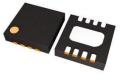
MUSES100 series 600mA 5.5V Low Noise LDO Regulator For High Quality Audio

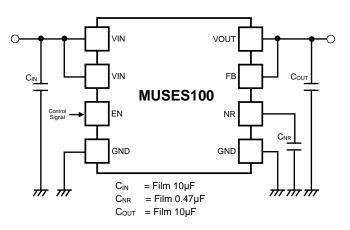


FEATURES

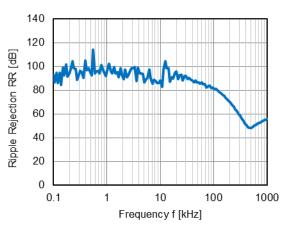
- Input Voltage Range (Maximum Rating):
- 2.5 V to 5.5 V (6.5 V) **Output Voltage Range:** 1.2 V to 5.0 V
- **Output Current:**
- 600 mA **Output Noise Voltage:** Typ. 3.0 µVrms
- $(I_{OUT} = 50 \text{ mA}, C_{NR} = 0.47 \mu \text{F})$ **Ripple Rejection:** Typ. 90 dB (f = 1 kHz, 10 kHz)
- Typ. 80 dB (f = 100 kHz) $(C_{NR} = 0.47 \ \mu F)$
- Tvp. 0.15 V **Dropout Voltage:** $(I_{OUT} = 600 \text{ mA}, V_{SET} = 3.3 \text{ V})$
- Quiescent Current: Typ. 960 µA
- **Operating Temperature Range:** -40 °C to 85 °C
- Protection Function: Thermal Shutdown Under Voltage Lockout(UVLO) **Over Current Protection**
- Film capacitors and Aluminum electrolytic capacitors can be used in.

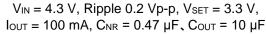
Application

- Home audio equipment
- Professional audio equipment
- Portable audio equipment


Nisshinbo Micro Devices Inc..

Packages (unit: mm)


M


DFN3030-8-GQ 3.0 × 3.0 × 0.75mm

Typical Application Circuit

Ripple Rejection Ratio Characteristic

GENERAL DESCRIPTION

The MUSES100 series is a CMOS based 5.5 V, 600 mA low noise low dropout voltage regulator for high quality audio.

This series achieves high-quality sound featured sound quality conscious circuit, materials and packaging technologies.

High ripple rejection ratio and low noise features make The MUSES100 series suitable for highquality audio DAC.

The MUSES logo is a trademark or registered trademark of

PRODUCT NAME INFORMATION

MUSES100 aa bb cdde

Description of configuration

Composition	Item	Description
aa	Package Code	Indicates the package.
aa	Fackage Code	GQ: DFN3030-8-GQ
bb	Output Voltage	Output voltage (V _{SET}). The lineup ranges from 1.2 V (12) to 5.0 V (50).
С	Version	Only "A"
dd	Packing	Insert Direction. Refer to the packing specifications.
е	Grade	Indicates the quality grade. S: Consumer

Grade

е	Applications	Operating Temperature Range	Test Temperature
 S	Consumer	−40 °C to 85 °C	25 °C

ORDER INFORMATION

PRODUCT NAME	PACKAGE	RoHS	HALOGEN- FREE	PLATING COMPOSITION	WEIGHT (mg)	QUANTITY (pcs/reel)
MUSES100GQxxAxxS	DFN3030-8-GQ	~	>	Sn2Bi	17mg	1500

Refer to "MARKING SPECIFICATION" for details.

Please contact us if you require a voltage other than the existing fixed-output product.

■ PIN DESCRIPTIONS

Тор	/iew	Bottom View
1 2	8	8 7 2
3	6	6 Exposed 3
4	5	5 4

DFN3030-8-GQ Pin Configuration

Pin No.	Pin Name	I/O	Description
1, 2	VIN	Power	Power Supply Input Pin Connect the input capacitor (C_{IN}) between the VIN pin and GND. The Pin #1 and #2 must be shorted.
3	EN	I	Enable Pin Input "Low" to this pin shuts down the IC. Input "High" to this pin enables the IC. This pin is pulled down with an internal constant current circuit.
4, 5	GND	-	Ground Pin
6	NR	-	Noise Reduction Capacitor Connection Pin Connect a capacitor between the NR pin and GND.
7	FB	I	Feedback Input Pin Connect to the VOUT pin.
8	VOUT	0	Output Pin Connect the output capacitor (C_{OUT}) between the VOUT pin and GND.

^{*1} The tab on the bottom of the package is the silicon substrate level. It is recommended to mount on the board and electrically floated from audio quality perspective.

■ ABSOLUTE MAXIMUM RATINGS

	Symbol	Ratings	Unit
VIN pin Voltage	Vin	-0.3 to 6.5	V
VOUT pin Voltage	Vout	-0.3 to V _{IN} + 0.3 ≤ 6.5	V
EN pin Voltage	V _{EN}	-0.3 to 6.5	V
NR pin Voltage	V _{NR}	-0.3 to 6.5	V
FB pin Voltage	V _{FB}	-0.3 to V _{OUT} + 0.3 ≤ 6.5	V
Junction Temperature Range ^{*1}	Tj	-40 to 125	°C
Storage Temperature Range	T _{stg}	-50 to 125	°C

ABSOLUTE MAXIMUM RATINGS

Electronic and mechanical stress momentarily exceeded absolute maximum ratings may cause permanent damage and may degrade the lifetime and safety for both device and system using the device in the field. The functional operation at or over these absolute maximum ratings is not assured.

^{*1} Calculate the power consumption of the IC from the operating conditions and calculate the junction temperature with the thermal resistance.

Please refer to "THERMAL CHARACTERISTICS" below for thermal resistance under our measured substrate conditions.

THERMAL CHARACTERISTICS

Parameter	Measurement Result
Thermal Resistance (θja)	27 °C/W
Thermal Characterization Parameter (ψjt)	8 °C/W

θja: Junction-to-Ambient Thermal Resistance

wjt: Junction-to-Top Thermal Characterization Parameter

ELECTROSTATIC DISCHARGE RATINGS

	Conditions	Protection Voltage
HBM	C = 100 pF, R = 1.5 kΩ	±2000 V
CDM		±1000 V

ELECTROSTATIC DISCHARGE RATINGS

The electrostatic discharge test is done based on JEDEC JS001, JS002. In the HBM method, ESD is applied using the power supply pin and the GND pin as reference pins.

RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	Ratings	Unit
Input Voltage	V _{IN}	2.5 to 5.5	V
EN Pin Input Voltage	V _{EN}	0 to 5.5	V
Output Current	lout	0 to 600	mA
Operating Temperature Range	Ta	-40 to 85	°C

RECOMMENDED OPERATING CONDITIONS

All electronic equipment should be designed that the mounted semiconductor devices operate within the recommended operating conditions. The semiconductor devices cannot operate normally over the recommended operating conditions, even if they are used over such conditions by momentary electronic noise or surge. And the semiconductor devices may receive serious damage when they continue to operate over the recommended operating conditions.

ELECTRICAL CHARACTERISTICS

 $V_{\text{IN}} = V_{\text{SET}} + 1 \text{ V} (V_{\text{IN}} = 2.5 \text{ V} \text{ for } V_{\text{SET}} < 1.5 \text{ V}, V_{\text{IN}} = 5.5 \text{ V} \text{ for } V_{\text{SET}} > 4.5 \text{ V}), I_{\text{OUT}} = 1 \text{ mA}, C_{\text{IN}} = 10 \text{ } \mu\text{F}, C_{\text{OUT}} = 10 \text{ } \mu\text{F} \text{ and } C_{\text{NR}} = 10 \text{ } \mu\text{F} \text{$

For items without temperature conditions, TYP values are at $T_a = 25$ °C and MIN/MAX values are applied to all the temperature range of -40 °C $\leq T_a \leq 85$ °C.

MUSES100

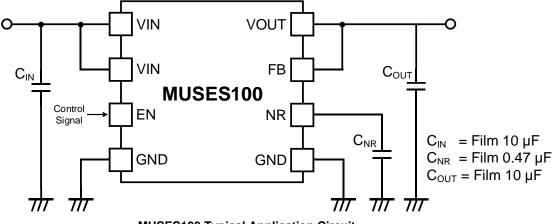
Parameter	Symbol	Conditior	IS	MIN	TYP	MAX	Unit
		Ta = 25 ℃	$1.2 \text{ V} \le \text{V}_{\text{SET}} < 3.0 \text{ V}$	-1.5	-	+1.5	%
	., <i>,</i>	V_{IN} = V_{\text{SET}} + 0.5 V to 5.5 V *1	$3.0 \text{ V} \le \text{V}_{\text{SET}} \le 5.0 \text{ V}$	-1.0	-	+1.0	%
Output Voltage Accuracy	Vout	-40 °C ≤ Ta ≤ 85 °C	$1.2 \text{ V} \le \text{V}_{\text{SET}} < 3.0 \text{ V}$	-2.0	-	+1.8	%
		V_{IN} = V_{\text{SET}} + 0.5 V to 5.5 V *1	$3.0 \text{ V} \le \text{V}_{\text{SET}} \le 5.0 \text{ V}$	-1.5	-	+1.3	%
Quiescent Current	lq	$V_{EN} = V_{IN}, \ I_{OUT} = 0 \ A$		-	960	1210	μA
Shutdown Current	I _{SD}	$V_{IN} = 5.5 V, V_{EN} = 0 V, Ta = 25$	°C	-	0.05	0.30	μA
Line Regulation	ΔV _{OUT} /	V_{IN} = V_{SET} + 0.5 V to 5.5 V \star1	$1.2~V \leq V_{\text{SET}} < 3.0~V$	-	0.08	-	%/V
	ΔV _{IN}	Iout = 1 mA	$3.0 \text{ V} \le \text{V}_{\text{SET}} \le 5.0 \text{ V}$	-	0.04	-	%/V
Load Regulation	ΔV _{OUT} / ΔΙουτ	$I_{OUT} = 1 \text{ mA to } 600 \text{ mA}$		0.01	-	0.01	V
			$1.2~V \leq V_{\text{SET}} < 2.2~V$		- *3		V
Dropout Voltage *2		1	$2.2~\text{V} \leq \text{V}_{\text{SET}} < 2.8~\text{V}$	-	0.18 *4	0.26 *4	V
Dropout voltage 2	Vdo	Ιουτ = 600 mA	$2.8 \text{ V} \leq \text{V}_{\text{SET}} < 3.3 \text{ V}$	-	0.15	0.21	V
			$3.3 \text{ V} \le \text{V}_{\text{SET}} \le 5.0 \text{ V}$	-	0.14	0.20	V
Output Current Limit	ILIM	$V_{OUT} = V_{SET} \times 90 \%$		600	850	-	mA
Short-circuit Current	Isc	Vout = 0 V		110	150	185	mA
Current Limit at Start-up	ILIMRISE	V _{OUT} = 0 V		110	150	185	mA
Discharge FET On-resistance	Rondis	$V_{IN} = 5 V, V_{EN} = 0 V, V_{OUT} = 0.7$	1 V	-	20	-	Ω
EN pin current	I _{EN}	$V_{\text{IN}} = V_{\text{EN}} = 5.5 \text{ V}$		-	0.37	0.60	μA
EN pin High Input Voltage(enable device)	V_{ENH}			1.0	-	5.5	V
EN pin Low Input Voltage(disable device)	Venl			0	-	0.4	V
UVLO Detection Voltage *5	VUVLODET	V _{IN} = Falling		2.15	-	-	V
UVLO Release Voltage *5	VUVLOREL	$V_{IN} = Rising$		-	-	2.4	V
Thermal Shutdown Detection Temperature	TSDDET	$T_j = Rising$		-	165	-	°C
Thermal Shutdown Release Temperature	T _{SDREL}	$T_j = Falling$		-	135	-	°C
		Ripple 0.2 Vp-p,	f = 1 kHz	-	90	-	dB
Ripple Rejection	RR	I _{OUT} = 100 mA,	f = 10 kHz	-	90	-	dB
		C _{NR} = 0.47 μF	f = 100 kHz	-	80	-	dB
Output Noise Voltage	V _{NOISE}	l _{OUT} = 50 mA, C _{NR} = 0.47 μF f = 10 Hz to 100 kHz		-	3.0	-	μVrms

All test parameters listed in Electrical Characteristics are tested under the condition of pulse load condition ($T_j \approx T_a = 25^{\circ}C$) expect for Ripple Rejection and Output Noise Voltage.

^{*1} 1.2 V \leq V_{SET} < 2.0 V: 2.5 V \leq V_{IN} \leq 5.5 V

 $4.7 \text{ V} \leq \text{V}_{\text{SET}} \leq 5.0 \text{ V}: \text{V}_{\text{SET}} + 0.2 \text{ V} \leq \text{V}_{\text{IN}} \leq 5.5 \text{ V}$

^{*2} Dropout Voltage (V_{DO}) is specified as the minimum voltage difference between Input Voltage (V_{IN}) and Output Voltage (V_{OUT}) required to obtain 95% at specified load current.


^{*3} Make sure to Input Voltage (V_{IN}) under the recommended condition (2.5 V or more).

^{*4} If $V_{SET} + V_{DO} < 2.5$ V, make sure to Input Voltage (V_{IN}) under the recommended condition (2.5 V or more).

^{*5} Due to the circuit configuration, $V_{UVLODET} \ge V_{UVLOREL}$ does not hold. The hysteresis is Typ. 0.08 V.

TYPICAL APPLICATION CIRCUIT

MUSES100 Typical Application Circuit

EXTERNAL COMPONENTS INFORMATION

This device requires three external capacitors: C_{IN}, C_{OUT} and C_{NR}. Select suitable parts to refer the following cautions.

Input Capacitor (CIN)

Connect a 10 μ F or more the input capacitor (C_{IN}) between the VIN pin and the GND pin with shortest-distance wiring. We recommend using a Film capacitor or an Aluminum electrolytic capacitor with superior DC bias characteristics. Ceramic capacitors are not recommended due to the piezoelectric effect may induce noise.

Output Capacitor (COUT)

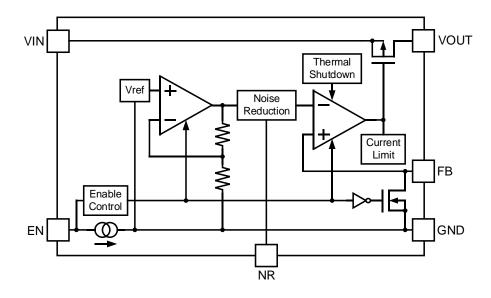
Phase compensation with the Output Capacitor (C_{OUT}) is provided to secure stable operation even when the load current is varied. Therefore, connect a Film capacitor or an Aluminum electrolytic capacitor of 10μ F or more and 2200μ F or less between the VOUT pin and the GND pin with shortest-distance wiring.

If prioritize sound quality, recommend using a 100µF or more and superior DC bias characteristic Aluminum electrolytic capacitor. Besides, select for the output capacitor to ensure the following effective capacitance in consideration of the dependence of temperature, DC bias and package size.

	COUT Effective Capacitance				
Set Output Voltage (VSET)	MIN	TYP			
$1.2 \text{ V} \le \text{V}_{\text{SET}} \le 5.0 \text{ V}$	7 µF	10 µF			

Set Output Voltage vs. COUT Effective Capacitance

Furthermore, this device is designed for Film capacitor or Aluminum electrolytic capacitor. Do not use Ceramic capacitors to avoid unstable operation.


Noise Reduction Capacitor (CNR)

Connect the Noise Reduction Capacitor (C_{NR}) of 10 nF or more and 1 μ F or less between the NR pin and the GND pins with shortest-distance wiring.

To secure Ripple Rejection Ratio and/or Output Noise Voltage that show on "ELECTRICAL CHARACTERISTICS", we recommend a Film Capacitor of 0.47µF or more and superior DC bias characteristic. Furthermore, not recommend Ceramic capacitors due to the piezoelectric effect may induce noise.

BLOCK DIAGRAM

MUSES100GQxxA Block Diagram

THEORY OF OPERATION

Enable Function

Forcing above designated "High" voltage to the EN pin, the IC becomes active. Forcing below designated "Low" voltage to the EN pin shuts down the IC. The EN pin is pulled down with a constant current of Typ.0.37 µA inside the IC. If control by the EN pin is not possible or is not required, connect the EN pin to the VIN pin, etc., so that "High" is input at start-up. If the EN pin is connected to the VIN pin, the normal effect of the built-in discharge FET cannot be expected. Even if voltage is applied to the EN pin before the VIN pin, the IC will not fail.

Discharge Function

This function turns on the FET connected between the VOUT pin and the GND pin to discharge the charge stored in the output capacitor (C_{OUT}) and quickly reduce the output voltage to near 0 V. This function is enabled when the EN pin is "Low" or when thermal shutdown is detected.

The FET on-resistance is Typ. 20 Ω (V_{IN} = 5.0 V). This function is effective when the input voltage (V_{IN}) is within the recommended operating conditions.

Please note that when the input voltage (V_{IN}) and the EN pin input voltage are used in common, the C_{OUT} charge cannot be discharged sufficiently when the input voltage (V_{IN}) drops.

Thermal Shutdown

When the junction temperature (T_j) exceeds the thermal shutdown detection temperature (Typ.165 °C), this IC cuts off the output transistor and suppresses the self-heating. When the junction temperature falls below the thermal shutdown release temperature (Typ. 135 °C), this IC will restart with the Inrush Current Suppression Function.

Under Voltage Lockout (UVLO) Circuit

The UVLO function is an auxiliary function that stops the operation of the IC when the input voltage is low, and the IC cannot operate normally. The VOUT pin is pulled down by the built-in discharge FET when this function works. To restart the operation, the input voltage (V_{IN}) must be higher than the recommended operating conditions (2.5 V).

• Inrush Current Suppression Function

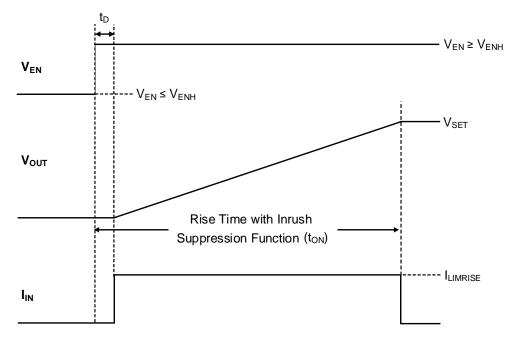
The Inrush Current Suppression Function is that limits the inrush current at start-up (I_{RUSH}), which is the sum of the charge current (I_{CHG}) to the output capacitor (C_{OUT}) and the load current (I_{LOAD}), with the limit current value at start-up ($I_{LIMRISE}$, Typ. 150 mA).

Under the condition such as the output capacitor (C_{OUT}) or load current (I_{LOAD}) makes the start-up inrush current (I_{RUSH}) reaches the Start-up Inrush Current Limit ($I_{LIMRISE}$, Typ. 150 mA), it rises at a slower slope that determined by C_{OUT} and I_{LOAD} .

The rise time (ton) by the inrush current limiting function can be calculated by the following formula.

 $t_{ON} = t_D + C_{OUT} \times V_{SET} / (I_{LIMRISE} - I_{LOAD})$

tD:Output Delay TimeTyp. 35 μsCouT:Effective Capacitance of Output CapacitorVSET:Set Output VoltageILIMRISE:Start-up Inrush Current LimitILOAD:Load Current


The Start-up Inrush Current Limit ($I_{LIMRISE}$) is effective until the output voltage (V_{OUT}) reaches the set output voltage (V_{SET}). It is then protected against overcurrent by the output current limit (I_{LIM}) and the short circuit current (I_{SC}).

To enable the inrush current limit function, start by inputting "High" to the EN pin after applying the recommended operating conditions (2.5 V or more) as the input voltage (V_{IN}).

If the input voltage (V_{IN}) does not meet the recommended operating conditions and the EN pin is set to "High", the IC may start up without inrush current limit function.

If the load current (ILOAD) exceeds the Start-up Inrush Current Limit (ILIMRISE) during start-up, the output voltage (VOUT) will not reach the set output voltage (VSET).

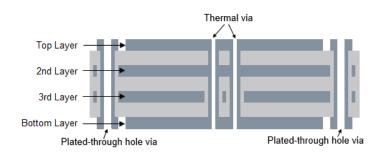
The UVLO function and the thermal shutdown function are valid even while the output voltage is starting. These protective functions may operate when starting with a load current or when a large output capacitor (C_{OUT}) is connected. In such cases, adjust the output capacitor (C_{OUT}) and start-up timing to suppress inrush current and heat generation.

Timing Chart: Start-up inrush current is larger than the start-up inrush current limit

■ THERMAL CHARACTERISTICS (DFN3030-8-GQ)

Thermal characteristics depend on the mounting conditions. The following measurement conditions are based on JEDEC STD. 51.

Measurement Result


Item	Measurement Result
Thermal Resistance (θja)	27 °CW
Thermal Characterization Parameter (ψjt)	8°CW

θja: Junction-to-Ambient Thermal Resistance

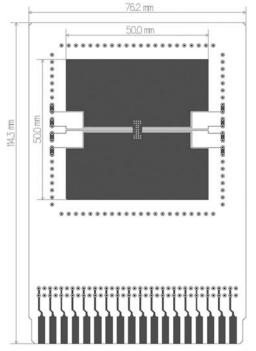
Ψjt: Junction-to-Top Thermal Characterization Parameter

Measurement Conditions

ltem		Specification
Measurement Condition		Mounting on Board (Still Air)
Board material		FR-4
Board size		76.2 mm × 114.3 mm × t 1.6 mm
	1	50 mm × 50 mm (coverage rate 95%), t 0.070 mm
Connor fail lover	2	74.2 mm × 74.2 mm (coverage rate 100%), t 0.035 mm
Copper foil layer	3	74.2 mm × 74.2 mm (coverage rate 100%), t 0.035 mm
	4	50 mm × 50 mm (coverage rate 100%), t 0.070 mm
Thermal vias		φ 0.25 mm × 26 pcs

Cross section view of layers and vias

• CALCULATION METHOD OF JUNCTION TEMPERATURE


The junction temperature (T_j) can be calculated from the following formula.

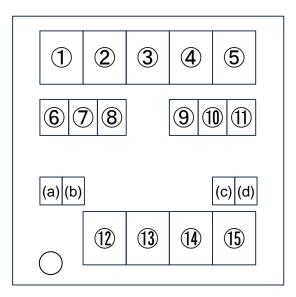
 $T_j = T_a + \theta ja \times P$ $T_j = Tc (top) + \psi jt \times P$

Ta: Ambient temperature

Tc (top): Package mark side center temperature

P (Power consumption under user's conditions): (VIN – VOUT) × IOUT

Measurement Board Pattern



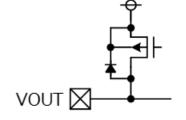
Enlarged view of IC mounting area

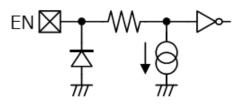
MARKING SPECIFICATION

①2345678: Product Code ··· <u>Refer to the following table</u>
③0: Output voltage version
①: Function version
②③45678: Product Code ··· <u>Alphanumeric Serial Number</u>
(a)(b)(c)(d): Internal control number

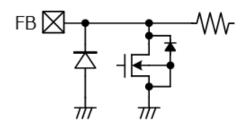
DFN3030-8-GQ Marking

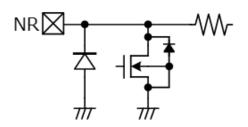
NOTICE


There can be variation in the marking when different AOI (Automated Optical Inspection) equipment is used. In the case of recognizing the marking characteristic with AOI, please contact our sales or distributor before attempting to use AOI.

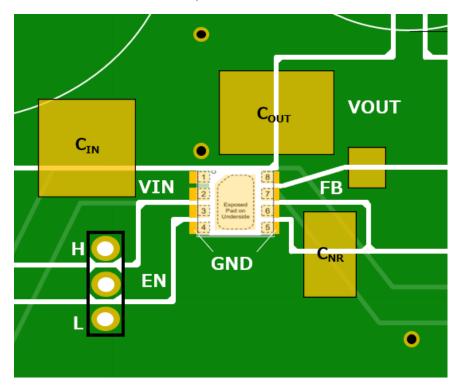

MUSES100 Marking Table

PRODUCT NAME	12345678911	
MUSES100GQ12AddS	M U S E S 1 0 0 1 2 A	
MUSES100GQ15AddS	M U S E S 1 0 0 1 5 A	
MUSES100GQ18AddS	M U S E S 1 0 0 1 8 A	
MUSES100GQ33AddS	M U S E S 1 0 0 3 3 A	
MUSES100GQ50AddS	M U S E S 1 0 0 5 0 A	


- APPLICATION NOTES
- Internal Equivalent Circuit Diagram of Pin



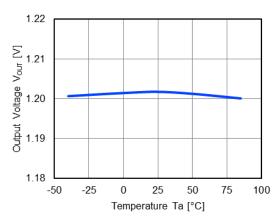
The VOUT pin



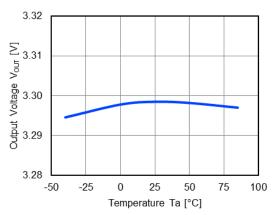
The FB pin

The NR pin

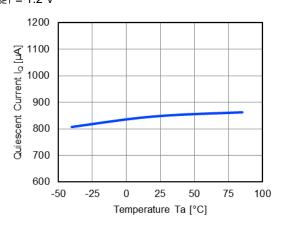
• Evaluation Board / PCB Layout

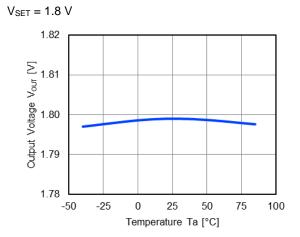

TYPICAL CHARACTERISTICS

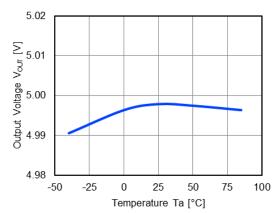
Note: Typical Characteristics are intended to be used as reference data; they are not guaranteed.


Unless otherwise specified, Ta = 25 °C, C_{IN} = 10 µF, C_{OUT} = 10 µF, C_{NR} = 470 nF

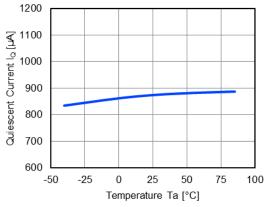
1) Output Voltage vs Temperature


 V_{IN} = V_{SET} + 1 V (Min = 2.5 V, Max = 5.5 V), I_{OUT} = 1 mA V_{SET} = 1.2 V

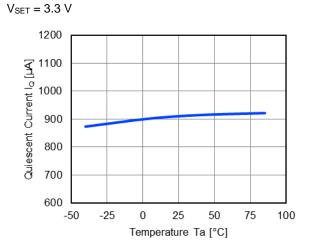


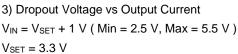


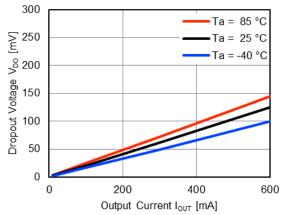
2) Quiescent Current vs Temperature $V_{\text{IN}} = V_{\text{SET}} + 1 \text{ V} (\text{ Min} = 2.5 \text{ V}, \text{ Max} = 5.5 \text{ V}), C_{\text{IN}} = \text{none}$ $V_{\text{SET}} = 1.2 \text{ V}$



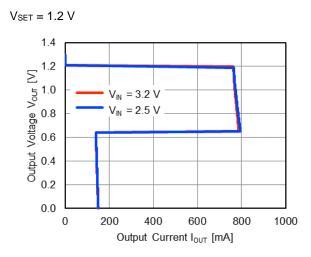
 $V_{SET} = 5.0 V$

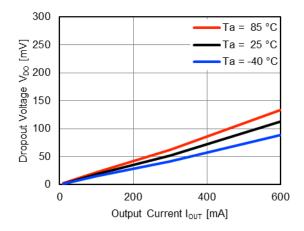


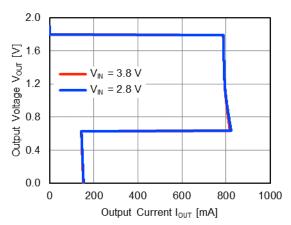




Nisshinbo Micro Devices Inc.

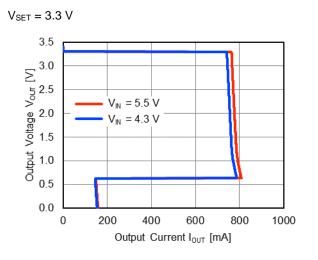


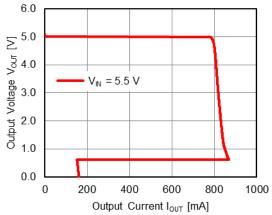




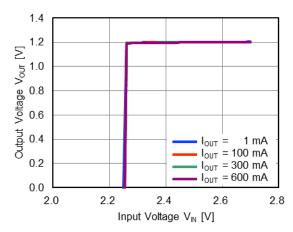
 $V_{SET} = 5.0 V$

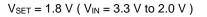
 $V_{SET} = 5.0 V$

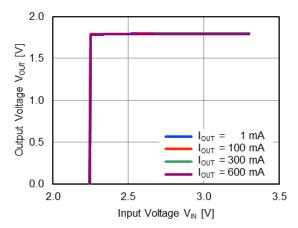




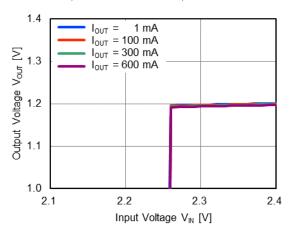
Nisshinbo Micro Devices Inc.

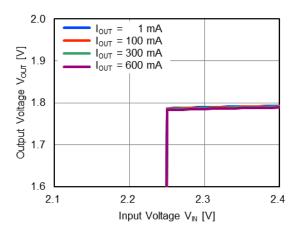


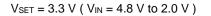

V_{SET} = 5.0 V

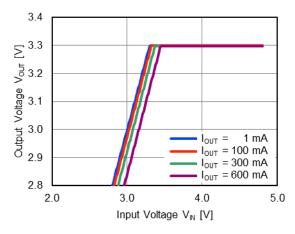


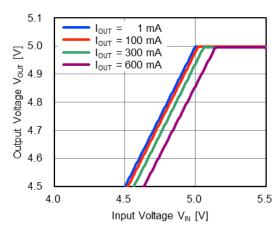
5) Output Voltage vs Input Voltage

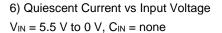

 V_{SET} = 1.2 V (V_{IN} = 2.7 V to 2.0 V)

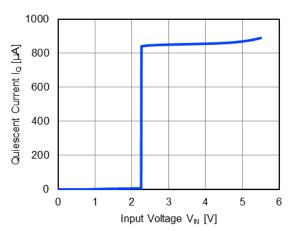




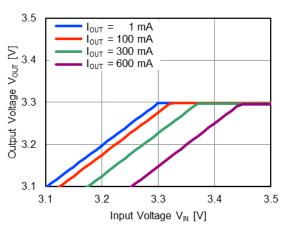

 V_{SET} = 1.2 V (V_{IN} = 2.4 V to 2.1 V)

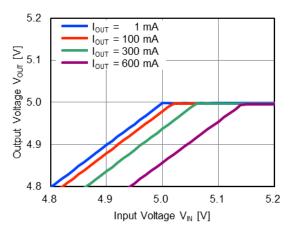

 V_{SET} = 1.8 V (V_{IN} = 2.4 V to 2.1 V)

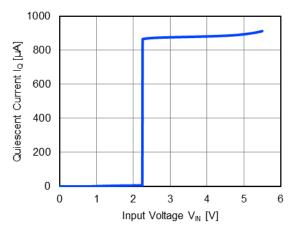




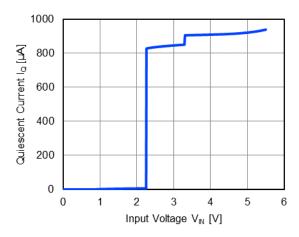
 $V_{SET} = 5.0 V (V_{IN} = 5.5 V to 4.0 V)$

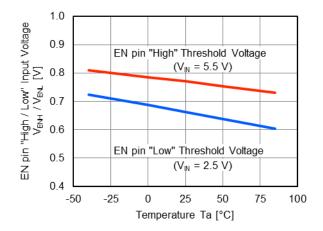


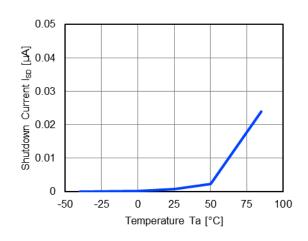

V_{SET} = 1.2 V

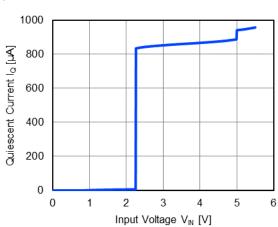

 V_{SET} = 3.3 V (V_{IN} = 3.5 V to 3.1 V)

 V_{SET} = 5.0 V (V_{IN} = 5.2 V to 4.8 V)

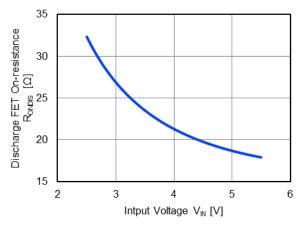


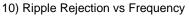

Nisshinbo Micro Devices Inc.

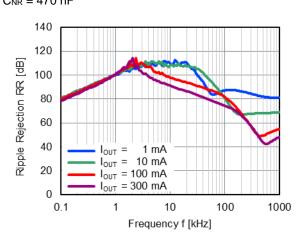

V_{SET} = 5.0 V

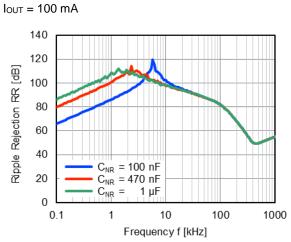


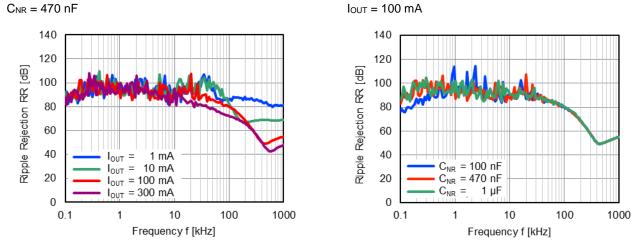
7) EN "High / Low" Input Voltage vs Temperature


8) Shutdown Current vs Temperature $V_{SET} = 1.2 \text{ V}, V_{IN} = 5.5 \text{ V}, C_{IN} = \text{none}$

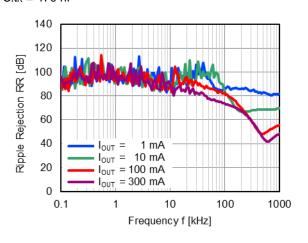




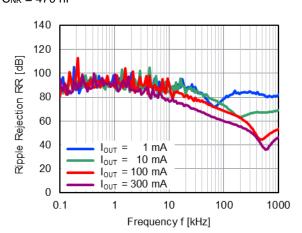


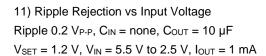


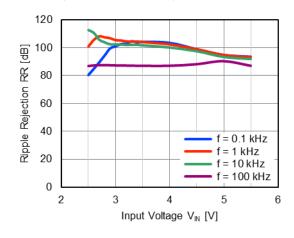
 $V_{SET} = 1.2 \text{ V}, V_{IN} = 2.5 \text{ V}, \text{ Ripple } 0.2 \text{ V}_{P-P}, C_{IN} = \text{none}, C_{OUT} = 10 \ \mu\text{F}$ $C_{NR} = 470 \ \text{nF}$ Iou

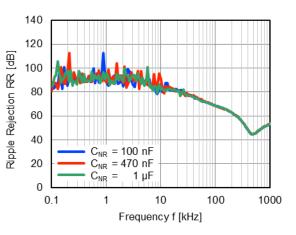


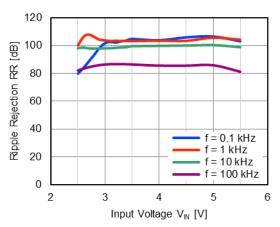

 $V_{SET} = 1.8 \text{ V}, \text{ V}_{IN} = 2.8 \text{ V}, \text{ Ripple } 0.2 \text{ V}_{P-P}, \text{ C}_{IN} = \text{none}, \text{ C}_{OUT} = 10 \text{ }\mu\text{F}$

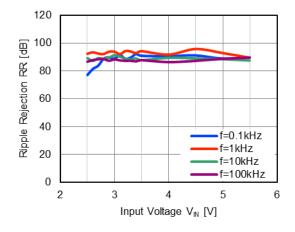


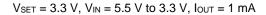

 $V_{SET} = 3.3 \text{ V}, V_{IN} = 4.3 \text{ V}, \text{ Ripple } 0.2 \text{ V}_{P-P}, C_{IN} = \text{none}, C_{OUT} = 10 \ \mu\text{F}$ $C_{NR} = 470 \ n\text{F}$ $I_{OUT} = 100 \ m\text{A}$

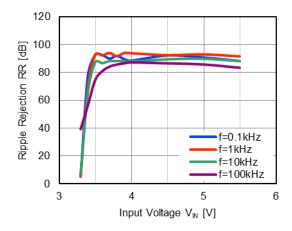


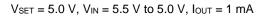

 $V_{\text{SET}} = 5.0 \text{ V}, \text{ V}_{\text{IN}} = 5.5 \text{ V}, \text{ Ripple } 0.2 \text{ V}_{\text{P-P}}, \text{ C}_{\text{IN}} = \text{none}, \text{ C}_{\text{OUT}} = 10 \text{ } \mu\text{F}$ $C_{\text{NR}} = 470 \text{ nF}$

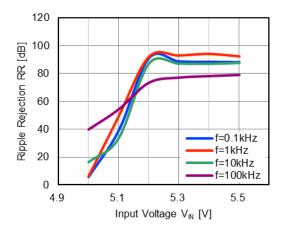


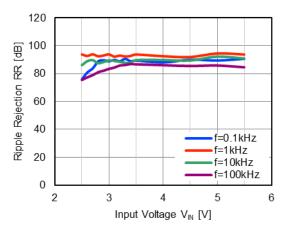

louт = 100 mA

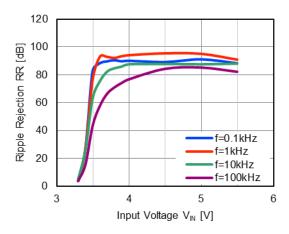


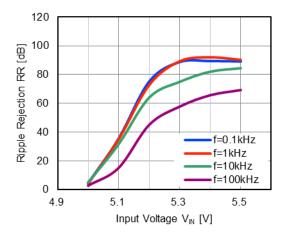

 V_{SET} = 1.2 V, V_{IN} = 5.5 V to 2.5 V, I_{OUT} = 100 mA

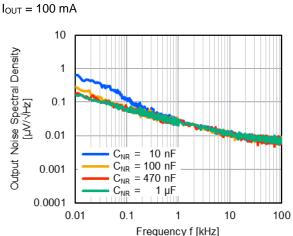


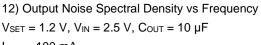

 V_{SET} = 1.8 V, V_{IN} = 5.5 V to 2.5 V, I_{OUT} = 1 mA

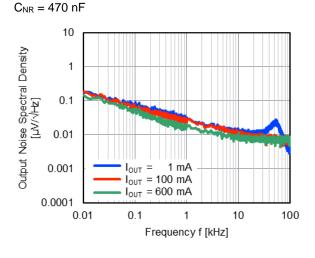




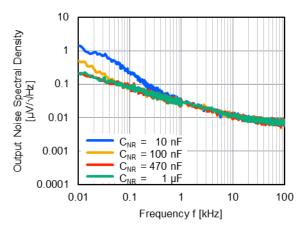

 V_{SET} = 1.8 V, V_{IN} = 5.5 V to 2.5 V, I_{OUT} = 100 mA

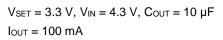


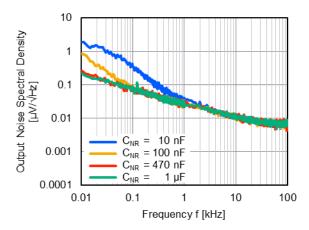

 V_{SET} = 3.3 V, V_{IN} = 5.5 V to 3.3 V, I_{OUT} = 100 mA

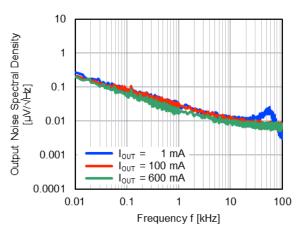


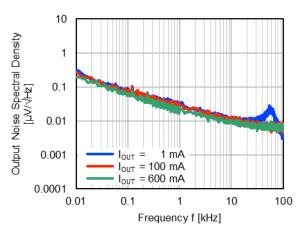
 $V_{\text{SET}} = 5.0$ V, $V_{\text{IN}} = 5.5$ V to 5.0 V, $I_{\text{OUT}} = 100$ mA



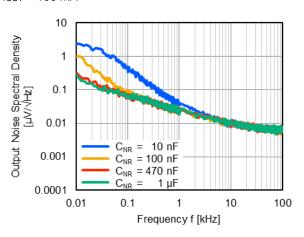


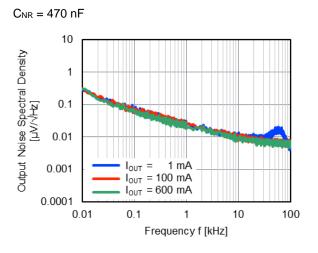


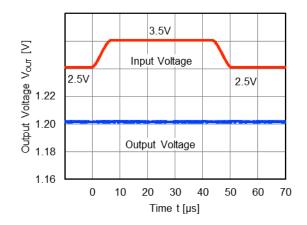

 V_{SET} = 1.8 V, V_{IN} = 2.8 V, C_{OUT} = 10 μ F Iout = 100 mA

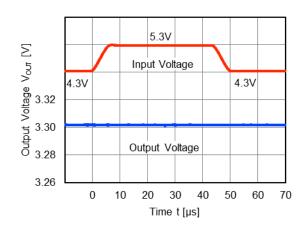


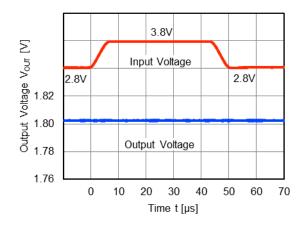
C_{NR} = 470 nF



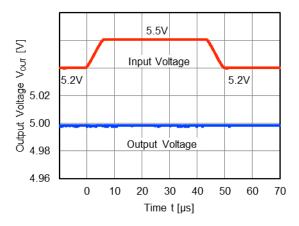



 $V_{SET} = 5.0 \text{ V}, V_{IN} = 5.5 \text{ V}, C_{OUT} = 10 \ \mu F$ Iout = 100 mA

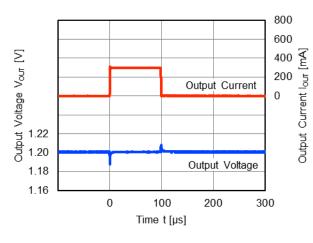


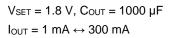

13) Input Transient Response

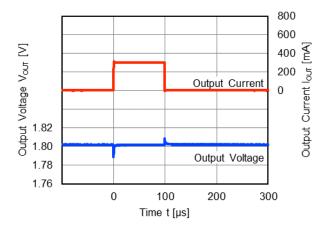
 I_{OUT} = 1 mA, C_{IN} = none, C_{OUT} = 10 μ F V_{SET} = 1.2 V

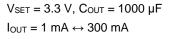


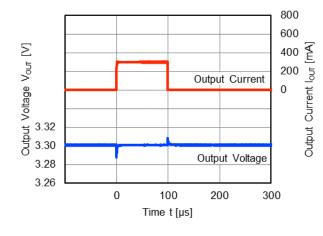
 $V_{SET} = 1.8 V$






MUSES100 series


14) Load Transient Response $V_{SET} = 1.2 \text{ V}, \text{ C}_{OUT} = 1000 \ \mu\text{F}$


 $I_{OUT} = 1 \text{ mA} \leftrightarrow 300 \text{ mA}$

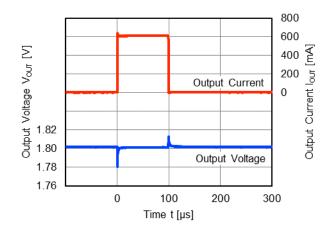
 A
 0
 600
 400
 200
 0

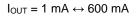
 A
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0</

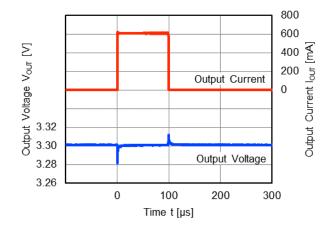
100

Time t [µs]

200

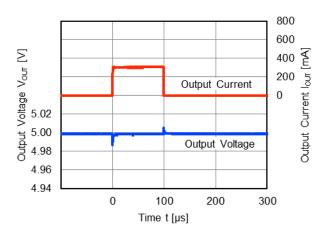

300

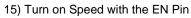

 $I_{OUT} = 1 \text{ mA} \leftrightarrow 600 \text{ mA}$


0

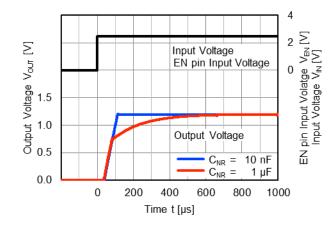
1.16

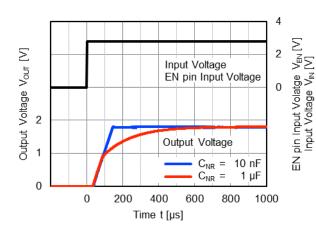
 $I_{OUT} = 1 \text{ mA} \leftrightarrow 600 \text{ mA}$



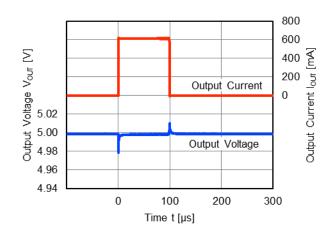


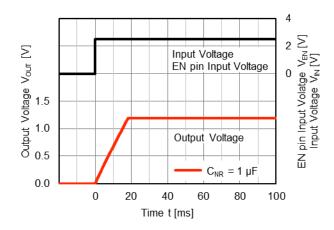
MUSES100 series

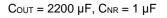

 $V_{SET} = 5.0 \text{ V}, \text{ C}_{OUT} = 1000 \ \mu\text{F}$ Iout = 1 mA \leftrightarrow 300 mA

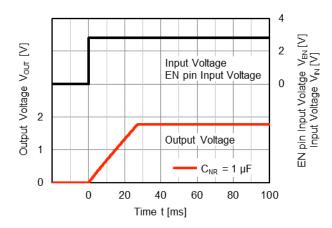


V_{SET} = 1.2 V


C_{OUT} = 10 µF






 $I_{OUT} = 1 \text{ mA} \leftrightarrow 600 \text{ mA}$

 $C_{OUT} = 2200 \ \mu F, \ C_{NR} = 1 \ \mu F$

8

0

Input Voltage

60

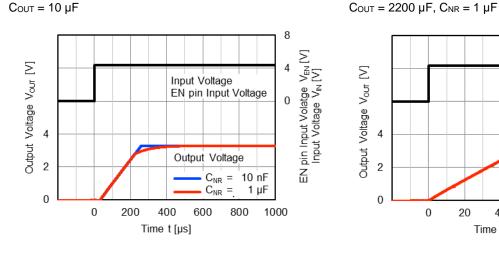
EN pin Input Voltage

Output Voltage

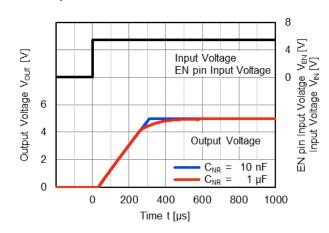
 $C_{NR} = 1 \ \mu F$

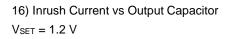
80

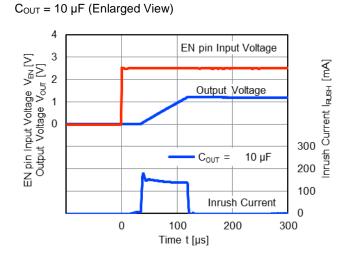
pin Input Volatge V_{EN} [V] Input Voltage V_{IN} [V]

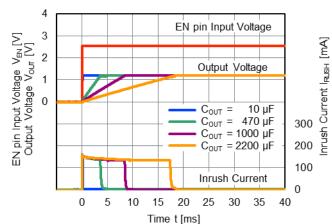

Z

100

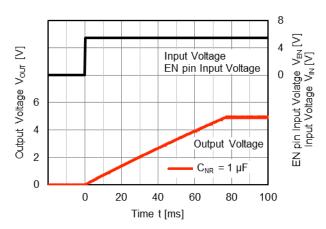

MUSES100 series


Nisshinbo Micro Devices Inc.

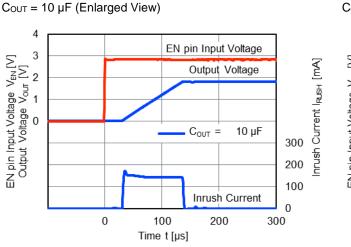

VSET = 3.3 V Cout = 10 µF


Vset = 5.0 V Cout = 10 μF

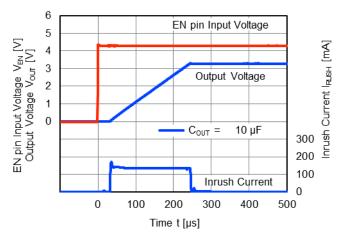
 C_{OUT} = 10 µF, 470 µF, 1000 µF, 2200 µF

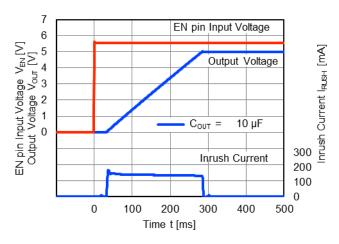

 $C_{OUT} = 2200 \ \mu F, C_{NR} = 1 \ \mu F$

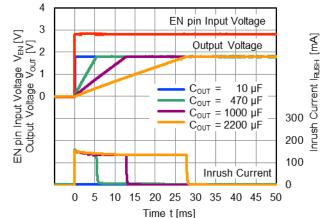
0

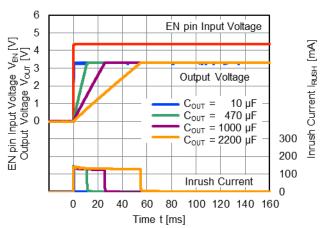

20

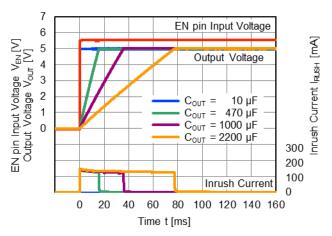
40


Time t [ms]

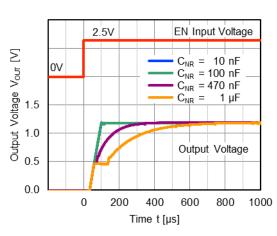

V_{SET} = 1.8 V


 $V_{SET} = 3.3 V$ $C_{OUT} = 10 \mu F$ (Enlarged View)

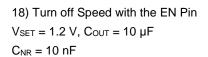

 $V_{SET} = 5.0 V$ Cout = 10 µF (Enlarged View)

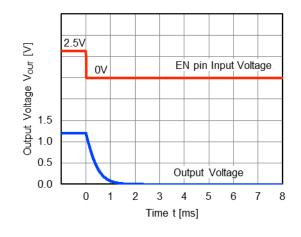

 $C_{OUT} = 10 \ \mu F$, 470 μF , 1000 μF , 2200 μF

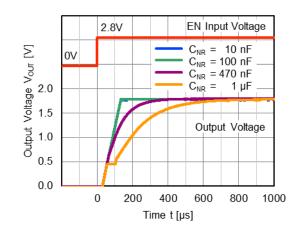
 $C_{\text{OUT}} = 10 \; \mu F, \, 470 \; \mu F, \, 1000 \; \mu F, \, 2200 \; \mu F$

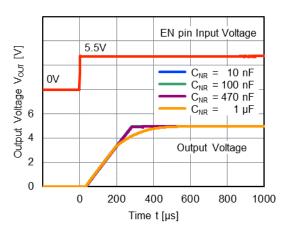


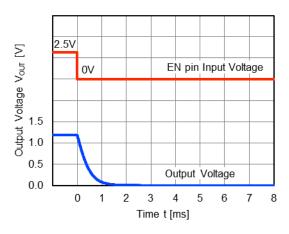


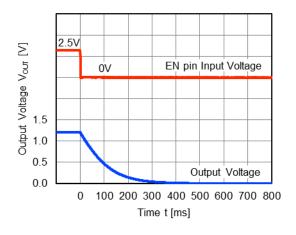

17) Turn on Speed vs Noise Reduction Capacitor C_{OUT} = 10 μF

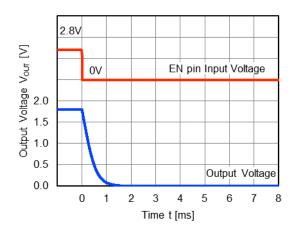

V_{SET} = 1.2 V

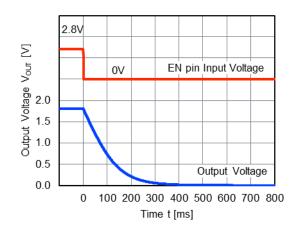

V_{SET} = 3.3 V

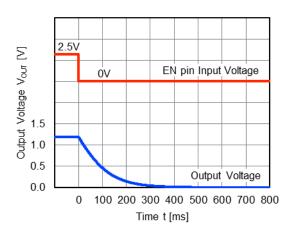


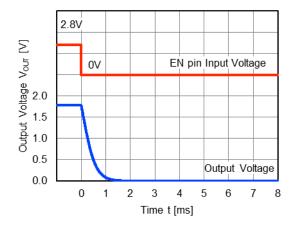

 $V_{SET} = 1.8 V$

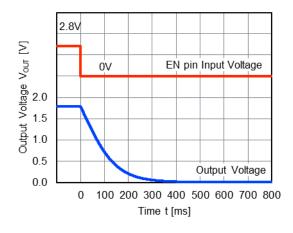


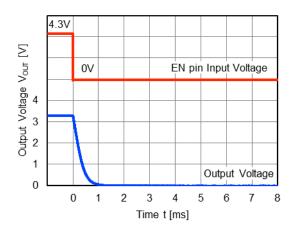


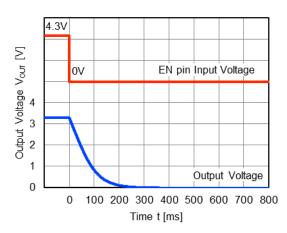

 $V_{SET} = 1.2 \text{ V}, \text{ C}_{OUT} = 2200 \ \mu\text{F}$ $C_{NR} = 10 \ n\text{F}$

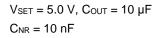

 V_{SET} = 1.8 V, C_{OUT} = 10 μ F C_{NR} = 10 nF

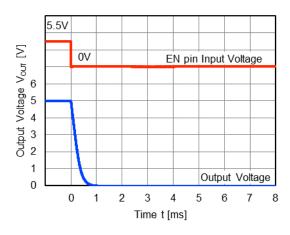


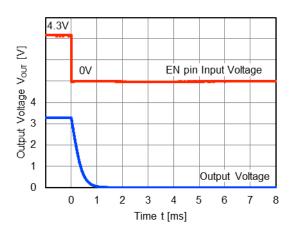

 $C_{\text{NR}} = 1 \; \mu F$

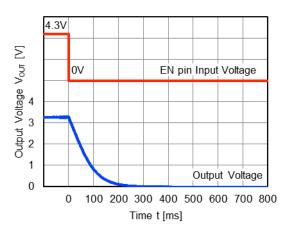

 $C_{NR} = 1 \ \mu F$

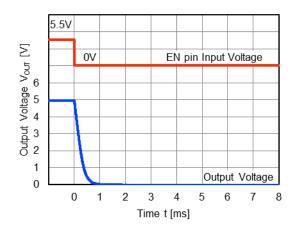


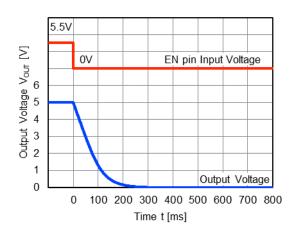


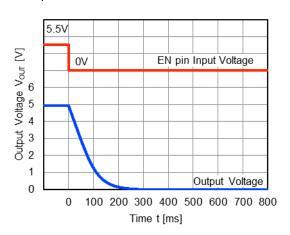

 $V_{SET} = 3.3 \text{ V}, \text{ } C_{OUT} = 10 \text{ } \mu\text{F}$ $C_{NR} = 10 \text{ } n\text{F}$


 $V_{\text{SET}} = 3.3 \text{ V}, \text{ C}_{\text{OUT}} = 2200 \ \mu\text{F}$ $C_{\text{NR}} = 10 \ n\text{F}$

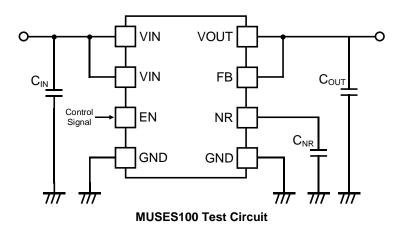



 $C_{\text{NR}} = 1 \; \mu F$


 $C_{NR} = 1 \ \mu F$



 $V_{\text{SET}} = 5.0 \text{ V}, \text{ } C_{\text{OUT}} = 2200 \text{ } \mu\text{F}$ $C_{\text{NR}} = 10 \text{ } n\text{F}$



 $C_{\text{NR}} = 1 \ \mu F$

TEST CIRCUIT

[Components list for our evaluation]

Symbol	Capacitance	Parts Number	
CIN	10 µF	25NS106MD15750	
C _{NR}	10 nF 100 nF 470 nF 1 μF	63NS103MZ12012 63NS103MZ12012 35NS474MA13216 25NS105MA23216	
Cout	10 μF 470 μF 1000 μF 2200 μF	25NS106MD15750 UKA1C471MPD UKA1C102MPD UKA1C222MHD	

■ NOTE

Precaution for counterfeit semiconductor products

We have recently detected many counterfeit semiconductor products that have very similar appearances to our operational amplifier "MUSES" in the world-wide market. In most cases, it is hard to distinguish them from our regular products by their appearance, and some of them have very poor quality and performance. They can not provide equivalent quality of our regular product, and they may cause breakdowns or malfunctions if used in your systems or applications.

We would like our customers to purchase "MUSES" through our official sales channels : our sales branches, sales subsidiaries and distributors.

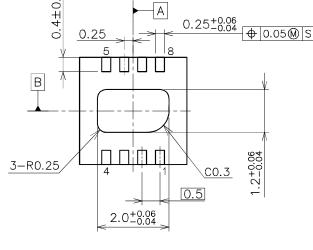
Please note that we hold no responsibilities for any malfunctions or damages caused by using counterfeit products. We would appreciate your understanding.

DFN3030-8-GQ

PACKAGE DIMENSIONS

0.4±0.05 Α 0.25^{+0.06} -0.04 ⊕ 0.05 ₪ S AB 0.25 8 5 V Τ В 1.2 ± 0.06 1.2 ± 0.04 4 <u>C0.3</u> 0.5 $2.0^{+0.06}_{-0.04}$

EXAMPLE OF SOLDER PADS DIMENSIONS


UNIT: mm

1.94 R0.07 3.2 R0.22 \square 0.27 0.1 0.5 0.51

4 0.1 @ S AB

3.0±0.05

0.7±0.05

⊕ 0.1
 ∭ S AB
 ■

()

3.0±0.05

// 0.2 S

○ 0.05 S

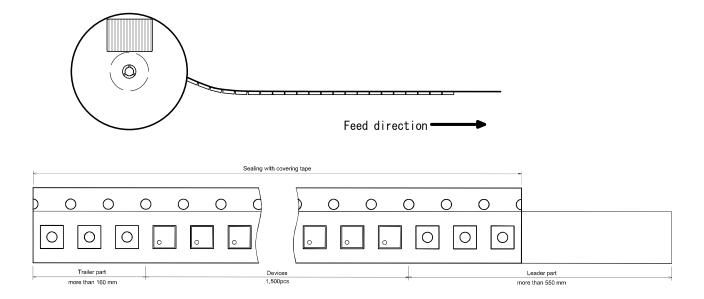
INDEX

S

0.01+0.010

DFN3030-8-GQ-E-A

UNIT: mm


DFN3030-8-GQ

PACKING SPEC

(1) Taping dimensions / Insert direction

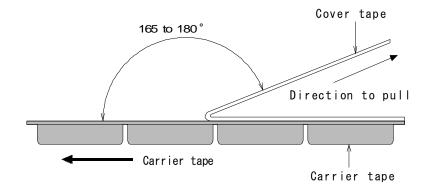
1.75±0.1 $1.5^{+0.1}_{0}$ Insert direction 2.0±0.05 4.0±0.1 0.30 ± 0.05 (E4) 5.5±0.05 8.0±0.1 12 0^{+0.3} 0.1 3.3±0.1 \bigcirc 1.5^{+0.1} 3.3±0.1 0.9±0.05 1.3±0.07

(2) Taping state

DFN3030-8-GQ-E-A

UNIT: mm

DFN3030-8-GQ


(3) Reel dimensions

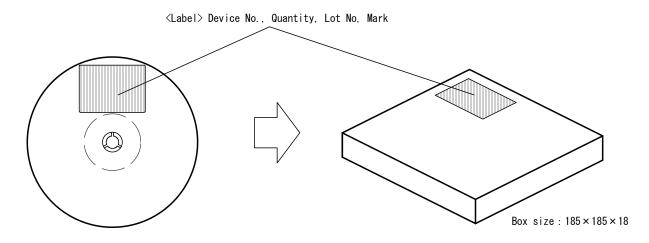
2±0.5 2±0.5 2±0.8 13±0.2 13.0^{+1.0} 13.0^{+1.0}

(4) Peeling strength

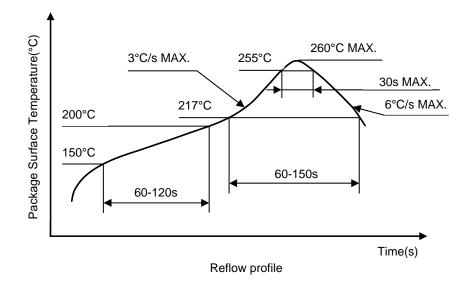
Peeling strength of cover tape

- •Peeling angle 165 to 180° degrees to the taped surface.
- Peeling speed 300mm/min
- •Peeling strength 0.1 to 1.3N

NSSHNBO


DFN3030-8-GQ-E-A

DFN3030-8-GQ-E-A


Nisshinbo Micro Devices Inc.

DFN3030-8-GQ

(5) Packing state

HEAT-RESISTANCE PROFILES

REVISION HISTORY

Date	Revision	Contents of Changes
May 31, 2024	1.0	Initial release

- 1. The products and the product specifications described in this document are subject to change or discontinuation of production without notice for reasons such as improvement. Therefore, before deciding to use the products, please refer to our sales representatives for the latest information thereon.
- 2. The materials in this document may not be copied or otherwise reproduced in whole or in part without the prior written consent of us.
- 3. This product and any technical information relating thereto are subject to complementary export controls (so-called KNOW controls) under the Foreign Exchange and Foreign Trade Law, and related politics ministerial ordinance of the law. (Note that the complementary export controls are inapplicable to any application-specific products, except rockets and pilotless aircraft, that are insusceptible to design or program changes.) Accordingly, when exporting or carrying abroad this product, follow the Foreign Exchange and Foreign Trade Control Law and its related regulations with respect to the complementary export controls.
- 4. The technical information described in this document shows typical characteristics and example application circuits for the products. The release of such information is not to be construed as a warranty of or a grant of license under our or any third party's intellectual property rights or any other rights.
- 5. The products listed in this document are intended and designed for use as general electronic components in standard applications (office equipment, telecommunication equipment, measuring instruments, consumer electronic products, amusement equipment etc.). Those customers intending to use a product in an application requiring extreme quality and reliability, for example, in a highly specific application where the failure or misoperation of the product could result in human injury or death should first contact us.
 - Aerospace Equipment
 - Equipment Used in the Deep Sea
 - Power Generator Control Equipment (nuclear, steam, hydraulic, etc.)
 - Life Maintenance Medical Equipment
 - Fire Alarms / Intruder Detectors
 - Vehicle Control Equipment (automotive, airplane, railroad, ship, etc.)
 - Various Safety Devices
 - Traffic control system
 - Combustion equipment

In case your company desires to use this product for any applications other than general electronic equipment mentioned above, make sure to contact our company in advance. Note that the important requirements mentioned in this section are not applicable to cases where operation requirements such as application conditions are confirmed by our company in writing after consultation with your company.

- 6. We are making our continuous effort to improve the quality and reliability of our products, but semiconductor products are likely to fail with certain probability. In order to prevent any injury to persons or damages to property resulting from such failure, customers should be careful enough to incorporate safety measures in their design, such as redundancy feature, fire containment feature and fail-safe feature. We do not assume any liability or responsibility for any loss or damage arising from misuse or inappropriate use of the products.
- 7. The products have been designed and tested to function within controlled environmental conditions. Do not use products under conditions that deviate from methods or applications specified in this datasheet. Failure to employ the products in the proper applications can lead to deterioration, destruction or failure of the products. We shall not be responsible for any bodily injury, fires or accident, property damage or any consequential damages resulting from misuse or misapplication of the products.
- 8. Quality Warranty
 - 8-1. Quality Warranty Period

In the case of a product purchased through an authorized distributor or directly from us, the warranty period for this product shall be one (1) year after delivery to your company. For defective products that occurred during this period, we will take the quality warranty measures described in section 8-2. However, if there is an agreement on the warranty period in the basic transaction agreement, quality assurance agreement, delivery specifications, etc., it shall be followed.

8-2. Quality Warranty Remedies

When it has been proved defective due to manufacturing factors as a result of defect analysis by us, we will either deliver a substitute for the defective product or refund the purchase price of the defective product.

- Note that such delivery or refund is sole and exclusive remedies to your company for the defective product.
- 8-3. Remedies after Quality Warranty Period

With respect to any defect of this product found after the quality warranty period, the defect will be analyzed by us. On the basis of the defect analysis results, the scope and amounts of damage shall be determined by mutual agreement of both parties. Then we will deal with upper limit in Section 8-2. This provision is not intended to limit any legal rights of your company.

- 9. Anti-radiation design is not implemented in the products described in this document.
- 10. The X-ray exposure can influence functions and characteristics of the products. Confirm the product functions and characteristics in the evaluation stage.
- 11. WLCSP products should be used in light shielded environments. The light exposure can influence functions and characteristics of the products under operation or storage.
- 12. Warning for handling Gallium and Arsenic (GaAs) products (Applying to GaAs MMIC, Photo Reflector). These products use Gallium (Ga) and Arsenic (As) which are specified as poisonous chemicals by law. For the prevention of a hazard, do not burn, destroy, or process chemically to make them as gas or power. When the product is disposed of, please follow the related regulation and do not mix this with general industrial waste or household waste.
- 13. Please contact our sales representatives should you have any questions or comments concerning the products or the technical information.

Nisshinbo Micro Devices Inc.

Official website https://www.nisshinbo-microdevices.co.jp/en/ Purchase information https://www.nisshinbo-microdevices.co.jp/en/buy/