MOTOROLA SEMICONDUCTOR TECHNICAL DATA ## Designer's Data Sheet ## **Power Field Effect Transistor** ## P-Channel Enhancement-Mode Silicon Gate This TMOS Power FET is designed for medium voltage, high speed power switching applications such as switching regulators, converters, solenoid and relay drivers. - Silicon Gate for Fast Switching Speeds Switching Times Specified at 100°C - Designer's Data IDSS, VDS(on), VGS(th) and SOA Specified at Elevated Temperature - Rugged SOA is Power Dissipation Limited - Source-to-Drain Diode Characterized for Use With Inductive Loads TMOS POWER FET 7 AMPERES RDS(on) = 0.6 OHM 60 VOLTS ### **MAXIMUM RATINGS** | Rating | Symbol | Value | Unit | |---|-------------------------------------|--------------|---------------| | Drain-Source Voltae | VDSS | 60 | Vdc | | Drain-Gate Voltage (RGS = 1 MΩ) | VDGR | 60 | Vdc | | Gate-Source Voltage — Continuous
— Non-repetitive (t _p ≤ 50 μs) | V _{GS}
V _{GSM} | ± 20
± 40 | Vdc
Vpk | | Drain Current
Continuous
Pulsed | I _D | 7
21 | Adc | | Total Power Dissipation @ T _C = 25°C
Derate above 25°C | PD | 75
0.6 | Watts
W/°C | | Operating and Storage Temperature Range | T _J , T _{stg} | -65 to 150 | °C | ## THERMAL CHARACTERISTICS | Thermal Resistance | | | | °C/W | |--|--------|------------------|------|------| | Junction to Case | | R _{ØJC} | 1.67 | | | Junction to Ambient | TO-220 | R _{OJA} | 62.5 | | | Maximum Lead Temperature for Soldering
Purposes, 1/8" from case for 5 seconds | | TL | 260 | °C | Designer's Data for "Worst Case" Conditions — The Designer's Data Sheet permits the design of most circuits entirely from the information presented. SOA Limit curves — representing boundaries on device characteristics — are given to facilitate "worst case" design. ## MTP7P06 ## | Charac | teristic | Symbol | Min | Мах | Unit | |--|---|----------------------|------------------------|--------------|----------| | FF CHARACTERISTICS | = | | | | | | Drain-Source Breakdown Voltage
(VGS = 0, ID = 0.25 mA) | | V _{(BR)DSS} | 60 | _ | Vdc | | Zero Gate Voltage Drain Current (VDS = Rated VDSS, VGS = 0) (VDS = Rated VDSS, VGS = 0, TJ = 125°C) | | IDSS | | 10
100 | μAdc | | Gate-Body Leakage Current, Forward (VGSF = 20 Vdc, VDS = 0) | | IGSSF | _ | 100 | nAdc | | Gate-Body Leakage Current, Reverse (VGSR = 20 Vdc, VDS = 0) | | IGSSR | _ | 100 | nAdc | | N CHARACTERISTICS* | | | | | | | Gate Threshold Voltage ($V_{DS} = V_{GS}$, $I_{D} = 1$ mA)
$T_{J} = 100^{\circ}C$ | | V _{GS(th)} | 2
1.5 | 4.5
4 | Vdc | | Static Drain-Source On-Resistance (VGS = 10 Vdc, ID = 3.5 Adc) | | R _{DS(on)} | - | 0.6 | Ohm | | Drain-Source On-Voltage ($V_{GS} = 10$ ($I_D = 7$ Adc) ($I_D = 3.5$ Adc, $T_J = 100^{\circ}$ C) | V) | V _{DS{on}} | _ | 4.2
4 | Vdc | | Forward Transconductance (V _{DS} = ' | 15 V, I _D = 3.5 A) | 9FS | 1.5 | _ | mhos | | YNAMIC CHARACTERISTICS | | | | | | | Input Capacitance | $(V_{DS} = 25 \text{ V}, V_{GS} = 0,$ | Ciss | _ | 700 | ρF | | Output Capacitance | f = 1 MHz) See Figure 11 | Coss | _ | 400 | | | Reverse Transfer Capacitance | | Crss | _ | 150 | | | WITCHING CHARACTERISTICS* (TJ = | = 100°C) | | | | | | Turn-On Delay Time | | td(on) | _ | 40 | пѕ | | Rise Time | (V _{DD} = 25 V, I _D = 0.5 Rated I _D
R _{gen} = 50 ohms)
See Figures 9, 13 and 14 | t _r | _ | 120 | | | Turn-Off Delay Time | | td(off) | _ | 80 | | | Fall Time | | tf | _ | 70 | | | Total Gate Charge | $(V_{DS} = 0.8 \text{ Rated } V_{DSS},$ | Qg | 12 (Typ) | 16 | nC | | Gate-Source Charge | ID = Rated ID, VGS = 10 V) See Figure 12 | Ogs | 7 (Typ) | | | | Gate-Drain Charge | | a_{gd} | 5 (Typ) | | | | OURCE DRAIN DIODE CHARACTERIS | TICS* | | | | | | Forward On-Voltage | (IS = Rated ID | V _{SD} | 1.8 (Typ) | 2.5 | Vdc | | Forward Turn-On Time | $V_{GS} = 0$ | ton | Limited | by stray ind | luctance | | Reverse Recovery Time | | t _{rr} | 325 (Typ) | _ | ns | | NTERNAL PACKAGE INDUCTANCE (T | 0-220) | | | | | | Internal Drain Inductance
(Measured from contact screw on tab to center of die)
(Measured from the drain lead 0.25" from package to center of die) | | L _d | 3.5 (Typ)
4.5 (Typ) | _ | nH | | Internal Source Inductance
(Measured from the source lead 0.25" from package to center of pad) | | L _S | 7.5 (Typ) | | | ^{*}Pulse Test* Pulse Width \leqslant 300 $\mu \rm{s}$, Duty Cycle \leqslant 2%. 3 ## TYPICAL ELECTRICAL CHARACTERISTICS Figure 1. On-Region Characteristics Figure 2. Gate-Threshold Voltage Variation With Temperature Figure 3. Transfer Characteristics Figure 4. Breakdown Voltage Variation With Temperature Figure 5. On-Resistance versus Drain Current Figure 6. On-Resistance Variation With Temperature Figure 7. Maximum Rated Forward Biased Safe Operating Area ### FORWARD BIASED SAFE OPERATING AREA The FBSOA curves define the maximum drain-tosource voltage and drain current that a device can safely handle when it is forward biased, or when it is on, or being turned on. Because these curves include the limitations of simultaneous high voltage and high current, up to the rating of the device, they are especially useful to designers of linear systems. The curves are based on a case temperature of 25°C and a maximum junction temperature of 150°C. Limitations for repetitive pulses at various case temperatures can be determined by using the thermal response curves. Motorola Application Note, AN569, "Transient Thermal Resistance-General Data and Its Use" provides detailed instructions. ## **SWITCHING SAFE OPERATING AREA** The switching safe operating area (SOA) of Figure 8 is the boundary that the load line may traverse without incurring damage to the MOSFET. The fundamental limits are the peak current, IDM and the breakdown voltage, V(BR)DSS. The switching SOA shown in Figure 8 is applicable for both turn-on and turn-off of the devices for switching times less than one microsecond. Figure 8. Maximum Rated Switching Safe Operating Area The power averaged over a complete switching cycle must be less than: Figure 9. Resistive Switching Time Variation versus Gate Resistance Figure 10. Thermal Response ## **TYPICAL CHARACTERISTICS** | T_J = 25°C | T_D = 7 A T Figure 12. Capacitance Variation Figure 13. Gate Charge versus Gate-To-Source Voltage ## **RESISTIVE SWITCHING** Figure 14. Switching Test Circuit Figure 15. Switching Waveforms