Designer's™ Data Sheet ## TMOS E-FET™ **Power Field Effect Transistor** ### N-Channel Enhancement-Mode Silicon Gate This high voltage MOSFET uses an advanced termination scheme to provide enhanced voltage-blocking capability without degrading performance over time. In addition, this advanced TMOS E-FET is designed to withstand high energy in the avalanche and commutation modes. Designed for high voltage, high speed switching applications in power supplies, converters and PWM motor controls, these devices are particularly well suited for bridge circuits where diode speed and commutating safe operating areas are critical and offer additional safety margin against unexpected voltage transients. - Robust High Voltage Termination - Avalanche Energy Specified - Diode is Characterized for Use in Bridge Circuits - I_{DSS} and V_{DS(on)} Specified at Elevated Temperature #### ON Semiconductor® http://onsemi.com # TMOS POWER FET 16 AMPERES, 800 VOLTS $R_{DS(on)} = 0.50 \Omega$ TO-264 CASE 340G-02 STYLE 1 ## MAXIMUM RATINGS (T_C = 25°C unless otherwise noted) | Rating | Symbol | Value | Unit | |--|--------------------------------------|----------------|---------------| | Drain-to-Source Voltage | V _{DSS} | 800 | Vdc | | Drain-to-Gate Voltage (R _{GS} = 1.0 M Ω) | V_{DGR} | 800 | Vdc | | Gate-to-Source Voltage — Continuous
— Non-Repetitive (t _p ≤ 10 ms) | V _{GS}
V _{GSM} | ±20
±40 | Vdc
Vpk | | Drain Current — Continuous — Continuous @ $T_C = 100^{\circ}C$ — Single Pulse $(t_p \le 10 \ \mu s)$ | I _D
I _D | 16
11
55 | Adc
Apk | | Total Power Dissipation Derate above 25°C | P _D | 300
2.4 | Watts
W/°C | | Operating and Storage Temperature Range | T _J , T _{stg} | -55 to 150 | °C | | Single Pulse Drain–to–Source Avalanche Energy — Starting T_J = 25°C (V_{DD} = 100 Vdc, V_{GS} = 10 Vdc, Peak I_L = 16 Apk, L = 10 mH, R_G = 25 Ω) | E _{AS} | 1280 | mJ | | Thermal Resistance — Junction to Case — Junction to Ambient | R _{θJC}
R _{θJA} | 0.42
30 | °C/W | | Maximum Lead Temperature for Soldering Purposes, 1/8" from case for 10 seconds | TL | 260 | °C | Designer's Data for "Worst Case" Conditions — The Designer's Data Sheet permits the design of most circuits entirely from the information presented. SOA Limit curves — representing boundaries on device characteristics — are given to facilitate "worst case" design. Preferred devices are Motorola recommended choices for future use and best overall value. ### **ELECTRICAL CHARACTERISTICS** (T_J = 25°C unless otherwise noted) | Cha | Symbol | Min | Тур | Max | Unit | | |--|---|---------------------|------------|-------------|--------------|------| | OFF CHARACTERISTICS | | | | | | | | Drain-to-Source Breakdown Voltaç
(V _{GS} = 0 Vdc, I _D = 250 μAdc)
Temperature Coefficient (Positive | V _{(BR)DSS} | 800 |
570 | _ | Vdc
mV/°C | | | Zero Gate Voltage Drain Current (V _{DS} = 800 Vdc, V _{GS} = 0 Vdc) (V _{DS} = 800 Vdc, V _{GS} = 0 Vdc, T _J | I _{DSS} | _
_
_ | -
- | 10
100 | μAdc | | | Gate-Body Leakage Current (V _{GS} | I _{GSS} | _ | | 100 | nAdc | | | ON CHARACTERISTICS (1) | | .033 | | | | | | Gate Threshold Voltage | | V _{GS(th)} | | | | Vdc | | $(V_{DS} = V_{GS}, I_D = 250 \mu Adc)$
Temperature Coefficient (Negativ | · GS(III) | 2.0 | 3.0
9.0 | 4.0
— | mV/°C | | | Static Drain-to-Source On-Resista | R _{DS(on)} | 7- | 0.42 | 0.5 | Ohm | | | Drain-to-Source On-Voltage
($V_{GS} = 10 \text{ Vdc}, I_D = 16 \text{ Adc}$)
($V_{GS} = 10 \text{ Vdc}, I_D = 8.0 \text{ Adc}, T_J$ | V _{DS(on)} | _ | 7.3 | 9.4
8.4 | Vdc | | | Forward Transconductance (V _{DS} ≥ | Forward Transconductance (V _{DS} ≥ 15 Vdc, I _D = 8.0 Adc) | | | 15 | _ | mhos | | DYNAMIC CHARACTERISTICS | | | | 12 12 | • | I. | | Input Capacitance | | C _{iss} | | 7220 | 10110 | pF | | Output Capacitance | $(V_{DS} = 25 \text{ Vdc}, V_{GS} = 0 \text{ Vdc}, f = 1.0 \text{ MHz})$ | C _{oss} | 0, | 508 | 710 | | | Reverse Transfer Capacitance | 1 = 1.0 MH2) | C _{rss} | -11 | 65 | 130 | | | SWITCHING CHARACTERISTICS (| 2) | 5 - (1) | Q. | | | I. | | Turn-On Delay Time | | t _{d(on)} | O_ | 52 | 100 | ns | | Rise Time | $(V_{DD} = 400 \text{ Vdc}, I_D = 16 \text{ Adc},)$ | t _r | _ | 112 | 200 | | | Turn-Off Delay Time | $V_{GS} = 10 \text{ Vdc},$
$R_{G} = 4.7 \Omega)$ | t _{d(off)} | _ | 122 | 240 | | | Fall Time | | t _f | _ | 100 | 200 | | | Gate Charge | W 70 W | Q _T | _ | 146 | 200 | nC | | (See Figure 8) | $(V_{DS} = 400 \text{ Vdc}, I_{D} = 16 \text{ Ade}, V_{GS} = 10 \text{ Vdc})$ | Q ₁ | _ | 39 | _ | | | | | Q ₂ | _ | 48 | _ | | | | | Q_3 | _ | 53 | _ | | | SOURCE-DRAIN DIODE CHARACT | TERISTICS | | | | | l | | Forward On-Voltage | $(I_S = 16 \text{ Adc}, V_{GS} = 0 \text{ Vdc})$
$(I_S = 16 \text{ Adc}, V_{GS} = 0 \text{ Vdc}, T_J = 125^{\circ}\text{C})$ | V _{SD} | _ | 0.9
0.79 | 1.2 | Vdc | | Reverse Recovery Time | | t _{rr} | _ | 995 | _ | ns | | (See Figure 14) | (I _S = 16 Adc, V _{GS} = 0 Vdc, | ta | _ | 428 | _ | 1 | | | $dI_S/dt = 100 A/\mu s$) | t _b | _ | 567 | _ | | | Reverse Recovery Stored Charge | | Q _{RR} | _ | 20 | _ | μC | | INTERNAL PACKAGE INDUCTANC | E | | | • | | | | Internal Drain Inductance
(Measured from the drain lead 0. | L _D | _ | 4.5 | _ | nH | | | Internal Source Inductance
(Measured from the source lead | L _S | _ | 13 | _ | nH | | ⁽¹⁾ Pulse Test: Pulse Width ≤[300 μs, Duty Cycle ≤ 2%. (2) Switching characteristics are independent of operating junction temperature. #### TYPICAL ELECTRICAL CHARACTERISTICS Figure 1. On-Region Characteristics Figure 2. Transfer Characteristics Figure 3. On-Resistance versus Drain Current and Temperature Figure 4. On-Resistance versus Drain Current and Gate Voltage Figure 5. On–Resistance Variation with Temperature Figure 6. Drain-To-Source Leakage Current versus Voltage #### POWER MOSFET SWITCHING Switching behavior is most easily modeled and predicted by recognizing that the power MOSFET is charge controlled. The lengths of various switching intervals (Δt) are determined by how fast the FET input capacitance can be charged by current from the generator. The published capacitance data is difficult to use for calculating rise and fall because drain–gate capacitance varies greatly with applied voltage. Accordingly, gate charge data is used. In most cases, a satisfactory estimate of average input current ($I_{G(AV)}$) can be made from a rudimentary analysis of the drive circuit so that $$t = Q/I_{G(AV)}$$ During the rise and fall time interval when switching a resistive load, V_{GS} remains virtually constant at a level known as the plateau voltage, V_{SGP} . Therefore, rise and fall times may be approximated by the following: $$t_r = Q_2 \times R_G/(V_{GG} - V_{GSP})$$ $t_f = Q_2 \times R_G/V_{GSP}$ where V_{GG} = the gate drive voltage, which varies from zero to V_{GG} R_G = the gate drive resistance and Q2 and VGSP are read from the gate charge curve. During the turn-on and turn-off delay times, gate current is not constant. The simplest calculation uses appropriate values from the capacitance curves in a standard equation for voltage change in an RC network. The equations are: $$t_{d(on)} = R_G C_{iss} In [V_{GG}/(V_{GG} - V_{GSP})]$$ $t_{d(off)} = R_G C_{iss} In (V_{GG}/V_{GSP})$ GATE-TO-SOURCE OR DRAIN-TO-SOURCE VOLTAGE (VOLTS) Figure 7a. Capacitance Variation The capacitance (C_{iss}) is read from the capacitance curve at a voltage corresponding to the off–state condition when calculating $t_{d(on)}$ and is read at a voltage corresponding to the on–state when calculating $t_{d(off)}$. At high switching speeds, parasitic circuit elements complicate the analysis. The inductance of the MOSFET source lead, inside the package and in the circuit wiring which is common to both the drain and gate current paths, produces a voltage at the source which reduces the gate drive current. The voltage is determined by Ldi/dt, but since di/dt is a function of drain current, the mathematical solution is complex. The MOSFET output capacitance also complicates the mathematics. And finally, MOSFETs have finite internal gate resistance which effectively adds to the resistance of the driving source, but the internal resistance is difficult to measure and, consequently, is not specified. The resistive switching time variation versus gate resistance (Figure 9) shows how typical switching performance is affected by the parasitic circuit elements. If the parasitics were not present, the slope of the curves would maintain a value of unity regardless of the switching speed. The circuit used to obtain the data is constructed to minimize common inductance in the drain and gate circuit loops and is believed readily achievable with board mounted components. Most power electronic loads are inductive; the data in the figure is taken with a resistive load, which approximates an optimally snubbed inductive load. Power MOSFETs may be safely operated into an inductive load; however, snubbing reduces switching losses. Figure 7b. High Voltage Capacitance Variation Figure 8. Gate-to-Source and Drain-to-Source Voltage versus Total Charge Figure 9. Resistive Switching Time Variation versus Gate Resistance Figure 10. Diode Forward Voltage versus Current #### SAFE OPERATING AREA The Forward Biased Safe Operating Area curves define the maximum simultaneous drain–to–source voltage and drain current that a transistor can handle safely when it is forward biased. Curves are based upon maximum peak junction temperature and a case temperature ($T_{\rm C}$) of 25°C. Peak repetitive pulsed power limits are determined by using the thermal response data in conjunction with the procedures discussed in AN569, "Transient Thermal Resistance–General Data and Its Use." Switching between the off-state and the on-state may traverse any load line provided neither rated peak current (I_DM) nor rated voltage (V_DSS) is exceeded and the transition time (t_r,t_f) do not exceed 10 $\mu s.$ In addition the total power averaged over a complete switching cycle must not exceed (T_J(MAX) - T_C)/(R_{\theta JC}). A Power MOSFET designated E-FET can be safely used in switching circuits with unclamped inductive loads. For reliable operation, the stored energy from circuit inductance dissipated in the transistor while in avalanche must be less than the rated limit and adjusted for operating conditions differing from those specified. Although industry practice is to rate in terms of energy, avalanche energy capability is not a constant. The energy rating decreases non–linearly with an increase of peak current in avalanche and peak junction temperature. Although many E-FETs can withstand the stress of drain-to-source avalanche at currents up to rated pulsed current (I_{DM}), the energy rating is specified at rated continuous current (I_{D}), in accordance with industry custom. The energy rating must be derated for temperature as shown in the accompanying graph (Figure 12). Maximum energy at currents below rated continuous I_{D} can safely be assumed to equal the values indicated. #### SAFE OPERATING AREA 1400 F_{AS}, SINGLE PULSE DRAIN-TO-SOURCE ASALANCHE ENERGY (mJ) I_D = 16 A 1200 1000 800 600 400 200 0 25 50 75 100 125 TJ, STARTING JUNCTION TEMPERATURE (°C) Figure 11. Maximum Rated Forward Biased Safe Operating Area Figure 12. Maximum Avalanche Energy versus **Starting Junction Temperature** Figure 14. Diode Reverse Recovery Waveform #### PACKAGE DIMENSIONS #### CASE 340G-02 TO-264 **ISSUE E** #### NOTES - 1. DIMENSIONING AND TOLERANCING PER ANS V14 5M 1982 - 2. CONTROLLING DIMENSION: MILLIMETER. | DIM | MIN | MAX | | | | |-----|----------|-------|-----------|-------|--| | | | IVIAA | MIN | MAX | | | Α | 2.8 | 2.9 | 1.102 | 1.142 | | | В | 19.3 | 20.3 | 0.760 | 0.800 | | | С | 4.7 | 5.3 | 0.185 | 0.209 | | | D | 0.93 | 1.48 | 0.037 | 0.058 | | | E | 1.9 | 2.1 | 0.075 | 0.083 | | | F | 2.2 | 2.4 | 0.087 | 0.102 | | | G | 5.45 BSC | | 0.215 BSC | | | | Н | 2.6 | 3.0 | 0.102 | 0.118 | | | J | 0.43 | 0.78 | 0.017 | 0.031 | | | K | 17.6 | 18.8 | 0.693 | 0.740 | | | L | 11.0 | 11.4 | 0.433 | 0.449 | | | N | 3.95 | 4.75 | 0.156 | 0.187 | | | P | 2.2 | 2.6 | 0.087 | 0.102 | | | Q | 3.1 | 3.5 | 0.122 | 0.137 | | | R | 2.15 | 2.35 | 0.085 | 0.093 | | | U | 6.1 | 6.5 | 0.240 | 0.256 | | | W | 2.8 | 3.2 | 0.110 | 0.125 | | E-FET and Designer's are trademarks of Motorola, Inc. TMOS is a registered trademark of Motorola, Inc. ON Semiconductor and un are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice on semiconductor and are registered readerlands of semiconductor Components industries, Ite (SCILLC) and the series are injected to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. #### **PUBLICATION ORDERING INFORMATION** #### LITERATURE FULFILLMENT: Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800-282-9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81-3-5773-3850 ON Semiconductor Website: www.onsemi.com Order Literature: http://www.onsemi.com/orderlit For additional information, please contact your local Sales Representative