Standard Products

MUX8531 16-Channel Analog Multiplexer Module Radiation Tolerant & ESD Protected

Kelvin Measurement Configured

www.aeroflex.com/mux

May 17, 2011

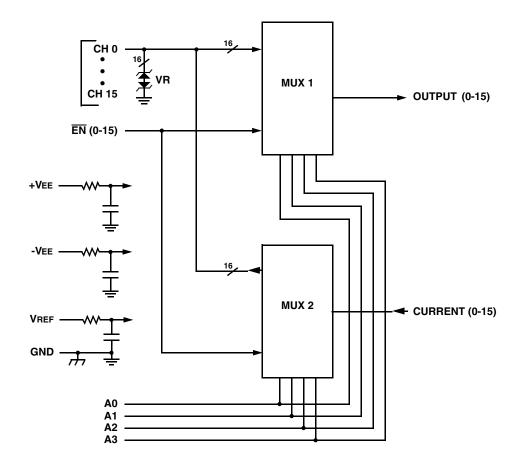
FEATURES

- □ 16 Kelvin measurement channels provided by two 16-channel multiplexers
- Radiation performance

- Total dose: 150 krads(Si), Dose rate = 50 - 300 rads(Si)/s

- SEU: Immune up to 90 MeV-cm²/mg
- SEL: Immune by process design

- □ Full military temperature range
- □ Low power consumption < 30mW
- □ One address bus (A0-3), and one enable line
- \Box All channel inputs protected by ± 20 V nominal Transorbs
- □ Fast access time < 500ns typical
- □ Break-Before-Make switching
- □ High analog input impedance (power on or off)
- Designed for aerospace and high reliability space applications
- □ Packaging Hermetic ceramic
 - 56 leads, 0.80"Sq x 0.20"Ht quad flat pack
 - Typical Weight 6 grams


GENERAL DESCRIPTION

Aeroflex's MUX8531 is a radiation tolerant, 16 Kelvin measurement channel multiplexer MCM (Multi Chip Module) with electrostatic discharge (ESD) protection on all channel inputs.

The MUX8531 has been specifically designed to meet exposure to radiation environments. It is available in a 56 lead High Temperature Co-Fired Ceramic (HTCC) Quad Flatpack (CQFP). It is guaranteed operational from -55°C to +125°C. Available screened in accordance with MIL-PRF-38534, the MUX8531 is ideal for demanding military and space applications.

ORGANIZATION AND APPLICATION

The MUX8531 consists of two 16 channel multiplexers arranged as shown in the block diagram, addressable by bus $A_0 \sim A_3$ including enable which connects the addressed channel to two separate outputs, "Output" and "Current". This technique enables selecting and reading a remote resistive sensor without the MUX resistance being part of the measurement. For grounded sensors, this is done by passing current to the sensor by means of the "Current" pin and reading the resultant voltage (proportional to the sensor resistance) at the "Output" pin.

MUX8531: 16 CHANNEL ANALOG MUX BLOCK DIAGRAM KELVIN MEASUREMENT CONFIGURED

ABSOLUTE MAXIMUM RATINGS 1/

Parameter	Range	Units
Case Operating Temperature Range	-55 to +125	°C
Storage Temperature Range	-65 to +150	°C
Supply Voltage +VEE (Pin 18) -VEE (Pin 46) VREF (Pin 39)	+20 -20 +7.5	>>>
Digital Input Overvoltage VEN (Pin 13), VA (Pins 14, 15, 16, 17)	< VREF +.5 > GND5	V V
Analog Input Over Voltage VIN	±18V	V

Notes:

NOTICE: Stresses above those listed under "Absolute Maximums Rating" may cause permanent damage to the device. These are stress rating only; functional operation beyond the "Operation Conditions" is not recommended and extended exposure beyond the "Operation Conditions" may affect device reliability.

RECOMMENDED OPERATING CONDITIONS 1/

Symbol	Parameter	Typical	Units
+VEE	+15V Power Supply Voltage	+15.0	V
-VEE	-15V Power Supply Voltage	-15.0	V
VREF	Reference Voltage	+5.00	V
VAL	Logic Low Level	+0.8	V
Vah	Logic High Level	+4.0	V

^{1/} Power Supply turn-on sequence shall be as follows: -VEE, VREF, followed by +VEE.

DC ELECTRICAL PERFORMANCE CHARACTERISTICS 1/

(TC = -55°C TO +125°C, -VEE = -15V, VREF = +5.0V, +VEE = +15V - UNLESS OTHERWISE SPECIFIED)

Parameter	Symbol	Conditions		Max	Units
Supply Current	+lee	Ven(0-15) = Va(0-3) = 0	0	1	mA
	-lee	Ven(0-15) = Va(0-3) = 0	-1	0	mA
	+ISBY	Ven(0-15) = 4V, Va(0-3) = 0 7/	0	1	mA
	-ISBY	Ven(0-15) = 4V, Va(0-3) = 0 <u>7</u> /	-1	0	mA
Address Input Current	IAL(0-3)A	VA = 0V	-2	2	μΑ
	Іан(0-3)а	VA = 5V	-2	2	μΑ
Enable Input Current	IENL(0-15)	VEN(0-15) = 0V	-2	2	μΑ
	IENH(0-15)	VEN(0-15) = 5V	-2	2	μΑ

^{1/} All measurements are made with respect to ground.

DC ELECTRICAL PERFORMANCE CHARACTERISTICS 1/ (continued)

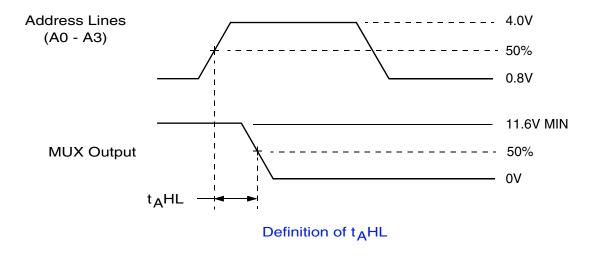
(TC = -55°C TO +125°C, -VEE = -15V, VREF = +5.0V, +VEE = +15V - UNLESS OTHERWISE SPECIFIED)

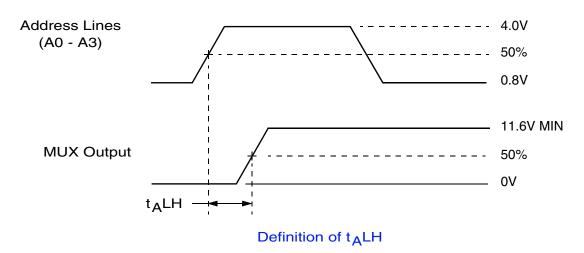
Parameter	Symbol	Conditions			Max	Units
Positive Input Leakage Current (CH0-CH15)	+ISOFFOUTPUT(ALL)	VIN = +10V, VEN = 4V, output and all unused MUX inputs under test = -10V $\underline{2}$ /, $\underline{3}$ /			+1000	nA
Negative Input Leakage Current (CH0-CH15)	-ISOFFOUTPUT(ALL)	$V_{IN} = -10V$, $V_{EN} = 4V$, output and all unused MUX inputs under test = +10V $\underline{2}$ /, $\underline{3}$ /			+1000	nA
Positive Output Leakage Current OUTPUTS (pins 12,45)	+IDOFFOUTPUT(ALL)	VOUT = +10V, VEN = 4V, output and all unused MUX inputs under test = -10V $\underline{3}$ /, $\underline{4}$ /			+100	nA
Negative Output Leakage Current OUTPUTS (pins 12,45)	-IDOFFOUTPUT(ALL)	VOUT = -10V, VEN = 4V, output and all unused MUX inputs under test = +10V $\underline{3}$ /, $\underline{4}$ /		-100	+100	nA
Input Clamped Voltage (CH0-CH15)	+VCLMP	+25°C +125°C VEN = 4V, all unused MUX inputs under test		18.0 18.0 17.5	23.0 23.5 22.5	>>>
Input Clamped Voltage (CH0-CH15)	-VCLMP	are open. 3/	+25°C +125°C -55°C	-23.0 -23.5 -22.5	-18.0 -18.0 -17.5	V V
Switch ON Posistance	RDS(ON)(0-15) _A	VIN = +15V, $VEN = 0.8V$, $IOUT = -1mA 2/, 3/, 5/$		200	1000	Ω
Switch ON Resistance OUTPUTS (pins 12,45)	RDS(ON)(0-15) _B	Vin = +5V, Ven = 0.8V, Iout = -1mA <u>2</u> /, <u>3</u> /, <u>5</u> /			1500	Ω
<u>6</u> /	RDS(ON)(0-15) _C	VIN = -5V, $VEN = 0.8V$, $IOUT = +1mA 2/, 3/, 5/$			2500	Ω

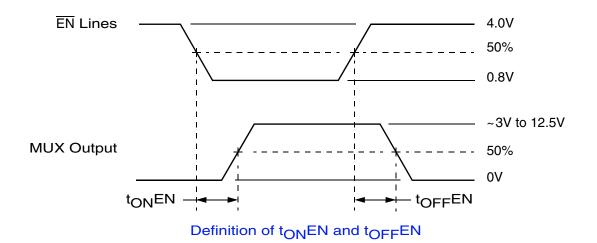
Notes:

- 1/ Measure inputs sequentially. Ground all unused inputs of the device under test. VA is the applied input voltage to the address lines A(0-3).
- 2/ VIN is the applied input voltage to the input channels (CH0-CH15).
- 3/ VEN is the applied input voltage to the enable line \overline{EN} (0-15).
- 4/ Vout is the applied input voltage to the output lines OUTPUT (0-15), CURRENT (0-15)
- 5/ Negative current is the current flowing out of each of the MUX pins. Positive current is the current flowing into each MUX pin.
- 6/ The MUX8531 cannot be operated with analog inputs from -15 to -5 volts.
- 7/ Not tested, guaranteed to the specified limits.

SWITCHING CHARACTERISTICS


(TC = -55°C TO +125°C, -VEE = -15V, VREF = +5.0V, +VEE = +15V -- UNLESS OTHERWISE SPECIFIED)


Parameter	Symbol	Conditions	Min	Max	Units
Switching Test MUX	t _A HL	$RL = 10K\Omega$, $CL = 50pF$	10	1000	ns
	t _A LH		10	1000	ns
	t _{ON} EN	Di 4VO Ci 50°E	10	1000	ns
	t _{OFF} EN	$RL = 1K\Omega$, $CL = 50pF$	10	1000	ns

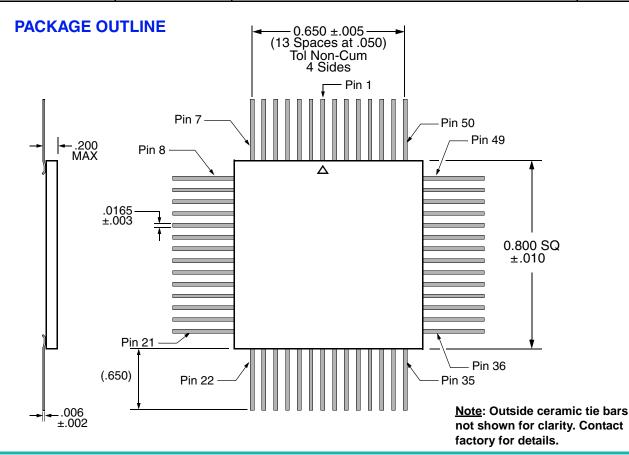

TRUTH TABLE (CH0-CH15)

А3	A2	A 1	Α0	EN (0-15)	"ON" CHANNEL 1/
Х	Х	Χ	Х	Н	NONE
L	L	L	L	L	CH0
L	L	L	Н	L	CH1
L	L	Н	L	L	CH2
L	L	Н	Н	L	CH3
L	Н	L	L	L	CH4
L	Н	L	Н	L	CH5
L	Н	Н	L	L	CH6
L	Н	Н	Н	L	CH7
Н	L	L	L	L	CH8
Н	L	L	Н	L	CH9
Н	L	Н	L	L	CH10
Н	L	Н	Н	L	CH11
Н	Н	L	L	L	CH12
Н	Н	L	Н	L	CH13
Н	Н	Н	L	L	CH14
Н	Н	Н	Н	L	CH15

 $[\]underline{1}$ / Between (CH0-CH15) and OUTPUT (0-15), CURRENT (0-15)

NOTE: f = 10KHz, Duty cycle = 50%.

MUX8531 SWITCHING DIAGRAMS


PIN NUMBERS & FUNCTIONS

MUX8531 – 56 Leads Ceramic QUAD Flat Pack					
Pin#	Function	Pin#	Function		
1	CH0	29	NC		
2	CH1	30	NC		
3	CH2	31	NC		
4	CH3	32	NC		
5	CH4	33	NC		
6	CH5	34	NC		
7	GND	35	GND		
8	GND	36	GND		
9	CH6	37	NC		
10	CH7	38	NC		
11	CASE GND	39	VREF		
12	OUTPUT (0-15)	40	NC		
13	EN (0-15)	41	NC		
14	A0	42	NC		
15	A1	43	NC		
16	A2	44	NC		
17	A3	45	CURRENT (0-15)		
18	+VEE	46	-VEE		
19	CH15	47	NC		
20	CH14	48	NC		
21	GND	49	GND		
22	GND	50	GND		
23	CH13	51	NC		
24	CH12	52	NC		
25	CH11	53	NC		
26	CH10	54	NC		
27	CH9	55	NC		
28	CH8	56	NC		

- It is recommended that all "NC" or "no connect pin", be grounded. This eliminates or minimizes any ESD or static buildup.
 Package lid is internally connected to circuit ground (Pins 7, 8, 11, 21, 22, 35, 36, 49, 50).

ORDERING INFORMATION

Model	DSCC SMD #	Screening	Package
MUX8531-7	-	Commercial Flow, +25°C testing only	
MUX8531-S	-	Military Temperature, -55°C to +125°C Screened in accordance with the individual Test Methods of MIL-STD-883 fro Space Applications	QUAD Flat Pack
MUX8531-201-1S	5962-0923002KXC	In accordance with DSCC SMD	

EXPORT CONTROL:

This product is controlled for export under the International Traffic in Arms Regulations (ITAR). A license from the U.S. Department of State is required prior to the export of this product from the United States.

EXPORT WARNING:

Aeroflex's military and space products are controlled for export under the International Traffic in Arms Regulations (ITAR) and may not be sold or proposed or offered for sale to certain countries. (See ITAR 126.1 for complete information.)

PLAINVIEW, NEW YORK INTERNATIONAL NORTHEAST Toll Free: 800-THE-1553 Tel: 805-778-9229 Tel: 603-888-

Toll Free: 800-THE-1553 Tel: 805-778-9229 Tel: 603-888-3975 Fax: 516-694-6715 Fax: 805-778-1980 Fax: 603-888-4585

SE AND MID-ATLANTIC WEST COAST CENTRAL

Tel: 321-951-4164 Tel: 949-362-2260 Tel: 719-594-8017 Fax: 321-951-4254 Fax: 949-362-2266 Fax: 719-594-8468

www.aeroflex.com info-ams@aeroflex.com

Aeroflex Microelectronic Solutions reserves the right to change at any time without notice the specifications, design, function, or form of its products described herein. All parameters must be validated for each customer's application by engineering. No liability is assumed as a result of use of this product. No patent licenses are implied.

A passion for performance.

Our passion for performance is defined by three attributes represented by these three icons: solution-minded, performance-driven and customer-focused