
# 1. Record of Revision

| Description                         | Date            |
|-------------------------------------|-----------------|
| Initial Release                     | 2015/10/28      |
| Change Surface Luminance page 12/23 | 2016/7/15       |
|                                     |                 |
|                                     |                 |
|                                     |                 |
|                                     |                 |
|                                     |                 |
|                                     |                 |
|                                     |                 |
|                                     |                 |
|                                     |                 |
|                                     |                 |
|                                     |                 |
|                                     |                 |
|                                     |                 |
|                                     |                 |
|                                     |                 |
|                                     |                 |
|                                     |                 |
|                                     |                 |
|                                     |                 |
|                                     |                 |
|                                     |                 |
|                                     | Initial Release |

## 2. General Description and Features

The 3.5 inch module named MTF35381B is a-Si TFT-LCD module. which is the type of transmissive. It is consisted of TFT-LCD Panel, one Driver IC, one FPC one cap touchpanel and one Back-Light unit. Features of this product are listed in the following table.

| NO   | Item                | Contents                  | Unit    |
|------|---------------------|---------------------------|---------|
| (1)  | Module Outline      | 98.24(H)*59.74(V)*3.32(T) | mm      |
| (2)  | LCD Active area     | 74.88(H)*49.92(V)         | mm      |
| (3)  | Dot Number          | 640*3(RGB)*960            | /       |
| (4)  | Pixel Size          | 0.078(H)*0.078(V)         | mm      |
| (5)  | LCD type            | TFT Transmissive          | /       |
| (6)  | Display Mode        | IPS,Normally Black        | /       |
| (7)  | Display Color       | 16.7M                     | /       |
| (8)  | Viewing direction   | Free                      | O'clock |
| (9)  | Backlight Type      | 6-chip LED                | /       |
| (10) | <b>Power Supply</b> | 3.3(TYP)                  | V       |
| (11) | Drive IC            | HX8394-F                  | /       |
| (12) | Interface(LCM)      | FPC 0. 4mm_Pitch 30pin    | /       |
| (13) | Interface type(LCM) | MIPI interface            | /       |
| (14) | Interface(CTP)      | FPC 0. 5mm_Pitch 10pin    | /       |
| (15) | Interface type(CTP) | IIC interface             | /       |

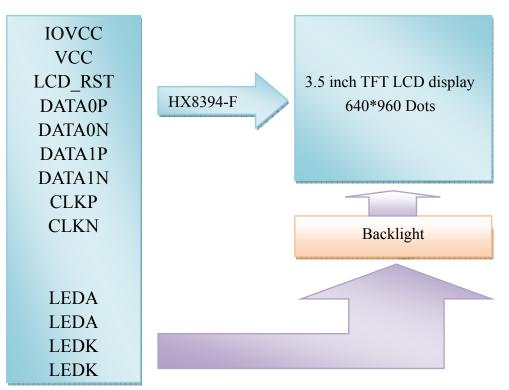


### 3. Mechanical Dimension

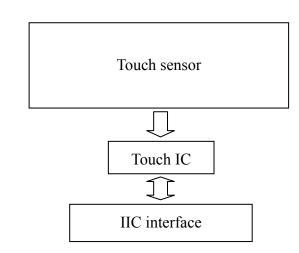
P a g e 4 o f 2 3

# 4. Interface Pin Connection

#### 4.1 LCM interface pin


| NO | Symbol      | Level | Description                            |
|----|-------------|-------|----------------------------------------|
| 1  | LCD_ID      | I     | Connected a 10K resistor to GND        |
| 2  | NC          | -     | Not Connect                            |
| 3  | LEDA        | Р     | Power supply for LEDA                  |
| 4  | LEDA        | Р     | Power supply for LEDA                  |
| 5  | NC          | -     | Not Connect                            |
| 6  | LEDK        | Р     | Power supply for LEDK                  |
| 7  | LEDK        | Р     | Power supply for LEDK                  |
| 8  | NC          | -     | Not Connect                            |
| 9  | GND         | Р     | Ground                                 |
| 10 | GND         | Р     | Ground                                 |
| 11 | CLKN        | Ι     | DSI Host                               |
| 12 | CLKP        | Ι     | DSI Host                               |
| 13 | GND         | Р     | Ground                                 |
| 14 | DATAON      | Ι     | DSI Host                               |
| 15 | DATA0P      | Ι     | DSI Host                               |
| 16 | GND         | Р     | Ground                                 |
| 17 | DATA1N      | ∡ I   | DSI Host                               |
| 18 | DATA1P      | Ι     | DSI Host                               |
| 19 | GND         | P     | Ground                                 |
| 20 | GND         | Р     | Ground                                 |
| 21 | ТЕ          | Ι     | Tearing Effect pin.                    |
| 22 | GND         | Р     | Ground                                 |
| 23 | GND         | Р     | Ground                                 |
| 24 | LCD_RST     | Ι     | Reset pin                              |
| 25 | NC          | -     | Not Connect                            |
| 26 | VCC(5.7V)   | Р     | Input voltage(5.7V)                    |
| 27 | VCC(5.7V)   | Р     | Input voltage(5.7V)                    |
| 28 | NC          | -     | Not Connect                            |
| 29 | IOVCC(1.8V) | Р     | Power supply for the logic power(1.8V) |
| 30 | IOVCC(1.8V) | Р     | Power supply for the logic power(1.8V) |

### 4.2 CTP interface pin


| NO | Symbol    | Level | Description                |
|----|-----------|-------|----------------------------|
| 1  | VDD(2.8V) | Р     | CTP power supply           |
| 2  | SCL       | I/O   | I2C:Clock input            |
| 3  | SDA       | I/O   | I2C: Data input and output |
| 4  | INT       | I/O   | I2C: Interrupt pin         |
| 5  | RST       | I/O   | I2C: Reset pin             |
| 6  | GND       | Р     | CTP Ground                 |
| 7  | GND       | Р     | CTP Ground                 |
| 8  | GND       | Р     | CTP Ground                 |
| 9  | GND       | Р     | CTP Ground                 |
| 10 | GND       | Р     | CTP Ground                 |

## 5. Block Diagram

5.1 LCM



5.2 CTP



## 6. Maximum Rating

| Item                  | Symbol | Rating    | Unit |
|-----------------------|--------|-----------|------|
| Operating temperature | Тор    | -20 to 70 | °C   |
| Storage temperature   | Tst    | -30 to 80 | °C   |
| Power supply for LCM  | VCC    | 4.3 ~ 6.5 | V    |
| Power supply for CTP  | VDD    | -0.3~4.2  | V    |

#### NOTE:

If the module was used these absolute maximum ratings as above, it may be damaged permanently. Using the module within the following electrical characteristic conditions are also exceeded, the module will malfunction and cause poor reliability. VCC>GND must be maintained.

### 7. Electrical Characteristics

|                        | Shoo               |       |                                          |          |                     |                         |  |  |  |
|------------------------|--------------------|-------|------------------------------------------|----------|---------------------|-------------------------|--|--|--|
| Parameter              | Symbol             |       | Spec.                                    | Unit     | Note                |                         |  |  |  |
| Falameter              | Symbol             | Min.  | Min. Typ.                                |          | onit                |                         |  |  |  |
| Power Supply Voltage 1 | VDD1~ VSSD         | -0.3  | -                                        | +3.6     | V                   | Note <sup>(1),(2)</sup> |  |  |  |
| Power Supply Voltage 2 | VDD3 ~ VSSA        | -0.3  | -                                        | +3.6     | V С                 | Note <sup>(1) (4)</sup> |  |  |  |
| Power Supply Voltage 3 | HS_VCC ~<br>HS_VSS | -0.3  | -                                        | +3.6     | ٧                   | Note <sup>(1) (5)</sup> |  |  |  |
| Power Supply Voltage 4 | VSP ~ VSSA         | -0.3  | ~ (                                      | +6.6     | X                   | Note <sup>(6)</sup>     |  |  |  |
| Power Supply Voltage 5 | VSSA ~ VSN         | -6.6  | 1                                        | 0        | V                   | Note <sup>(/)</sup>     |  |  |  |
| Power Supply Voltage 6 | VGH ~ VSSA         | -0.3  | $\mathcal{O}_{\mathcal{O}}(\mathcal{O})$ | +19.6    | 4                   | Note <sup>(8)</sup>     |  |  |  |
| Power Supply Voltage 7 | VSSA ~ VGL         | -16   |                                          | 0        | $\langle v \rangle$ | Note <sup>(9)</sup>     |  |  |  |
| Operating Temperature  | Topr               | -40 🔪 | $\langle \rangle$                        | +85      | C₀C                 | Note <sup>(10)</sup>    |  |  |  |
| Storage Temperature    | Tstg               | -55   | >-                                       | +110     | >°C                 | Note <sup>(11)</sup>    |  |  |  |
| Input Voltage          | V <sub>IN</sub>    | -0.3  | $\rightarrow - \bigcirc$                 | VDD1+0.3 | V                   | Note <sup>(12)</sup>    |  |  |  |
| HS Input Voltage       | V <sub>HSIN</sub>  | -0.3  | -(C                                      | +2       | V                   | Note <sup>(13)</sup>    |  |  |  |

Note: (1) VDD1, VSSD must be maintained.

(2) To make sure VDD1 ≥ VSSD.

(4) To make sure VDD3≥ VSSA.

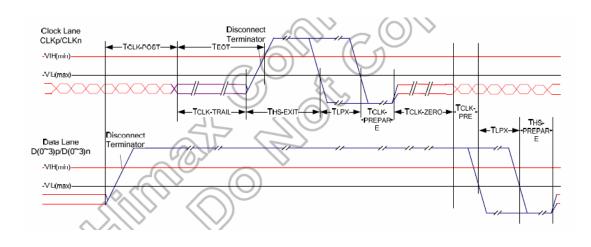
(5) To make sure HS\_VCC  $\ge$  HS\_VSS. (6) To make sure VSP  $\ge$  VSSA.

(7) To make sure VSSA ≥ VSN

(8) To make sure VGH ≥ VSSA

(9) To make sure VSSA  $\ge$  VGL, VGH +|VGL| < 32V (10) For die and wafer products, specified up to +85 $^{\circ}$ C

(11) This temperature specifications apply to the TCP package.

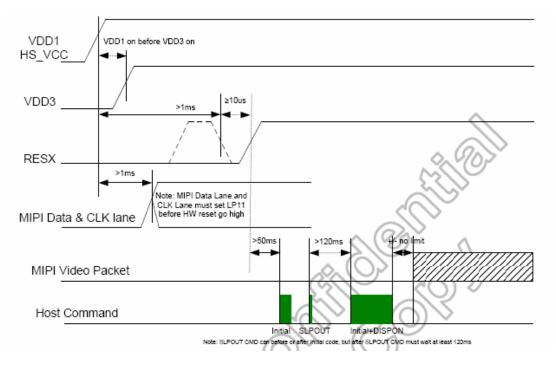

(12) This specifications include input signals but without following: CP, CN, D0P, D0N, D1P, D1N, D2P, D2N, D3P, D3N.

(13) This specifications include following signals: CP, CN, D0P, D0N, D1P, D1N, D2P, D2N, D3P, D3N.

| Item          | syb             | Min   | Тур  | Max | Unit | Condition     |
|---------------|-----------------|-------|------|-----|------|---------------|
| Voltage       | Vf              | -     | 19.2 | -   | V    | -             |
| current       | I <sub>BL</sub> | -     | 20   | -   | mA   | -             |
| Power         | PWF             | -     | 384  | -   | mW   | -             |
| Consumption   |                 |       |      |     |      |               |
| LED life-span | -               | 10000 |      | -   | Hrs  | 50% luminance |
|               |                 |       |      |     |      | from initial  |

# 8. Backlight Characteristics

# 9. Timing Characteristics




| Parameter                                         | Description                                                                                                                                   | Min.      | Тур.             | Max.        | Unit |
|---------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|-----------|------------------|-------------|------|
| T <sub>HS-PREPARE</sub>                           | Time that the transmitter drives the Data<br>Lane LP-00 Line state immediately<br>before the HS-0 Line state starting the<br>HS transmission. | 40+4*UI   | -                | 85+6*UI     | ns   |
| T <sub>HS-PREPARE</sub> +<br>T <sub>HS-ZERO</sub> | THS-PREPARE + time that the<br>transmitter drives the HS-0 state prior to<br>transmitting the Sync sequence.                                  | 145+10*UI | -                |             | ns   |
| Т <sub>ЕОТ</sub>                                  | Transmitted time interval from the start of<br>THS-TRAIL or TCLK-TRAIL, to the start<br>of the LP-11 state following a HS burst.              | -         | E.               | 105ns+12*UI | ns   |
| T <sub>HS-TRAIL</sub>                             | Time that the transmitter drives the<br>flipped differential state after last payload<br>data bit of a HS transmission burst.                 | 60ns+4*UI | $\mathbb{S}^{-}$ | -           | ns   |
| Т <sub>НS-EXIT</sub>                              | Time that the transmitter drives LP-11 following a HS burst.                                                                                  | P<br>P    | 1                | <u>_</u>    | ns   |

**Global Operation Timing Parameters for Clock Lane** 

| Parameter                                          | Description                                                                                                                                       | Min.     | Тур. | Max. | Unit |
|----------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|----------|------|------|------|
| T <sub>CLK-POST</sub>                              | Time that the transmitter continues to<br>send HS clock after the last associated<br>Data Lane has transitioned to LP Mode.                       | 60+52*UI | -    | -    | ns   |
| T <sub>CLK-TRAIL</sub>                             | Time that the transmitter drives the<br>flipped differential state after last payload<br>data bit of a HS transmission burst.                     | 60       | -    | -    | ns   |
| T <sub>CLK-PREPARE</sub>                           | Time that the HS clock shall be driven by<br>the transmitter prior to any associated<br>Data Lane beginning the transition from<br>LP to HS mode. | 38       | -    | 95   | ns   |
| T <sub>CLK-PREPARE+</sub><br>T <sub>CLK-ZERO</sub> | TCLK-PREPARE + time that the<br>transmitter drives the HS-0 state prior to<br>starting the Clock.                                                 | 300      | -    | -    | ns   |
| T <sub>CLK-PRE</sub>                               | Time that the HS clock shall be driven by<br>the transmitter prior to any associated<br>Data Lane beginning the transition from<br>LP to HS mode. | 8*UI     | -    | -    | ns   |

#### **Power ON sequence**



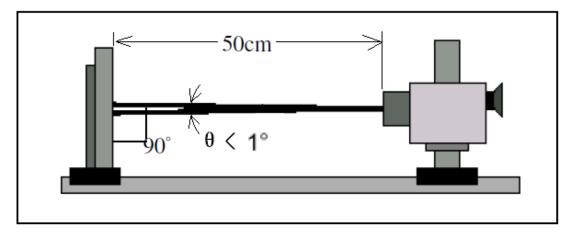


## 10. DC characteristics

| Parameter                                                                       | Symbol Test condition |                                                    | Spec.                |                         | Unit                 | Note   |      |
|---------------------------------------------------------------------------------|-----------------------|----------------------------------------------------|----------------------|-------------------------|----------------------|--------|------|
| Parameter                                                                       | Symbol                | Test condition                                     | Min.                 | Ťyp.                    | Max.                 | Unit   | Note |
| Input high voltage                                                              | Vih                   | VDD1= 1.65 ~ 3.6V                                  | 0.7 V <sub>DD1</sub> | -                       | VDD1                 | V      | -    |
| Input low voltage                                                               | VIL                   | VDD3= 2.5 ~ 3.6V                                   | 0                    | -                       | 0.3 V <sub>DD1</sub> | V      | -    |
| VPP                                                                             | Vih<br>Vil            | VPP                                                | 8.0                  | 8.25                    | 8.5                  | V<br>V | (1)  |
| Output high voltage<br>(SDO, CABC_PWM_OUT)                                      | V <sub>OH1</sub>      | I <sub>OH</sub> = -1.0 mA                          | 0.8 V <sub>DD1</sub> | -                       | VDD1                 | v      | -    |
| Output low voltage<br>(SDO, CABC_PWM_OUT)                                       | V <sub>OL1</sub>      | VDD1= 1.65 ~ 3.6V<br>I <sub>OL</sub> = 1.0 mA      | 0                    | -                       | 0.2 V <sub>DD1</sub> | V      | -    |
|                                                                                 | Цн                    | VSYNC, HSYNC                                       | -                    |                         | $\sqrt{10}$          | ∕ uA   | -    |
| Logic High level input current                                                  |                       | RESX, DCX, CSX, SCL                                | -                    | -2                      | $\sim \sim$          |        | -    |
| Logic High level liput current                                                  | Іінд                  | DB[23:0], SDI, DCX                                 | -                    | ~                       | $\sim$               | uA     | -    |
|                                                                                 | IIHD                  | DB[23:0]                                           | -                    | $\langle \rangle$       | $\searrow_1$         |        |      |
|                                                                                 | IIL                   | VSYNC, HSYNC                                       | -1                   | $\langle \cdot \rangle$ |                      | uA     | -    |
| Logic Low level input current                                                   |                       | RESX, DCX, CSX, SCL                                | -1                   | SN                      | -                    |        | -    |
| Logic Low level input current                                                   | 1                     | DB[23:0], SDI, DCX                                 | $\sim 10$            | <i>S</i> )-             | ~                    | uA     |      |
|                                                                                 | I <sub>ILD</sub>      | DB[23:0]                                           |                      |                         | ~                    |        | -    |
| Current consumption<br>standby mode (VDD3-VSSA)                                 | IST(VDD)              | <u>A</u>                                           | Q                    | (                       | 14                   | μA     | -    |
| Current consumption<br>standby mode<br>( VDD1– VSSD)                            | I <sub>ST(VDD1)</sub> | VDD3/HS_VCC=2.8V,<br>VDD1=1.8V                     | D. <                 | $\bigcirc$              | 58                   | μΑ     | -    |
| Current consumption<br>standby mode which include<br>HS_VCC<br>( HS_VCC-HS_VSS) | I <sub>ST(VDD1)</sub> | T <sub>A</sub> =25°C<br>(DSI Ultra Low Power mode) | $\bigcirc$           | )                       | 50                   | μA     | -    |
| Oscillator tolerance                                                            | ∆OSC                  | T <sub>A</sub> =25 ℃                               | J -5                 | -                       | 5                    | %      | -    |

(VDD3=2.5  $\sim$  3.6V, VDD1=1.65 $\sim$ 3.6V, T\_A=-40  $\sim$  85 °C)

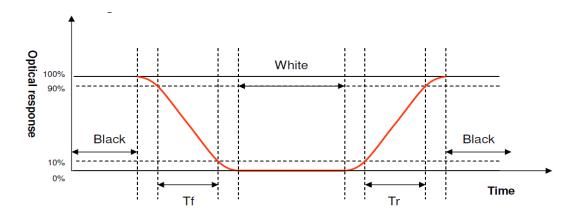
Note: (1) The VPP pin is open on normal mode and in used while OTP programming condition.


## **11. Electro-Optical Characteristics**

| Item                    | Symbol | Condition               | Min | Тур  | Max | Unit | Note |
|-------------------------|--------|-------------------------|-----|------|-----|------|------|
| Transmission (with pol) | Т      |                         | -   | 4.1  | -   | %    |      |
| Response time           | Tr     | <i>θ</i> =0°            | -   | 15   | -   | ms   | 4    |
|                         | Tf     | Ø <b>=0</b> °           | -   | 20   | -   | ms   |      |
| Uniformity              | δ      | Ta=25℃                  | -   | TBD  | -   | %    | 7    |
| (Five point)            | WHITE  |                         |     |      |     |      |      |
| Contrast ratio          | Cr     |                         | -   | 1200 | -   | -    | 3,5  |
| Surface Luminance       | Lv     |                         | -   | 420  | -   | -    | 3,7  |
|                         |        | Ø = 90°                 | -   | (85) | -   | deg  | 6    |
| Viewing angle range     | θ      | Ø = 270°                | -   | (85) | -   | deg  |      |
|                         |        | $\emptyset = 0^{\circ}$ | -   | (85) | -   | deg  |      |
|                         |        | Ø = 180°                | -   | (85) | -   | deg  |      |
| White                   | X      | $\theta = \Phi =$       | TBD | TBD  | TBD | _    | 7    |

|              |       | Y | 0°                | TBD | TBD | TBD |   |   |
|--------------|-------|---|-------------------|-----|-----|-----|---|---|
| Color filter | Red   | Х | $\theta = \Phi =$ | TBD | TBD | TBD |   |   |
| chromaticity |       | Y | 0°                | TBD | TBD | TBD |   |   |
| (x, y)       | Green | Х | $\theta = \Phi =$ | TBD | TBD | TBD |   |   |
|              |       | Y | 0°                | TBD | TBD | TBD |   |   |
|              | Blue  | Х | $\theta = \Phi =$ | TBD | TBD | TBD |   |   |
|              |       | Y | 0°                | TBD | TBD | TBD |   |   |
| NTSC         |       | S | -                 | -   | 60  | -   | % |   |
| Flick        |       | - | -                 | -   | -   | TBD | _ | 8 |

Note 1: To be measured in the dark room with backlight unit.


Note 2: To be measured at the center area of panel with a viewing cone of 1 by Topcon luminance meter BM-7A, after 10 minutes operation (module).



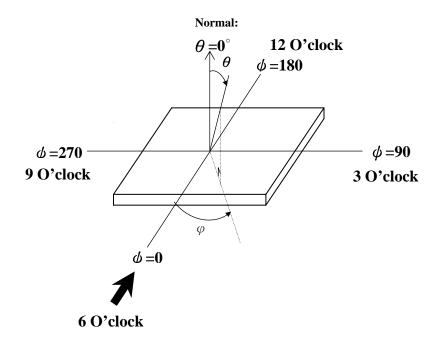
Note 3: Definition of response time:

The output signals of photo detector are measured when the input signals are changed from "black" to "white" (rising time) and from "white" to "black" (falling time), respectively. The response time is defined as the time interval between the 10% and 90% of amplitudes.

Refer to figure as below.

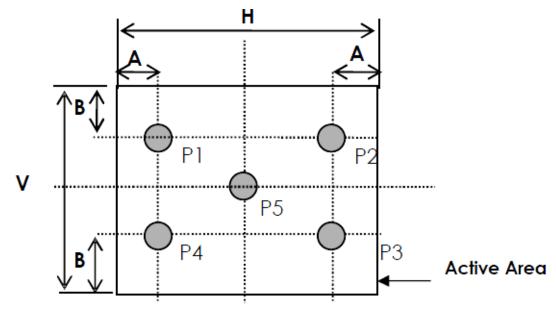


Note 4. Definition of contrast ratio: Contrast ratio is calculated with the following formula:


Photo detector output when LCD is at "White" state

Contrast ratio (CR) =

Photo detector output when LCD is at "Black" state


Note 5. Definition of viewing angle

Viewing angle is the angle at which the contrast ratio is greater than 2, for TFT module the contrast ratio is greater than 10. The angles are determined for the horizontal or x axis and the vertical or y axis with respect to the z axis which is normal to the LCD surface.



# Note 6. Surface luminance is the LCD surface from the surface with all pixels displaying white. Refer to figure as below.

Measuring method for Contrast ratio, surface luminance, Luminance uniformity, CIE (x, y) chromaticity



A:5 mm B:5 mm H,V: Active Area

Light spot size Æ=7mm, 500mm distance from the LCD surface to detector lens measurement instrument is TOPCON's luminance meter BM-7A

**Uniformity definition= [min of 5point/max of 5points]x100%** 

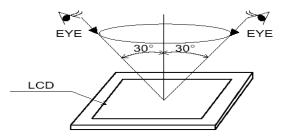
Lv = Average Surface Luminance with all white pixels (P1, P2, P 3, P4, P5)

# 12. Reliability Test

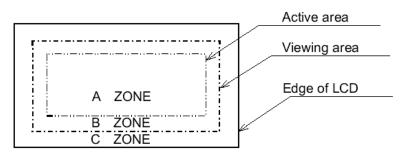
This standard reliability test is done only for the first lot of MP products. Custom er and supplier must hold a discussion if other reliability test is requested by customer.

| NO. | Test Item                             | Description                                                                                                                                                                                                                            | Test Condition                                                         |  |
|-----|---------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|--|
| 1   | High temperature storage              | 80℃, 240hrs                                                                                                                                                                                                                            |                                                                        |  |
| 2   | Low temperature<br>storage            | Endurance test applying the low storage temperature for a long time                                                                                                                                                                    | -30℃,240 hrs                                                           |  |
| 3   | High temperature operation            | Endurance test applying the electric stress<br>under high temperature for a long time                                                                                                                                                  | 70℃,240 hrs                                                            |  |
| 4   | Low temperature operation             | Endurance test applying the electric stress<br>under low temperature for a long time                                                                                                                                                   | -20℃,240 hrs                                                           |  |
| 5   | High temperature<br>/humidity storage | Endurance test applying the high temperature and high humidity storage for a long time                                                                                                                                                 | 60℃,90%RH<br>240 hrs                                                   |  |
| 7   | Temperature Cycl<br>e/humidity storag | Endurance test applying the low<br>and high temperature cycle<br>$-30^{\circ}C \leftarrow \rightarrow 25^{\circ}C \leftarrow \rightarrow 80^{\circ}C$<br>$30min \leftarrow \rightarrow 5min \leftarrow \rightarrow 30min$<br>one cycle | -30℃/80℃,<br>10 cyles                                                  |  |
| 8   | ESD Test<br>/Non-operating            | 150pF,330ohm                                                                                                                                                                                                                           | Voltage: ± 8KV(c<br>ontact<br>discharge);<br>±15 KV(air discha<br>rge) |  |

## 13. Quality Assurance


The customer should check and accept the products of XINLI within one month after reception. This standard for Quality Assurance should affirm the quality of LCD products to supply to purchaser by XINLI Company Limited.

**1. Appearance Inspection** 


(1) Ambient illumination condition need 750lux for visual cosmetic inspection (300lux for Electrical characteristic functional inspection.)

(2) The distance from eyes to LCD must be 30cm.

(3) Viewing direction must be within 30 degrees to vertical line of LCD center.



#### 2. Definition of A zone, B zone and C zone



B ZONE: A ZONE and 1/2 BM

#### **3.** Appearance Criterion

| ltem                   | Criterion                                       |                |                   |  |  |  |  |
|------------------------|-------------------------------------------------|----------------|-------------------|--|--|--|--|
| LCD black spots, white | Size                                            | Acceptable QTY | Remark            |  |  |  |  |
| spots, color           | $\varphi \leq 1/2 \text{ Dot}$                  | Ignore         | No more           |  |  |  |  |
| spots                  | $1/2 \text{ Dot } < \varphi \leq 1 \text{ Dot}$ | 3              | than two<br>spots |  |  |  |  |

|                                                           | 1 Dot <φ                                              |                                              |                           | 0               |          | ithin<br>5mm |   |
|-----------------------------------------------------------|-------------------------------------------------------|----------------------------------------------|---------------------------|-----------------|----------|--------------|---|
| contamination<br>, scratches<br>(display/no<br>n-display) | 1 Round typ<br>$\varphi = (x+y)/2$<br>X    <br>$\chi$ | e: As follo<br>$\frac{\downarrow}{\uparrow}$ | wing                      | drawing         |          |              |   |
|                                                           | Size                                                  |                                              | Acceptable QTY<br>A.A V.A |                 |          | Remark       |   |
|                                                           | φ≦0.20                                                | Ig                                           | nore                      | Ignore          | No more  |              |   |
|                                                           | $0.20 \le \phi \le 0$                                 |                                              | 2                         | 3               | than two |              |   |
|                                                           | 0.25 ≦φ≦                                              |                                              | 1                         | 2               | spots    |              |   |
|                                                           | 0.30<φ                                                |                                              |                           | 0               | 0        | within       |   |
|                                                           | Total                                                 |                                              |                           | 3               | 5        | 5mm          |   |
|                                                           | 2 Line Type                                           | (As follow<br>→i <sup>¬</sup> -<br>L         | wing (<br>↓<br>-∕∎        | drawing)<br>— W |          |              |   |
|                                                           | Legth                                                 | Width                                        | n                         | Acc ptab        | e QTY    | Remark       | ] |
|                                                           |                                                       |                                              |                           | A.A             | V.A      |              |   |
|                                                           |                                                       | W≦0.0                                        | 03                        | Ignore          | Ignore   |              |   |
|                                                           | L≦2.5                                                 | 0.03<                                        | <                         | 2               | 3        | No           |   |
|                                                           |                                                       | $W \leq 0.0$                                 | 05                        |                 |          | more than    |   |

|                      |                                                |             | 0.0           |           |             |             | · 1               |     |  |
|----------------------|------------------------------------------------|-------------|---------------|-----------|-------------|-------------|-------------------|-----|--|
|                      |                                                | L≦1.5       | 0.0           | 95<       |             |             | two lines         |     |  |
|                      |                                                |             | $W \leq 0.08$ |           |             |             | within 5mm        |     |  |
|                      |                                                |             | 0.08          | < W       | 0           | 0           |                   |     |  |
| Polarizer<br>bubbles | If                                             | f bubbles a | re visił      | ole, judg | ge using b  | lack spot s | specifications, r | not |  |
|                      | e                                              | asy to find | , must o      | check in  | n specify d | irection.   |                   |     |  |
|                      |                                                | Size        |               |           | Acce        | eptable QT  | Ϋ́                |     |  |
|                      |                                                | 5120        |               |           | A.A         |             | V.A               |     |  |
|                      |                                                | φ≦0.30      |               |           | Ignore      |             | Ignore            |     |  |
|                      | (                                              | 0.30<φ≦(    | 0.60          |           | 2           |             | 3                 |     |  |
|                      |                                                | Total       |               |           | 0           |             | 0                 |     |  |
| Chipped              | S                                              | ymbols:     |               |           |             |             |                   |     |  |
| glass                | a: Chip length b: Chip width c: Chip thickness |             |               |           |             |             |                   |     |  |
|                      | t:                                             | Glass thic  | kness         |           |             |             |                   |     |  |
|                      | 1 ITO electrode                                |             |               |           |             |             |                   |     |  |
|                      | a<=                                            |             |               |           |             |             | 1                 |     |  |
|                      | b<=0.5mm<br>c<=3.0mm                           |             |               |           |             |             |                   |     |  |
|                      |                                                |             |               |           |             |             |                   |     |  |
|                      |                                                |             |               |           |             |             |                   |     |  |
|                      |                                                |             |               |           |             |             |                   |     |  |
|                      |                                                |             |               |           |             |             |                   |     |  |
|                      | 2 General ,corner portion                      |             |               |           |             |             |                   |     |  |

|                           | a<= t<br>b<=1.0mm<br>c<=5.0mm<br>*Effective width of seal area shall be more than 0.3mm.                                                                                                                                                                |
|---------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Cracked<br>glass          | The LCD with extensive crack is not acceptable.                                                                                                                                                                                                         |
| Backlight<br>elements     | <ol> <li>1 Illumination source flickers when lit.</li> <li>2 Spots or scratches that appear when lit must be judged using<br/>LCD spot, lines and contamination standards.</li> <li>3 Backlight doesn't light or color is wrong</li> </ol>              |
| Soldering                 | <ol> <li>No unmelted solder paste may be present on the PCB.</li> <li>No cold solder joints, missing solder connections, oxidation or icicle.</li> <li>No residue or solder balls on PCB.</li> <li>4 No short circuits in components on PCB.</li> </ol> |
| General<br>appearanc<br>e | 1 No oxidation, contamination, curves or, bends on interface<br>pin (OLB) of TCP.                                                                                                                                                                       |

| 2 No cracks on interface pin(OLB) of TCP                        |  |
|-----------------------------------------------------------------|--|
| 3 NO contamination, solder residue or solder balls on product.  |  |
| 4 The IC on the TCP may not be damaged, circuits.               |  |
| 5 The residual rosin or tin oil of soldering (component or chip |  |
| component) is not burned into brown or black color.             |  |
| 6 Sealant on top of the ITO circuit has not hardened            |  |
| 7 Pin type must match type in specification sheet.              |  |
| 8 LCD pin loose or missing pins.                                |  |
| 9 Product packaging must the same as specified on packaging     |  |
| specification sheet.                                            |  |
| 10 Product dimension and structure must conform to product      |  |
| specification sheet.                                            |  |

# 14. Precautions for Operation and Storage

#### 1. Precautions for Operation

(1)Since LCD panel made of glass, in order to prevent from glass broken or color tone change, please do not apply any mechanical shock or impact or excessive force to it when installing the LCD module.

(2)If LCD panel is broken and liquid crystal substance leaks out and contact your skin or clothes, please immediately wash it off by using soap and water.

(3)The polarizer on the LCD surface is soft and easily scratched.Please be careful when handling.

(4)If LCD surface becomes contaminated, please wipe it off gently by using mois ten soft cloth with normal hexane, do not use acetone, ketone, ethanol, alcohol or water. If there is saliva or water on the LCD surface, please wipe it off immediate ly.

(5)When handing LCD module, please be sure that the body and the tools are properly grounded. And do not touch I/F pins with bare hands or contaminate I/F pins.

(6)Do not attempt to disassemble or process the LCD module.

(7)LCD module should be used under recommended operating conditions shown in chapter 6 and 7.

(8)Response time will be extremely slower at lower temperature than at specified temperature and LCD will show different color when at higher temperature.The phenomenon will disappear when returning to specified condition.

(9)Foggy dew,moisture condensation or water droplets deposited on surface and contact terminals will cause polarizer stain or damage,the deteriorated display quality and electrochemical reaction then leads to the shorter life time and permanent damage to the module probably.Please pay attention to the enviro nmental temperature and humidity.

#### 1. Precautions for Storage

(1)Please store LCD module in a dark place, avoid exposure to sunlight, the light of fluorescent lamp or any ultraviolet ray.

(2)Keep the environment temperature at between 10 °C and 35 °C and at normal humidity. Avoid high temperature, high humidity or temperature below 0 °C.

(3)That keeps the LCD modules stored in the container shipped from supplier be fore using them is recommended.

(4)Do not leave any article on the LCD module surface for an extended period of time.

#### 2. Warranty period

Warrants for a period of 12 Months from the shipping date when stored or used under normal condition.

# 15. Package Specification

TBD