC Timing Characteristic of The LCD	14
7.	BAC	LIGHT SPECIFICATIONS	17
8.	DISP	LAYED COLOR AND INPUT DATA	18
9.	INSP	ECTION PROVISION	19
10	.RELI/	ABILITY CONDITION	27
11	. PREC	AUTIONS	28
	11.1	Operation	28
	11.2	Safety	28
	11.3	Handling	28
	11.4	Static electricity	30
	11.5	Storage	30
	11.6	Cleaning	30
	11.7	Waste	30
12	.WAR	RANTY	31
13	.DIMI	ENSIONAL OUTLINES	31

Messrs.					
Product Specification	Model:	MTF-T057AMSLN-V4	Rev. No.	Issued Date.	Page.
			Α	Mar.20, 08	4/32


The Microtips Customized LCD module, model: MTF-T057AMSLN-V4 is compliant with RoHS

1. GENERAL DESCRIPTION AND FEATURES

MTF-T057AMSLN-V4 is a TM (Transmissive) type color active matrix TFT (Thin Film Transistor) liquid crystal display (LCD) that uses amorphous silicon TFT as a switching device. This model is composed of a TFT-LCD module, a driver circuit and a back-light unit. The resolution of a 5.7" contains 320RGB×240 dots and can display up to 262K colors. The following table described the features of MTF-T057AMSLN-V4.

- 1.1 Features
 - Transmissive type with LED back-light.
 - TN (Twisted Nematic) mode.
 - Digital RGB (6bits/color) Data Transfer
 - Backlight-driving DC/AC inverter is not built in this module.
 - Change the color from normally white to normally black (all zero's = black).
 - Invert the clock setting, like sharp compatible (data will be stable on the falling edge)
- 1.2 General Specifications

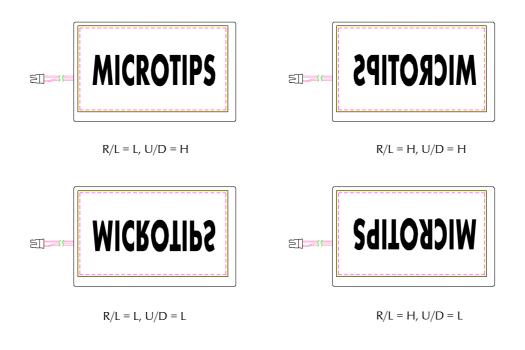
Item	Specification	Unit	
Screen Size	5.7 inches diagonal	-	
Display Resolution	320 x RGB x 240	Dot	
Pixel Pitch	0.36 (H) ×0.36 (V)	mm	
Active Area	115.2 (W) x 86.4 (H)	mm	
Outline Dimension	144.0 (W) x 104.6 (H) x 11.0 (T), without FPCB tail and connector cable	mm	
M/oight	175g (MTF-T057AMSLN-V4)		
Weight	212g (MTF-T057AMSLP-V4)	_	
Display Mode	Normally Black/Transmissive/Wide view	-	
Pixel Arrangement	RGB-Vertical Stripe	-	
Surface Treatment	Clear Type(3H)	-	
Viewing Direction	6 o'clock	-	
Input Interface	Digital RGB (6bits/color) Data Transfer		
TFT Driver	Source: Himax HX8218A, Gate: Himax HX8615A	-	
Color Garmut	NTSC 58%		

Messrs.					
Product Specification	Model:	MTF-T057AMSLN-V4	Rev. No.	Issued Date.	Page.
			А	Mar.20, 08	5 / 32

2. INPUT TERMINAL PIN ASSIGNMENT

2.1 Pin Assignment

Pin No.	Symbol	I/O	Function	Remark
1	DGND	-	GND	
2	DCLK	Ι	Clock signal for sampling each data signal	
3	Hsync	I	Horizontal synchronous signal (Negative)	
4	Vsync	Ι	Vertical synchronous signal (Negative)	
5	GND	I	GND	
6	RO	Ι	RED data signal (LSB)	-
7	R1	I	RED data signal	-
8	R2	Ι	RED data signal	-
9	R3	Ι	RED data signal	-
10	R4	Ι	RED data signal	-
11	R5	I	RED data signal (MSB)	-
12	GND	-	GND	-
13	G0	Ι	GREEN data signal (LSB)	
14	G1	Ι	GREEN data signal	
15	G2	I	GREEN data signal	
16	G3	I	GREEN data signal	-
17	G4	I	GREEN data signal	-
18	G5	Ι	GREEN data signal (MSB)	
19	GND	-	GND	
20	BO	Ι	BLUE data signal(LSB)	
21	B1	Ι	BLUE data signal	
22	B2	Ι	BLUE data signal	
23	B3	Ι	BLUE data signal	
24	B4	I	BLUE data signal	-
25	B5	I	BLUE data signal(MSB)	-
26	GND	-	GND	-
27	DEN	I	Signal to settle the horizontal display position (Positive)	Note5-1
28	V _{DD}	-	+3.3V power supply	

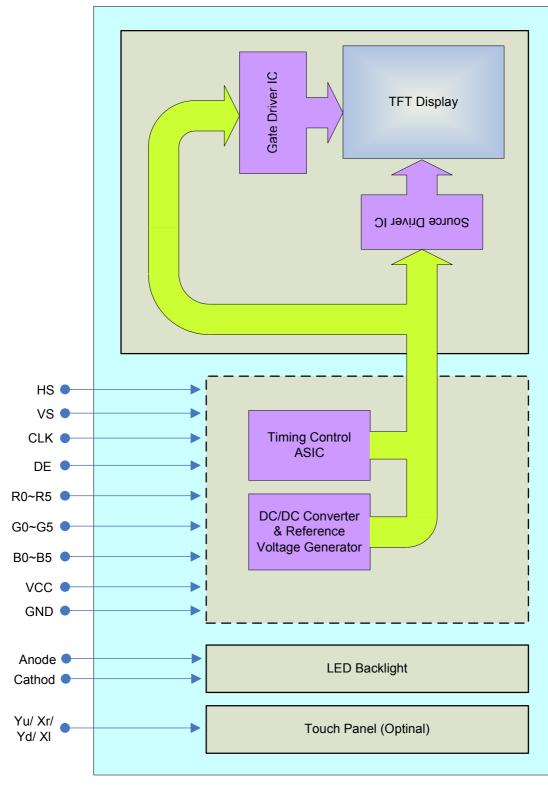


Messrs.						
Product Specification	Model:	MTF-T057AMSLN-V4	Rev. No.	Issued Date.	Page.	
			А	Mar.20, 08	6 / 32	

29	V _{DD}	-	+3.3V power supply	
30	LRC	I	Horizontal display mode select signal L: Normal H: Left / Right reverse mode	Note5-2
31	31 UDC I Vertical display mode select signal H: Normal L: Up / Down reverse mode			Note5-3
32	NC	-	No Connection	
33	GND	I	GND	

Note5-1 The horizontal display start timing is settled in accordance with a rising timing of ENAB signal. In case ENAB is fixed "Low", the horizontal start timing is determined. Don't keep ENAB "High" during operation.

Note5-2,3


2.2	Back-light Unit	(BLU)
	Duck light offic	(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Pin No.	Symbol	Function	Remark
1	LEDA	Power Supply for LED backlight	
2	LEDK	GND for LED backlight	

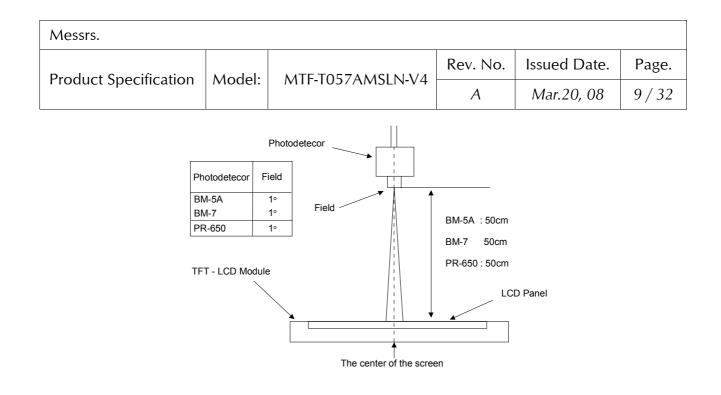
Messrs.								
Product Specification	Model:		Rev. No.	Issued Date.	Page.			
		MIT-IUS/AMSLIN-V4	А	Mar.20, 08	7 / 32			

3. BLOCK DIAGRAM

Messrs.					
Product Specification	Model	NATE TO 57 MASUNI V/A	Rev. No.	Issued Date.	Page.
	model.	MTF-105/AMSLN-V4	А	Mar.20, 08	8/32

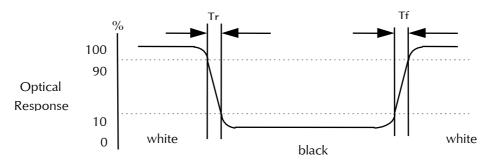
4. OPTICAL CHARACTERISTICS

The following items are measured under stable conditions. The optical characteristics should be measured in a dark room or equivalent state with the methods shown in Note (1). Measuring equipment: LCD-5000, BM-5A, BM-7, PR-650, EZ-Contrast $-25^{\circ}C$ I = 200 m A


					-		(Ta=25°C	, I _F =300mA)
	tem	Symbol	Condition	Min	Туре	Max	Unit	Note
Prightness	MTF- T057AMSLN-V4	Br	300mA/6.6V	500	550	-	cd/m ²	Note 1
Brightness	MTF- T057AMSLP-V4	Ы	500mA/6.6V	400	440	-	cd/m ²	Note 1
Deserves the		T _r	0 00	-	15	20	ms	Nata 2
Response tin	16	T _f	θ=0°	-	35	50	ms	Note 2
Contrast ratio)	CR	At optimized viewing angle	150	250	-		Note 3
	Ded	R _x		0.610	0.640	0.670		
	Red	R _Y		0.314	0.344	0.374		
	Grand	G _x		0.268	0.298	0.328		
Color	Green	G _Y	θ=0° Normal	0.553	0.583	0.613		
Chromaticity	Blue	B _x	Viewing Angle	0.107	0.137	0.167		
	Blue	B _Y		0.139	0.159	0.179		
		Wx		0.282	0.312	0.342		
	White	Wy		0.319	0.349	0.379		
		θ_{R}			65	-		
Viewing Ang	le Hor.	θ_{L}		-	65	-	Desire	Niete 4
(6H)		θ_{B}	CR≥10		50	-	Degree	Note 4
	Ver.	θ_{F}		-	65	-		
LED	25°C	LL	I _F =300mA		501/		Hours	Note 5
Life time	25 C	LL	V _F =6.6V	-	50k	-	Hours	NOLE 5

Note 1 : Test Equipment Setup

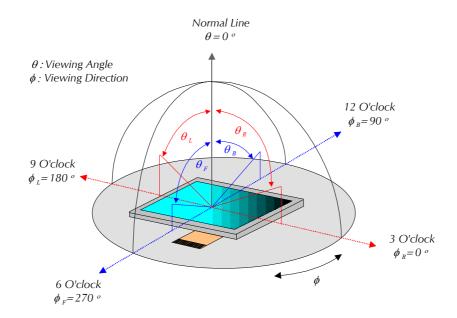
After stabilizing and leaving the panel alone at a given temperature for 30 min., the measurement should be executed. Measurement should be executed in a stable, windless, and dark room, 30 min. after turning the back light on. This should be measured in the center of screen.


Back-Light current: 300mA Environment condition: 1. Ta=25±2°C 2. Illuminations $\leq 1 \text{ lux}$

Note 2: Definition of response time: Tr and Tf

The response time is defined as the following figure and shall be measured by switching the input signal for "black" and "white".

Note 3 : Definition of contrast ratio:


Brightness measured when LCD is at "white state" Contrast Ratio (CR) = Brightness measured when LCD is at "black state"

Note 4 : Measured at the center area of the panel when all the input terminals of LCD panel are electrically opened.

Messrs.					
Product Specification	Madal		Rev. No.	Issued Date.	Page.
	Model:	MTF-1057AMSLN-V4	А	Mar.20, 08	10/32

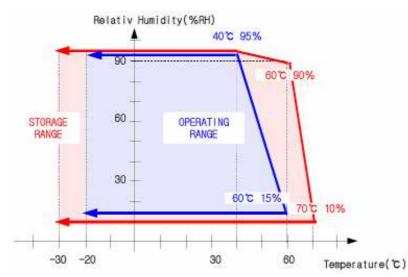
View Angle

Note 5 : This is the reference value. The white-LED life time is defined as a time when brightness not to become under 50% of the original value (at $Ta=25^{\circ}C$)

Messrs.					
Product Specification		NATE TO 57 MASUNI V/A	Rev. No.	Issued Date.	Page.
	model.	MTF-TU5/AMSLIN-V4	A	Mar.20, 08	11/32

5. ABSOLUTE MAXIMUM RATINGS

5.1 Absolute Ratings of Environment


> If the operating condition exceeds the following absolute maximum ratings, the TFT LCD module may be damaged permanently.

$T_{a-2} \Gamma^{\circ} C$	V = C N D = 0
1a-25 C,	$V_{ss}=GND=0$

Item	Symbol	Min.	Max.	Unit	Note
Storage temperature	T _{stg}	-30	80	°C	(1)
Operating temperature (Ambient temperature)	T _{opr}	-20	70	°C	(1), (2)

Note (1) 95 % RH Max. (40 °C \ge Ta)

Maximum wet-bulb temperature at 39 °C or less. (Ta > 40 °C) No condensation.

(2) In case of below 0° , the response time of liquid crystal (LC) becomes slower and the color of panel becomes darker than normal one. Level of retardation depends on temperature, because of LC's character

Messrs.					
Product Specification	Model	NATE TO 57 MASUNI V/A	Rev. No.	Issued Date.	Page.
	Model:	MTF-T05/AMSLIN-V4	А	Mar.20, 08	12 / 32

5.2 Electrical Absolute Maximum Rating

(Ta=25°C, V_{ss}=GND=0)

Parameter	Symbol	Min.	Тур.	Max.	Unit	Remark
Power Supply Voltage	V_{DD}	-0.3	-	+7.0	V	Note 1
Permissive input ripple voltage	V_{RF}	-	-	100	mVp-p	$V_{DD} = +3.3V$
Input voltage (Low)	V _{IL}	0	-	$0.3 V_{\text{DD}}$	V	Note 2
Input voltage (High)	V _{IH}	$0.7 \ V_{DD}$	-	+5.5	V	Note 2
Input current (Low)	I _{OL1}	-	1	10	μΑ	V _I =0V, Note 2
logut current (Ligh)	I _{OH1}	-	-	10	μΑ	V _I =3.3~5.0V, Note 3
Input current (High)	I _{OH2}	-	-	100	μΑ	V _I =3.3~5.0V, Note 4

Note1:

 V_{cc} $V_{\mbox{\scriptsize DD}}$ -turn-on conditions 3.0V 3.0V $0 < t1 \le 20ms$ 0.3V data $0 < t2 \le 50 ms$ $0 < t3 \le 1s$ t1 t2 t3 ▶◄ V_{DD} -dip conditions V_{cc} V_{DD} -dip conditions should also follow the $V_{\mbox{\scriptsize DD}}$ -turn-on conditions $Td \le 20ms$ 3.0V 2.4V td

Note2: CLK, R0~R5, G0~G5, B0~B5, Hsync, Vsync, DE, R/L, U/D Note3: CLK, R0~R5, G0~G5, B0~B5, Hsync, Vsync, R/L, U/D Note4: DE

Messrs.					
Messrs. Product Specification Model:	NATE TO 57 MASUNI V/A	Rev. No.	Issued Date.	Page.	
	Model:	MIT-105/ AMSLIN-V4	А	Mar.20, 08	13 / 32

6. ELECTRICAL CHARACTERISTICS

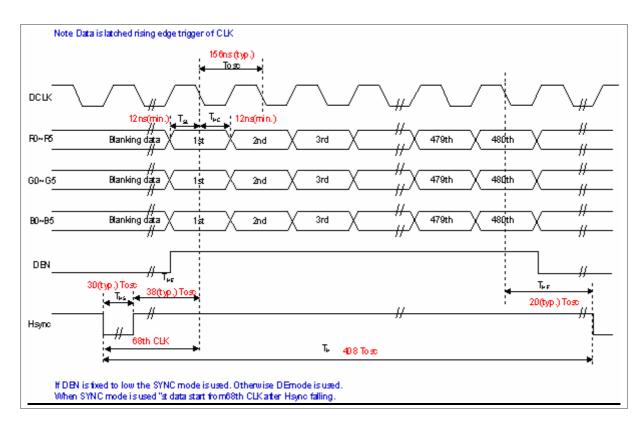
6.1 DC Electrical Characteristics

Item		Symbol Min. Typ. Ma		Max.	Unit	Remark	
Supply Voltage		V _{DD}	3.0	3.3	3.6	V	
Supply Current		I _{DD}	40	50	60	mA	Note 2
Input Voltage for	L Level	V _{IH}	$0.7 \ V_{DD}$	-	V _{DD}	V	Note 1
logic	H Level	V _{IL}	0	-	$0.3 \ V_{\text{DD}}$	V	

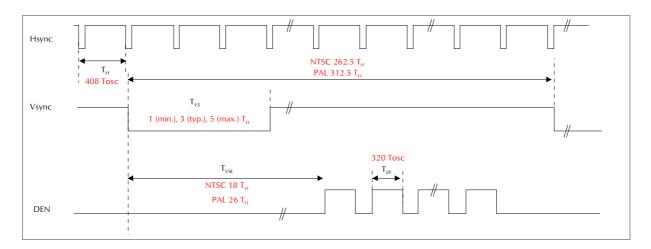
Note1: Hsync, Vsync, DEN, DCLK, R0~R5, G0~G5, B0~B5 Note2: fV =60Hz , Ta=25°C , Display pattern : All Black

Messrs.					
Product Specification Model	Model	NATE TO 57 A MSUNI V/A	Rev. No.	Issued Date.	Page.
	Model.	MIT-103/AM3LN-V4	A	Mar.20, 08	14 / 32

6.2 AC Timing Characteristic of The LCD

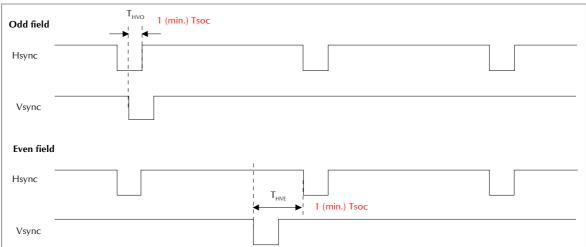

$ \begin{tabular}{ c c c c c c c c c c } \hline DCLK period & T_{OSC} & $-$ $1.56 $ $-$ ns \\ \hline Frequency & F_{OSC} & $-$ $6.4 $ $-$ MHz \\ \hline Prequency & T_{CH} $ $-$ ns \\ \hline DCLK High plus width $ T_{CH} $-$ $78 $ $-$ ns \\ \hline DCLK Low plus width $ T_{CL} $-$ $78 $ $-$ ns \\ \hline DCLK Low plus width $ T_{CL} $-$ $78 $ $-$ ns \\ \hline DCLK Low plus width $ T_{HD} $12 $ $-$ $-$ ns \\ \hline Data hold time $ T_{HD} $12 $ $-$ $-$ ns \\ \hline Data hold time $ T_{HD} $12 $ $-$ $-$ ns \\ \hline Data hold time $ T_{HD} $12 $ $-$ $-$ ns \\ \hline Hsync pulse width $ T_{HS} $5 $ $30 $ $-$ T_{OSC} \\ \hline Hsync pulse width $ T_{HS} $5 $ $30 $ $-$ T_{OSC} \\ \hline Hsync pulse width $ T_{HF} $ $-$ $20 $ $-$ T_{OSC} \\ \hline Hsync rising time $ T_{Cr} $ $-$ $700 $ ns \\ \hline Hsync falling time $ T_{Cr} $ $-$ $262.5 $ $-$ T_{H} \\ \hline Hsync falling time $ T_{Cr} $ $-$ $262.5 $ $-$ T_{H} \\ \hline Hsync falling time $ T_{VS} $1 $ $3 $ 5 T_{H} \\ \hline Vsync period $ $NTSC$ $ $-$ $262.5 $ $-$ T_{H} \\ \hline Vsync pulse width $ T_{VS} $ $1 $ $3 $ 5 T_{H} \\ \hline Display Period $ T_{VB} $ T_{VB} $ $-$ $23 $ $-$ T_{H} \\ \hline Display Period $ T_{VD} $ T_{VB} $ $-$ $23 $ $-$ T_{H} \\ \hline Display Period $ T_{VD} $ T_{VD} $ $-$ $240 $ $-$ T_{H} \\ \hline Display Period $ T_{VD} $ T_{VD} $ $-$ $240 $ $-$ T_{H} \\ \hline Vsync falling time $ T_{VF} $ $-$ $26. $-$ T_{H} \\ \hline Vsync falling to $HSVC$ $ T_{VF} $ $-$ $ $-$ $1.5 $ μ $ T_{H} \\ \hline Vsync falling to $HSVC$ $ T_{HVO} $ $1 $ $-$ $ T_{H} \\ \hline Vsync falling to $HSVC$ $ T_{HVO} $ $1 $ $-$ $ T_{H} \\ \hline Vsync falling to $HSVC$ $ T_{HVO} $ $1 $ $-$ $ T_{H} \\ \hline Vsync falling to $HSVC$ $ T_{HVO} $ $1 $ $-$ $ T_{H} \\ \hline Vsync falling to $HSVC$ $ T_{HVO} $ $1 $ $-$ $ T_{H} \\ \hline Vsync falling to $HSVC$ $ T_{HVO} $ T_{HVO} $ $1 $ $-$ $ T_{H} \\ \hline Vsync falling to $HSVC$ $ T_{HVO} $ T_{HVO} $ $1 $ $1 $ $-$ $ T_{H} $ T_{CS} $ T_{H} \\ \hline Hsync-DEN time $ $ T_{HVC} $ T_{HVO} $ T_{HVO} T_{HVO} $ T_{HVO} $ T_{HVO} $ T_{HVO} T_{HVO} T_{HVO} $$	6.2.1	Timing Condition							
$ \begin{split} & \begin{tabular}{ c c c c c c } \hline \begin{tabular}{ c c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	Signal	Parameter		Symbol	Min.	Тур.	Max.	Unit.	Remark
$ \begin{array}{ c c c c c c c c } \hline DCLK High plus width & T_{CH} & $-$ $78 $ $-$ $ns \\ \hline DCLK Low plus width & T_{CL} $-$ $78 $ $-$ $ns \\ \hline DCLK Low plus width & T_{CL} $-$ $78 $ $-$ $ns \\ \hline DCLK Low plus width & T_{CL} $-$ $78 $ $-$ $ns \\ \hline DCLK Low plus width & T_{HD} $12 $-$ $-$ $ns \\ \hline Data setup time & T_{HD} $12 $-$ $-$ $ns \\ \hline Data bold time & T_{HD} $12 $-$ $-$ $ns \\ \hline Data bold time & T_{HB} $-$ $30 $-$ T_{OSC} \\ \hline Hsync pulse width & T_{HB} $-$ $30 $-$ T_{OSC} \\ \hline Hsync pulse width & T_{HB} $-$ $38 $-$ T_{OSC} \\ \hline Hsync rising time & T_{Cf} $-$ $-$ $700 $ns \\ \hline Hsync falling time & T_{Cf} $-$ $-$ $700 $ns \\ \hline Hsync falling time & T_{Cf} $-$ $-$ $300 $ns \\ \hline Hsync falling time & T_{Cf} $-$ $-$ $300 $ns \\ \hline Hsync falling time & T_{Cf} $-$ $-$ $300 $ns \\ \hline Hsync falling time & T_{Cf} $-$ $-$ $15 $-$ T_{H} \\ \hline Vsync pulse width & T_{VS} $1 $-$ $3 $5 T_{H} \\ \hline Usync pulse width & T_{VS} $1 $-$ $3 $5 T_{H} \\ \hline Display Period & T_{VD} $-$ $240 $-$ T_{H} \\ \hline Display Period & T_{VT} $-$ $15 $-$ T_{H} \\ \hline Display Period & T_{VT} $-$ $4.5 $-$ T_{H} \\ \hline Vsync falling time $-$ T_{VT} $-$ $-$ $4.5 $-$ T_{H} \\ \hline Vsync falling time $-$ T_{VT} $-$ $-$ $-$ $700 $ns \\ \hline Vsync falling time $-$ T_{VT} $-$ $-$ $-$ $700 $ns \\ \hline Vsync falling time $-$ T_{VT} $-$ $-$ $-$ $700 $ns \\ \hline Vsync falling time $-$ T_{VT} $-$ $-$ $-$ $700 $ns \\ \hline Vsync falling time $-$ T_{VT} $-$ $-$ $-$ $700 $ns \\ \hline Vsync falling time $-$ T_{VT} $-$ $-$ $-$ $700 $ns \\ \hline Vsync falling time $-$ T_{VT} $-$ $-$ $-$ $700 $ns \\ \hline Vsync falling time $-$ T_{VT} $-$ $-$ $-$ $700 $ns \\ \hline Vsync falling time $-$ T_{VT} $-$ $-$ $-$ $700 $ns \\ \hline Vsync falling time $-$ T_{VT} $-$ $-$ $-$ $700 $ns \\ \hline Vsync falling time $-$ T_{VT} $-$ $-$ $-$ $700 $ns \\ \hline Vsync falling time $-$ T_{VT} $-$ $-$ $-$ $700 $ns \\ \hline DEN $ $NSC $ T_{VSE} $-$ $-$ $18 $-$ T_{H} $-$ T_{H} \\ \hline Hsync-DEN time $ $NTSC T_{VSE} $-$ $ $26 $-$ T_{H} $-$ T_{H} \\ \hline Hsync-DEN time $ $NTSC T_{VSE} $-$ $26 $-$ $T_$		DCLK period		T _{osc}		156	-	ns	
$ \begin{array}{ c c c c c } \hline \mbox{DCLK High plus width} & T_{CH} & - & 78 & - & ns \\ \hline \mbox{DCLK Low plus width} & T_{CL} & - & 78 & - & ns \\ \hline \mbox{DCLK Low plus width} & T_{CL} & - & 78 & - & ns \\ \hline \mbox{Data setup time} & T_{SU} & 12 & - & - & ns \\ \hline \mbox{Data hold time} & T_{HD} & 12 & - & - & ns \\ \hline \mbox{Data hold time} & T_{HD} & 12 & - & - & ns \\ \hline \mbox{Data hold time} & T_{HS} & 5 & 30 & - & T_{OSC} \\ \hline \mbox{Hsync period} & T_{HS} & 5 & 30 & - & T_{OSC} \\ \hline \mbox{Hsync pulse width} & T_{HS} & 5 & 30 & - & T_{OSC} \\ \hline \mbox{Hsync rising time} & T_{HH} & - & 20 & - & T_{OSC} \\ \hline \mbox{Hsync rising time} & T_{Cr} & - & 20 & - & T_{OSC} \\ \hline \mbox{Hsync rising time} & T_{Cr} & - & - & 300 & ns \\ \hline \mbox{Hsync rising time} & T_{Cr} & - & - & 300 & ns \\ \hline \mbox{Hsync period} & \frac{NTSC}{PAL} & - & 262.5 & - & T_{H} \\ \hline \mbox{Hsync period} & \frac{NTSC}{PAL} & - & 312.5 & - & T_{H} \\ \hline \mbox{Vsync pulse width} & T_{VS} & 11 & 3 & 5 & T_{H} \\ \hline \mbox{Vsync pulse width} & T_{VS} & 11 & 3 & 5 & T_{H} \\ \hline \mbox{Hsync rising time} & \frac{NTSC}{PAL} & - & 240 & - & T_{H} \\ \hline \mbox{Usync rising time} & T_{VF} & - & 44.5 & - & T_{H} \\ \hline \mbox{Usync rising time} & T_{VF} & - & 44.5 & - & T_{H} \\ \hline \mbox{Vsync falling time} & T_{VF} & - & - & 1.5 & \mu s \\ \hline \mbox{Vsync falling time} & T_{VF} & - & - & 1.5 & \mu s \\ \hline \mbox{Vsync falling time} & T_{VF} & - & - & 1.5 & \mu s \\ \hline \mbox{Vsync falling time} & T_{VF} & - & - & 1.5 & \mu s \\ \hline \mbox{Vsync falling time} & T_{VF} & - & - & 1.5 & \mu s \\ \hline \mbox{Vsync falling time} & T_{HVC} & T_{HVE} & 1 & - & T_{OSC} \\ \hline \mbox{Vsync falling time} & T_{VSC} & T_{VSE} & - & 18 & - & T_{H} \\ \hline \mbox{Vsync falling time} & NTSC & T_{VSE} & - & 18 & - & T_{H} \\ \hline \mbox{PAL} & T_{VSE} & - & 26 & - & T_{H} \\ \hline \mbox{Vsync falling time for eventifield} & T_{HVE} & 1 & - & 26 & - & T_{H} \\ \hline \mbox{PAL} & T_{VSE} & - & 26 & - & T_{H} \\ \hline \ \mbox{PAL} & T_{VSE} & - & 26 & - & T_{H} \\ \hline \mbox{PAL} & T_{VSE} & - & 26 & - & T_{H} \\ \hline \ \mbox{PAL} & T_{VSE} & - & 26 & - & T_{H} \\ \hline \ \mbox{PAL} & T_{VSE} & - & 26$	DCLK	Frequency		F _{osc}		6.4	I	MHz	
$ \begin{array}{ c c c c c } \mbox{RGB} \\ \hline Data setup time & $ T_{SU}$ 12 $-$ $-$ $-$ ns $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$	DCLK	DCLK High plus w	idth	Т _{СН}		78		ns	
$ \begin{array}{ c c c c c c } \mbox{Data hold time} & T_{HD} & 12 & $-$ & $-$ & ns & $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $		DCLK Low plus wi	dth	T _{CL}		78		ns	
		Data setup time		T _{su}	12	-		ns	
	DATA	Data hold time		T _{HD}	12	-		ns	
$ \begin{array}{ c c c c c c } Hsync & \hline Hsync here & \hline Hsync here & \hline Hsync rising time & \hline T_{HB} & - & 38 & - & T_{OSC} & \hline \\ \hline Front-Parch & T_{HF} & - & 20 & - & T_{OSC} & \hline \\ \hline Hsync rising time & \hline T_{Cr} & - & - & 700 & ns & \hline \\ \hline Hsync falling time & \hline T_{Cr} & - & - & 300 & ns & \hline \\ \hline Hsync falling time & \hline T_{Cr} & - & - & 300 & ns & \hline \\ \hline \\ Hsync period & \hline \\ \hline \\ Vsync period & \hline \\ \hline \\ PAL & \hline \\ PAL & - & 312.5 & - & T_{H} & \hline \\ \hline \\ PAL & - & 312.5 & - & T_{H} & \hline \\ \hline \\ Vsync pulse width & \hline \\ T_{VS} & 11 & 3 & 55 & T_{H} & \hline \\ \hline \\ Back-Porch & \hline \\ PAL & \hline \\ \hline \\ PAL & \hline \\ \hline \\ PAL & \hline \\ \hline \\ \hline \\ PAL & \hline \\ \hline \\ \hline \\ \\ PAL & \hline \\ \hline \\ \hline \\ \\ \hline \\ \\ Vsync falling time & \hline \\ \\ Vsync rising time & \hline \\ \\ Vsync falling to Hsync rising time & \hline \\ \\ Vsync falling to Hsync rising time for odd field & \hline \\ \hline \\ \\ Vsync falling to Hsync rising time for even field & \hline \\ \hline \\ \\ \hline \\ \\ DEN & \hline \\ \hline \\ \hline \\ \hline \\ \\ \hline \\ DEN & \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \\ \hline \\ \hline \\ \hline \\ \\ \hline \\ \hline \\ \\ \hline \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \hline \\ \hline \\ \hline \\ \hline \hline \\ \hline \hline \\ \hline \hline \\ \hline \\ \hline \hline \\ \hline \hline \\ \hline \hline \\ \hline \\ \hline \hline \\ \hline \\ \hline \hline \\$		Hsync period		T _H		408		T _{osc}	
$ \begin{array}{ c c c c c c } \mbox{Hsync} & $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$		Hsync pulse width		T _{HS}	5	30	-	T _{osc}	
$ \begin{array}{ c c c c c } \hline \mbox{Front-Parch} & T_{\rm HF} & - & 20 & - & T_{\rm osc} \\ \hline \mbox{Hsync rising time} & T_{\rm Cr} & - & - & 700 & {\rm ns} \\ \hline \mbox{Hsync falling time} & T_{\rm Cr} & - & - & 300 & {\rm ns} \\ \hline \mbox{Hsync falling time} & T_{\rm Cr} & - & 262.5 & - & T_{\rm H} \\ \hline \mbox{PAL} & - & 312.5 & - & T_{\rm H} \\ \hline \mbox{Vsync pulse width} & T_{\rm Vs} & 1 & 3 & 5 & T_{\rm H} \\ \hline \mbox{Vsync pulse width} & T_{\rm Vs} & 1 & 3 & 5 & T_{\rm H} \\ \hline \mbox{Vsync pulse width} & T_{\rm Vs} & 1 & 3 & 5 & T_{\rm H} \\ \hline \mbox{Back-Porch} & \hline \mbox{NTSC} & T_{\rm VB} & - & 15 & - & T_{\rm H} \\ \hline \mbox{Display Period} & T_{\rm VD} & T_{\rm VD} & - & 240 & - & T_{\rm H} \\ \hline \mbox{Display Period} & T_{\rm VD} & T_{\rm VF} & - & 4.5 & - & T_{\rm H} \\ \hline \mbox{Display Period} & \hline \mbox{TVF} & T_{\rm VF} & - & 46.5 & - & T_{\rm H} \\ \hline \mbox{Vsync falling time} & T_{\rm Vr} & - & - & 700 & {\rm ns} \\ \hline \mbox{Vsync falling time} & T_{\rm Vr} & - & - & 700 & {\rm ns} \\ \hline \mbox{Vsync falling time for odd field} & T_{\rm HVO} & 1 & - & T_{\rm Osc} \\ \hline \mbox{Vsync falling to H}_{\rm VS} \\ \hline \mbox{Vsync falling to H}_{\rm VS} & T_{\rm VS} & T_{\rm VS} \\ \hline \mbox{Vsync falling to H}_{\rm VS} & T_{\rm VS} & T_{\rm HVO} \\ \hline \mbox{DEN} & \hline \mbox{NSC} & T_{\rm VS} & - & 18 & - & T_{\rm H} \\ \hline \mbox{PAL} & T_{\rm VS} & - & 26 & - & T_{\rm H} \\ \hline \mbox{PAL} & T_{\rm VS} & - & 26 & - & T_{\rm H} \\ \hline \mbox{PAL} & T_{\rm VS} & - & 26 & - & T_{\rm H} \\ \hline \mbox{PAL} & T_{\rm VS} & - & 26 & - & T_{\rm H} \\ \hline \mbox{PAL} & T_{\rm VS} & - & 26 & - & T_{\rm H} \\ \hline \mbox{PAL} & T_{\rm VS} & - & 26 & - & T_{\rm H} \\ \hline \mbox{PAL} & T_{\rm VS} & - & 26 & - & T_{\rm H} \\ \hline \mbox{PAL} & T_{\rm VS} & - & 26 & - & T_{\rm H} \\ \hline \mbox{PAL} & T_{\rm VS} & - & 26 & - & T_{\rm H} \\ \hline \mbox{PAL} & T_{\rm VS} & - & 26 & - & T_{\rm H} \\ \hline \mbox{PAL} & T_{\rm VS} & - & 26 & - & T_{\rm H} \\ \hline \mbox{PAL} & T_{\rm VS} & - & 26 & - & T_{\rm H} \\ \hline \mbox{PAL} & T_{\rm VS} & - & 26 & - & T_{\rm H} \\ \hline \mbox{PAL} & T_{\rm VS} & - & 26 & - & T_{\rm H} \\ \hline \mbox{PAL} & T_{\rm VS} & - & 26 & - & T_{\rm H} \\ \hline \mbox{PAL} & T_{\rm VS} & - & 26 & - & T_{\rm H} \\ \hline \mbox{PAL} & T_{\rm VS} & - & 26 & - & T_{\rm H} $	Having	Back-Parch		Т _{нв}		38	I	T _{osc}	
$ \begin{array}{ c c c c c c } \mbox{Hsync falling time} & T_{Cf} & $-$ & $-$ & 300 & ns & 1 \\ \begin{tabular}{ c c c c c } \mbox{Hsync period} & $NTSC$ & $-$ & T_{H} & $-$ & 312.5 & $-$ & T_{H} & $-$ & 1 & 3 & 5 & T_{H} & $-$ & 1 & 3 & 5 & T_{H} & $-$ & 1 & 5 & $-$ & T_{H} & $-$ & 1 & $-$ & T_{H} & $T_{$	TISYIIC	Front-Parch		T _{HF}		20	I	T _{osc}	
$ \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$		Hsync rising time		T _{Cr}		-	700	ns	
$ \begin{array}{ c c c c c c c } \hline Vsync period & PAL & - & 312.5 & - & T_{H} & \\ \hline Vsync pulse width & T_{VS} & 1 & 3 & 5 & T_{H} & \\ \hline Vsync pulse width & T_{VS} & 1 & 3 & 5 & T_{H} & \\ \hline Back-Porch & NTSC & T_{VB} & - & 15 & - & T_{H} & \\ \hline PAL & T_{VD} & - & 240 & - & T_{H} & \\ \hline Display Period & T_{VD} & - & 240 & - & T_{H} & \\ \hline Display Period & T_{VF} & - & 46.5 & - & T_{H} & \\ \hline Vsync rising time & T_{VF} & - & 46.5 & - & T_{H} & \\ \hline Vsync rising time & T_{Vf} & - & - & 700 & ns & \\ \hline Vsync falling time tor odd field & T_{VF} & - & - & 1.5 & \mu s & \\ \hline Vsync falling to Hsync & T_{Vf} & T_{VO} & 1 & - & T_{OSC} & \\ \hline Vsync falling to Hsync & T_{HVO} & 1 & - & T_{OSC} & \\ \hline Vsync falling to Hsync & T_{HVE} & T_{HVE} & 1 & - & T_{OSC} & \\ \hline DEN & \hline MSC & T_{VSE} & - & 18 & - & T_{H} & \\ \hline Hsync-DEN time & T_{HE} & 36 & 68 & 88 & T_{OSC} & \\ \hline \end{array} $		Hsync falling time		T _{Cf}		-	300	ns	
$ \begin{array}{ c c c c c c c c } \mbox{PAL} & - & 312.5 & - & T_{\rm H} \\ \hline Vsync pulse width & T_{VS} & 1 & 3 & 5 & T_{\rm H} \\ \hline Vsync pulse width & T_{VS} & 1 & 3 & 5 & T_{\rm H} \\ \hline Back-Porch & NTSC & T_{VB} & - & 15 & - & T_{\rm H} \\ \hline Display Period & T_{VD} & - & 240 & - & T_{\rm H} \\ \hline Display Period & NTSC & T_{VF} & - & 4.5 & - & T_{\rm H} \\ \hline Front Porch & NTSC & T_{VF} & - & 46.5 & - & T_{\rm H} \\ \hline Vsync rising time & T_{VF} & - & - & 700 & ns \\ \hline Vsync falling time & T_{Vf} & - & - & 1.5 & \mu s \\ \hline Vsync falling to Hsync \\ rising time for odd field & T_{HVO} & 1 & - & T_{OSC} \\ \hline Vsync falling to Hsync \\ falling time for even & field & T_{VSE} & - & 18 & - & T_{\rm H} \\ \hline DEN & Vsync-DEN time & NTSC & T_{VSE} & - & 26 & - & T_{\rm H} \\ \hline Hsync-DEN time & T_{HE} & 36 & 68 & 88 & T_{OSC} \\ \hline \end{array}$) (even e receite el	NTSC			262.5		T _H	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		vsync penod	PAL			312.5		T _H	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		Vsync pulse width		T _{VS}	1	3	5	Т _н	
$ \begin{array}{ c c c c c c c } \hline PAL & VS & - & 23 & - & T_{H} \\ \hline Display Period & & T_{VD} & - & 240 & - & T_{H} \\ \hline Display Period & & T_{VD} & - & 240 & - & T_{H} \\ \hline PAL & T_{VF} & - & 4.5 & - & T_{H} \\ \hline Vsync rising time & & T_{VF} & - & - & 46.5 & - & T_{H} \\ \hline Vsync rising time & & T_{Vr} & - & - & 700 & ns \\ \hline Vsync falling time & & T_{Vf} & - & - & 1.5 & \mu s \\ \hline Vsync falling to H & V & T_{HVO} & 1 & - & - & T_{OSC} \\ \hline Vsync falling to H & V & T_{HVO} & 1 & - & T_{OSC} \\ \hline Vsync falling time for odd field & & T_{HVE} & 1 & - & T_{OSC} \\ \hline Vsync falling time for e & Field & T_{HVE} & 1 & - & T_{OSC} \\ \hline DEN & & V & V & V & T_{HSC} & T_{VSE} & - & 18 & - & T_{H} \\ \hline Hsync-DEN time & & T_{HE} & 366 & 68 & 88 & T_{OSC} \\ \hline \end{array} $		Pack Porch	NTSC	т		15	-	Т _н	
$ \begin{array}{c c c c c c c c c c } \mbox{Vsync} & & & & & & & & & & & & & & & & & & &$		Dack-FOICII	PAL	I VB		23		Т _н	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		Display Period		T _{VD}		240		Т _н	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Vsync	Frent Dorch	NTSC	т		4.5		T _H	
$\begin{array}{c c c c c c c c c c } \hline Vsync falling time & T_{Vf} & - & - & 1.5 & \mu s \\ \hline Vsync falling to Hsync \\ rising time for odd field & T_{HVO} & 1 & - & - & T_{OSC} \\ \hline Vsync falling to Hsync \\ falling time for even field & T_{HVE} & 1 & - & - & T_{OSC} \\ \hline Vsync-DEN time & \hline NTSC & T_{VSE} & - & 18 & - & T_{H} \\ \hline PAL & T_{VSE} & - & 26 & - & T_{H} \\ \hline Hsync-DEN time & T_{HE} & 36 & 68 & 88 & T_{OSC} \\ \hline \end{array}$,	FIONT FOICH	PAL	I _{VF}		46.5		T _H	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		Vsync rising time		T_{Vr}		-	700	ns	
$\frac{\text{rising time for odd field}}{\text{Vsync falling to Hsync}} \frac{\text{T}_{HVO}}{\text{falling time for even field}} \frac{\text{T}_{HVO}}{\text{T}_{HVE}} \frac{1}{1} \frac{-}{-} \frac{-}{-} \frac{\text{T}_{OSC}}{\text{T}_{OSC}}$ $\frac{\text{Vsync falling to Hsync}}{\text{falling time for even field}} \frac{\text{NTSC}}{\text{T}_{VSE}} \frac{-}{-} \frac{18}{18} \frac{-}{-} \frac{\text{T}_{H}}{-} \frac{-}{-} \frac{18}{14}$ $\frac{\text{Vsync-DEN time}}{\text{PAL}} \frac{\text{NTSC}}{\text{T}_{VSE}} \frac{-}{-} \frac{26}{26} \frac{-}{-} \frac{\text{T}_{H}}{-} \frac{-}{-} \frac{18}{14}$		Vsync falling time		T _{Vf}		-	1.5	μ s	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				T _{HVO}	1	-		T _{osc}	
DEN $PAL = T_{VSE}$ - 26 - T_H Hsync-DEN time T_{HE} 36 68 88 T_{OSC}				T _{HVE}	1			T _{osc}	
DEN $PAL T_{VSE}$ 26 T_H Hsync-DEN time T_{HE} 36 68 88 T_{OSC}			NTSC	T _{VSE}		18		Т _н	
DEN Hsync-DEN time T _{HE} 36 68 88 T _{OSC}		vsync-DEN time	PAL	T _{VSE}		26		Т _н	
	DEN	Hsync-DEN time		T _{HE}	36	68	88	T _{osc}	
		DEN plus width		Τ _{ΕΡ}		320		T _{osc}	

Note : If DEN is fixed to low, the SYNC mode is used. Otherwise DE mode is used. When SYNC mode is used, 1st data start from 68th CLK after Hsync falling



Messrs.					
Product Specification Mode	Model	Λ ATE TO 57 Λ ASLNI V/A	Rev. No.	Issued Date.	Page.
	Mouel.	MIT-103/AMSLIN-V4	А	Mar.20, 08	15 / 32

6.2.2 Horizontal Display Timing



6.2.3 Vertical Display Timing

Messrs.					
Product Specification Mod	Model	NATE TO 57 A MASUNI V/A	Rev. No.	Issued Date.	Page.
rioduct specification	Model:	MIT-105/ AMSLIN-V4	А	Mar.20, 08	16 / 32

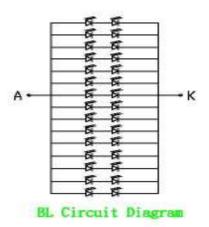
6.2.4 Hsync and Vsyne Timing

Messrs.					
Product Specification Mod	Model	NATE TO 57 MASUNI V/A	Rev. No.	Issued Date.	Page.
rioduct specification	Model:	MIT-105/AMSLIN-V4	A	Mar.20, 08	17/32

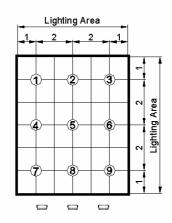
7. **BACKLIGHT SPECIFICATIONS**

7.1 Absolute Maximum Ratings

				Ta=25°C
ltem	Symbol	Maximum rating	Unit	Note
Peak Forward Current	I _{FM}	450	mA	(1)
Reverse Voltage	V _R	10	V	-
Power Dissipation	P _D	3300	mW	-
Operating Temperature	T _{OP}	-20~70	°C	-
Storage Temperature	T _{ST}	-30~80	°C	-


Note (1): Permanent damage to the device may occur if maximum values are exceeded or reverse voltage is loaded.

Functional operation should be restricted to the conditions described under normal operating conditions.


7.2 Electrical/Operating Characteristics

						Ta = 25°C
Parameter	Symbol	Min.	Тур.	Max.	Units	Test Condition
Forward Voltage	V_{F}	I	6.6	-	V	
LED Current	I _F	Ι	300	-	mA	T 25 %
Uniformity*	-	80	-	-	%	Ta=25℃ IF=300mA
Chromaticity Coordinates	Х	0.26	0.29	0.32	-	
	Y	0.26	0.29	0.32	-	

*: Uniformity = (Min./Max.) x 100%

Unregistered HyperSnap

Messrs.					
Product Specification Model	Model	NATE TO 57 MASUNI V/A	Rev. No.	Issued Date.	Page.
	Model:	MIT-105/AM5LIN-V4	А	Mar.20, 08	18 / 32

8. DISPLAYED COLOR AND INPUT DATA

	Color & Gray									Data	Signal								
	Scale	R5	R4	R3	R2	R1	RO	G5	G4	G3	G2	G1	G0	B5	B4	B3	B2	B1	BO
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red(0)	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0
	Green(0)	0	0	0	0	0	0	1	1	1	1	1	1	0	0	0	0	0	0
Basic	Blue(0)	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1
Color	Cyan	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1
	Magenta	1	1	1	1	1	1	0	0	0	0	0	0	1	1	1	1	1	1
	Yellow	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0
	White	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red(62)	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0
	Red(61)	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0
Red	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Keu	Red(31)	0	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0
	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
	Red(1)	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red(0)	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	1
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green(62)	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0
	Green(61)	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0
Green	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Green	Green(31)	0	0	0	0	0	0	0	1	1	1	1	0	0	0	0	0	0	0
	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
	Green(1)	0	0	0	0	0	0	1	1	1	1	1	0	0	0	0	0	0	0
	Green(0)	0	0	0	0	0	0	1	1	1	1	1	1	0	0	0	0	0	0
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Blue(62)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
	Blue(61)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
Blue	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Blue	Blue(31)	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1
	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
	Blue(1)	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	0
	Blue(0)	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1

Messrs.					
Product Specification	A 4 o dolu	MTF-T057AMSLN-V4 -	Rev. No.	Issued Date.	Page.
	would.		А	Mar.20, 08	19/32

9. **INSPECTION PROVISION**

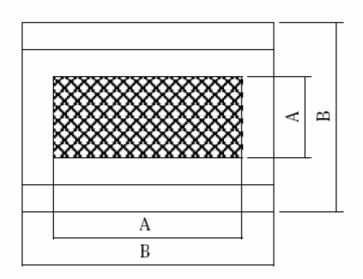
9.1 Purpose

> The Microtips inspection provision provides outgoing inspection provision and its expected quality levelbased on our outgoing inspection of Microtips LCD produces.

- 9.2 Applicable Scope The Microtip inspection provision is applicable to the arrangement in regard to outgoing inspection and quality assurance after outgoing.
- 9.3 **Technical Terms**
 - 9.3.1 Microtips Technical Terms

- Outgoing Inspection 9.4
 - 9.4.1 Inspection Method
 - MIL-STD-105E Level II Regular inspection
 - 9.4.2 Inspection Standard

	Item		AQL(%)	Remarks
		Opens	0.4	faults which
	Dots	Shorts		substantially
Major Defect		Erroneous operation		lower the
	C-14	Shorts		practicality and
	Solder appearance	Loose		the initial purpose
	Cracks	Display surface cracks		difficult to achieve



Messrs.					
Product Specification	Model	Λ ATE TO 57 A A SUNI V/A	Rev. No.	Issued Date.	Page.
	model.	MIT-1037 AMSLIN-V4	А	Mar.20, 08	20/32

	Dimensions	External from Dimensions	0.4	
	Inside the glass	Black spots	0.65	faults which
		Scratches, foreign		appear to pose
	Polarizing plate	Matter, air bubbles,		almost no
Minor Defect		and peeling		obstacle to the
Minor Defect	Dots	Pinhole, deformation		practicality,
	Color tone	Color unevenness		effective use,
	Saldar appagence	Cold solder		and operation.
	Solder appearance	Solder projections		

9.4.3 Inspection Provisions *Viewing Area Definition

Fig. 1

A : Zone Viewing Area B : Zone Glass Plate Outline

*Inspection place to be 500 to 1000 lux illuminance uniformly without glaring. The distance between luminous source(daylight fluorescent lamp and cool white fluorescentlamp) and sample to be 30 cm to 50 cm.

Messrs.					
Product Specification		odel: MTF-T057AMSLN-V4 –	Rev. No.	Issued Date.	Page.
	model.		A	Mar.20, 08	21/32

*Test and measurement are performed under the following conditions, unless otherwise specified.

Temperature	20 ± 15℃
Humidity	65 ± 20%R.H.
Pressure	860~1060hPa(mmbar)
In case of doubtful judgment, it is j	performed under the following conditions.
Temperature	20 ± 2°C
Humidity	65 ± 5%R.H.
Pressure	860~1060hPa(mmbar)

9.5 Specification for qualitycheck

9.5.1 Electrical characteristics :

NO.	Item	Criterion
1	Non operational	Fail
2	Miss operating	Fail
3	Contrast irregular	Fail
4	Response time	Within Specified value

9.5.2 Components soldering :

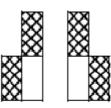
Should be no defective soldering such as shorting, loose terminal cold solder, peeling of printed circuit board pattern, improper mounting position, etc.

9.5.3 Inspection Standard for TFT panel 12.21.07'(4) Visual inspection on the operation condition for cosmetic shall be conducted at the distance

9.5.4 The environmental condition of inspection :

The environmental condition and visual inspection shall be conducted as below.

- (1) Ambient temperature : $25\pm5^{\circ}$ C
- (2) Humidity : 25~75% RH
- (3) External appearance inspection shall be conducted by using a single 20W fluores cent lamp or equivalent illumination.
- (4) Visual inspection on the operation condition for cosmetic shall be conducted at the distance 30cm or more between the LCD panels and eyes of inspector. The viewing angle shall be 90 degree to the front surface of display panel.
- (5) Ambient Illumination : 300~500 Lux for external appearance inspection.
- (6) Ambient Illumination : 100~200 Lux for light on inspection.


Messrs.					
Product Specification	Model	NATE TO 57 MASUNI V/A	Rev. No.	Issued Date.	Page.
	Model:	MTF-105/AM5LN-V4	А	Mar.20, 08	22 / 32

9.5.5 Inspection Criteria

- (1) Definition of dot defect induced from the panel inside
 - a) The definition of dot: The size of a defective dot over 1/2 of whole dot is regarded as one defective dot.
 - b) Bright dot: Dots appear bright and unchanged in size in which LCD panel is displaying under black pattern.
 - c) Dark dot: Dots appear dark and unchanged in size in which LCD panel is displaying under pure red, green , blue picture.
 - d) 2 dot adjacent = 1 pair = 2 dots Picture:

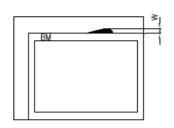
2 dot adjacent

(2) Display Inspection

2 dot adjacent (vertical)

2 dot adjacent (slant)

NO.		Item		Acceptable Count
		B-i-i+ D-4	Random	$N \leq 2$
		Bright Dot	2 dots adjacent	om N \leq 2 ljacent N \leq 0 om N \leq 3 ljacent N \leq 1 N \leq 4 Not allowable ough 6% ND filter. essary) not allowed in the optimun er viewing angle. ght Dots L \geq 5mm
	Dot defect	Deels Det	Random	$N \leq 3$
1		Dark Dot	2 dots adjacent	$N \leq 1$
1		Total bright and dark	dot	$N \leq 4$
		lure (V-line/ H-line/Cro	oss line etc.)	Not allowable
	Mura	Total bright and dark dot al failure (V-line/ H-line/Cross line et It's OK if mura is slight visible (Judged by limit sample if it is	-	ID filter.
2	Newton ring (touch panel)		nce fringes is not allowe tive area under viewing	-
2	Distance	Minimum Distance	Between Bright Dots	$L \ge 5mm$
3	Distance	Minimum Distance	e Between Dark Dots	$L \ge 5mm$


Messrs.					
Product Specification		Rev. No.	Issued Date.	Page.	
	mouel.		А	Mar.20, 08	23 / 32

(3) Appearance inspection

NO.	Item	Standards
1	Panel Crack	Not allow. It is shown in Fig.1.
2	Broken CF Non -lead Side of TFT	The broken in the area of W > 2mm is ignored, L is ignored. It is shown in Fig.2.
3	Broken Lead Side of TFT	FPC lead, electrical line or alignment mark can't be damaged. It is shown in Fig.3.
4	Broken Corner of TFT at Lead Side	FPC lead. electrical line or alignment mark can't be damaged. It is shown in Fig.4.
5	Burr of TFT / CF Edge	The distance of burr from the edge of TFT / CF, W \leq 0.3mm. It is shown in Fig.5.
6	Foreign Black / White/Bright Spot	(1) 0.15 < D \leq 0.5 mm, N \leq 4 ; (2) D \leq 0.15mm, Ignore. It is shown in Fig.6.
7	Foreign Black / White/Bright Line	$\begin{array}{l} (1) \ 0.05{<}W{\leq} \ 0.1 \ mm, \ 0.3{<}L{\leq} 2 \ mm, \ N{\leq} \ 4. \\ \\ (2) \ W \ {\leq} \ 0.05 mm \ and \ L{\leq} \ 0.3 mm \ Ignore. \\ \\ It \ is \ shown \ in \ Fig.7. \end{array}$
8	Color irregular	Not remarkable color irregular.

Fig.5.

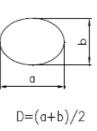


Fig.7.

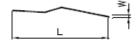


Fig.8.

Notes

1. W : Width 2. L : Length 3. D : Average Diameter 4. N : Count 5. All the angle of the broken must be larger than $90^\circ~$. It is shown in Fig.8. (R>90°)

Messrs.					
Product Specification	Model	NATE TO 57 MASUNI V/A	Rev. No.	Issued Date.	Page.
	Model:	MIT-103/ AMSLIN-V4	A	Mar.20, 08	24/32

9.5.6 External Appearance Defect

NO.	Item			Criterion	
1	Black spots, foreign matter, and white spots (Including light leakage due to pinholes of polarizing plates,	Spo	ts		
	etc.)		Average Diameter (mm):D	Number of pie	eces permitted
			$D \leq 0.2$	Ign	ore
			$0.2 < D \le 0.3$	5	;
			$0.3 < D \le 0.4$	2	2
			0.4 <d< td=""><td>0</td><td>)</td></d<>	0)
			Number of total pi	eces is set to w	ithin 5 pieces.
2	Line	Line	Note that when the are not to be conce diameter = (Long o es	entrated. Set as:	Average
			Width(mm):W	Length(mm): L	Number of pieces permitted
			W≦0.03	Ignore	Ignore
			$0.03 {<} W {\leq} 0.08$	L≦4	2
			$0.08 < W \le 0.1$	$L \leq 1$	1
			Object exceeding (of the spots form.).1mm follow t	he standards
			Diameter of spots :	Eength +W	idthof Line
			Note that when the are not to be conce	•	or more, they

Messrs.					
Product Specification	Model	MTF-T057AMSLN-V4 -	Rev. No.	Issued Date.	Page.
rioduct specification	ation Model: MT		А	Mar.20, 08	25/32

3	Air bubbles polarizing plates, and reflection plates		Average Diameter (mm):D D≤0.05	Number of pieces permitted Ignore	Average diameter = (Long diameter + Short	
			$0.05 < D \le 0.3$	3	diameter)/2	
			Note that when the are not to be conce		s or more, they	
4	Poarizer Scratch	Do	ot Line			
			Diameter (⊕) mm	Acceptab	le Number	
			$\Phi \leq 0.1$	Ignore		
			$0.1 {<} \oplus {\leq} 0.2$	1		
			$0.2 \le \Phi$		0	
		Lir	ne Defect			
			Width: (W) mm	Length: (L)mm	Acceptable Number	
			$W \leq 0.03$	Ignore	Ignore	
			$0.03 < W \le 0.08$	L≦4	4	
		If the width more than 0.08,must follow the criteria of dot defect. Length +Width				
			Diameter of spots =	2	of Line	

Messrs.					
Product Specification	Model	MTF-T057AMSLN-V4	Rev. No.	Issued Date.	Page.
Product Specification Mode	model.		А	Mar.20, 08	26 / 32

NOTICE:

SAFETY

- 1. If the LCD panel breaks, be careful not to get the liquid crystal to touch your skin.
- 2. If the liquid crystal touches your skin or clothes, please wash it off immediately by using soap and water.

HANDLING

- 1. Avoid static electricity which can damage the CMOS LSI.
- 2. Do not remove the panel or frame from the module.
- 3. The polarizing plate of the display is very fragile. So, please handle it very carefully.
- 4. Do not wipe the polarizing plate with a dry cloth, as it may easily scratch the surface of plate.
- 5. Do not use ketone solvent & Aromatic solvent. Use a soft cloth soaked with a cleaning Naphtha solvent.

STORAGE

- 1. Store the panel or module in a dark place where the temperature is $25\pm5^{\circ}$ C and the humidity is below 65% RH.
- 2. Do not place the module near organics solvents or corrosive gases.
- 3. Do not crush, shake, or jolt the module.

TERMS OF WARRANT

- 1. Acceptance inspection period The period is within one month after the arrival of contracted commodity at the buyer's factory site.
- 2. Applicable warrant period

The period is within twelve months since the date of shipping out under normal using and storage conditions.

Messrs.					
Product Specification	Model	MTF-T057AMSLN-V4	Rev. No.	Issued Date.	Page.
rioduct specification	Model.	MIT-1037 AMSEN-V4	А	Mar.20, 08	27/32

10. RELIABILITY CONDITION

10.1 LCM Reliability Test

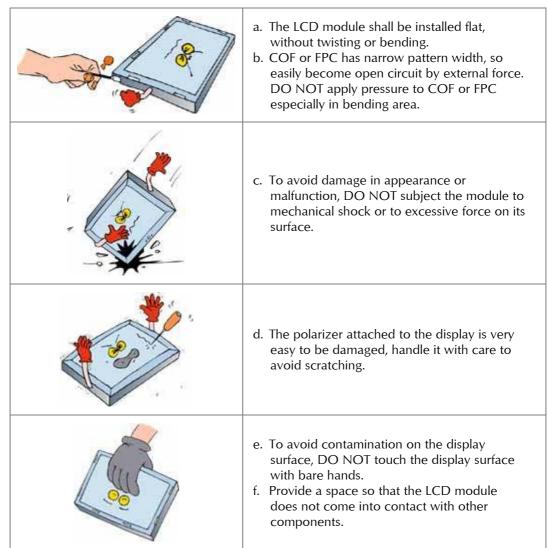
No.	Parameter	Condition
1	High Temperature Operating	70°C±2°C, 240 hrs (Operation state)
2	Low Temperature Operating	-20°C±2°C, 240 hrs (Operation state)
3	High Temperature Storage	80°C±2°C, 240 hrs
4	Low Temperature Storage	-30°C±2°C, 240 hrs
5	Damp Proof Test	40°C±2°C, 90~95%, 96hrs
6	Vibration Test	Total fixed amplitude: 1.5mm Vibration Frequency: 10~55Hz One cycle 60 seconds to 3 direction of X, Y, Z each 15 minutes.
7	Shock Test	To be measured after dropping from 60cm high on the concrete surface in packing state.

Notes: 1. No dew condensation to be observed.

- 2. The function test shall be conducted after 4 hours storage at the normal temperature and humidity after removed from the test chamber.
- 3. Vibration test will be conducted to the product itself without putting I in a container.

Messrs.					
Product Specification N	Model	Model: MTF-T057AMSLN-V4 –	Rev. No.	Issued Date.	Page.
	model.		А	Mar.20, 08	28/32

11. PRECAUTIONS

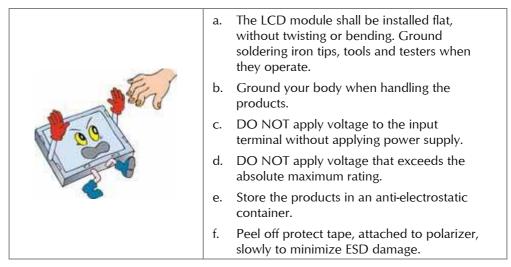

11.1 Operation

Burn-in sometimes happens when the same character was displayed at along time. Therefore, to prevent Burn-in, it is recommended to set up a Screen-saver function.

11.2 Safety

The liquid crystal in the LCD is poisonous, DO NOT put it in your mouth. If the liquid crystal touches your skin or clothes, wash it off immediately using soap and water.

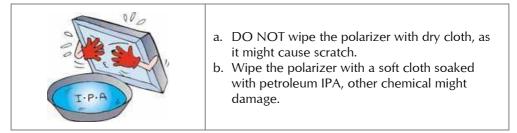
11.3 Handling


Messrs.							
Product	t Specification Model: MTF-TC			57AMSLN-V4	Rev. No.	Issued Date.	Page.
FIOUUCI	Specification	model.	///11-102	7 ANISLIN-V4	A	Mar.20, 08	29/32
			2		it covering gla d) to keep app	from external ss (acrylic board or propriate space	
				damage to p	e change. Con polarizer or ele fter fading cor	on at sudden densation makes ectrical contacted ndensation, smear	
				affected wh possibly res ICs. To prev ICs, your de	en they are ex ulting in malfu ent such malfu sign and mou	r devices may be posed to light nctioning of the unctioning of the nting layout done sposed to light in	
	2		000		exposure caus t may not reco	ses degradation of over	
		22	2)	corrosion. I. When it is n turned off o changed by same patter brightness d	ot in use, the s r the pattern n a screen save n for a long pe	nust be frequently r. If it displays the eriod of time, icking may develop	5
	le le	60		circumstanc users assem disassemblir	es. If unqualifi ble the produ	ot function or its	

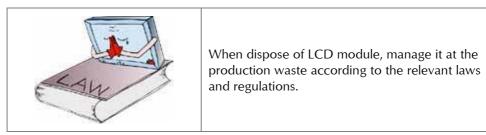
Messrs.					
Product Specification Mo	Model	el: MTF-T057AMSLN-V4 -	Rev. No.	Issued Date.	Page.
	model.		A	Mar.20, 08	30/32

11.4 Static electricity

Since a module is composed of electronic circuits, it is not strong to electrostatic discharge.



11.5 Storage



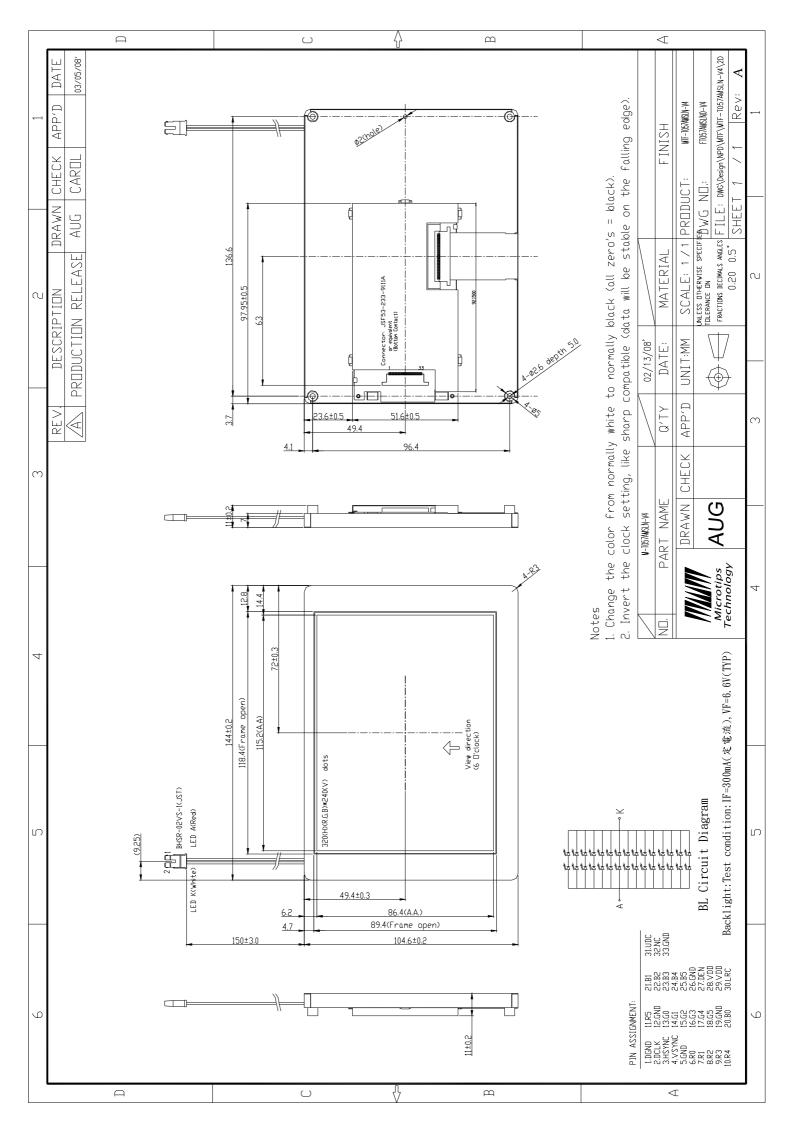
Store the products in a dark place at $+5 \sim +25$ degree C, low humidity (50%RH or less). DO NOT store the products in an atmosphere containing organic solvents or corrosive gases.

11.6 Cleaning

11.7 Waste

Messrs.					
Product Specification	Model	NATE TO 57 MASUNI V/A	Rev. No.	Issued Date.	Page.
	model.	MTT-1037 AMSLIN-V4	А	Mar.20, 08	31/32

12. WARRANTY


This product has been manufactured to your company's specifications as a part for use in your company's general electronic products. It is guaranteed to perform according to delivery specifications. For any other use apart from general electronic equipment, we cannot take responsibility if the product is used in medical devices, nuclear power control equipment, aerospace equipment, fire and security systems, or any other applications in which there is a direct risk to human life and where extremely high levels of reliability are required. If the product is to be used in any of the above applications, we will need to enter into a separate product liability agreement.

- 1 We cannot accept responsibility for any defect, which may arise from additional manufacturing of the product (including disassembly and reassembly), after product delivery.
- 2 We cannot accept responsibility for any defect, which may arise after the application of strong external force to the product.
- 3 We cannot accept responsibility for any defect, which may arise due to the application of static electricity after the product has passed your company's acceptance inspection procedures.
- 4 We cannot accept responsibility for industrial property, which may arise through the use of your product, with exception to those issues relating directly to the structure or method of manufacturing of our product. Microtips-origin longer than one year from Microtips production.

13. **DIMENSIONAL OUTLINES**

See next page

