# CMOS

## PLESSEY Semiconductors

# MV8860

## DTMF DECODER

The MV8860 detects and decodes all 16 DTMF tone pairs. The device accepts the high group and low group square wave signals from a DTMF filter (MV8865) and provides a 3-state buffered 4-bit binary output. The clock signals are derived from an on-chip oscillator requiring only a single resistor and low cost crystal as external components. The MV8860 is implemented in CMOS technology and incorporates an on-chip regulator, providing low power operation and power supply flexibility.

The MV8860 is available in Plastic DIL (DP) and Ceramic DIL (DG), both with an operating temperature range of  $-40^{\circ}$ C to  $+85^{\circ}$ C.

## FEATURES

- 18 Pin DIL Package
- Central Office Quality Detection
- Excellent Voice Talk-Off
- Detect Times down to 20 ms
- Single Supply 5V, or 8 to 13V Operation
- Latched 3-State Buffered Outputs
- Detects All 16 DTMF Combinations
- Uses Inexpensive 3.58 MHz Crystal
- Low Power CMOS Circuitry
- Adjustable Acquisition and Release Times
- Equivalent to MT8860X



Fig.1 Pin connections (top view)

#### APPLICATIONS

#### in DTMF Receivers For:

- End-to-end Signalling
  - Control Systems
- PABX
- Central Office
- Mobile Radio
- Key Systems
- Tone to Pulse Converters



Fig.2 MV8860 functional block diagram

#### MV8860

#### **DC ELECTRICAL CHARACTERISTICS**

Test conditions (unless otherwise stated):  $T_{amb} = +25^{\circ}C; f_{c} = 3.579545 \text{ MHz}$ 5 V operation:  $V_{DD} - V_{EE} = 5V$ ,  $V_{SS} = V_{EE}$ , connections as Fig.5a 12 V operation:  $V_{DD} - V_{EE} = 12 \text{ V}$ ,  $R_{SSEE} = 900\Omega$ , connections as Fig.5b Outputs not loaded For input current parameters only,  $V_{IH} = V_{IHO} = V_{DD}$ ,  $V_{IL} = V_{EE}$ ,  $V_{ILO} = V_{SS}$ All voltages referenced to  $V_{EE}$  unless otherwise noted.

|    |     | Characterist                         | Symbol                  | Min              | Тур      | Max      | Unit     | Test Conditions      |                                        |
|----|-----|--------------------------------------|-------------------------|------------------|----------|----------|----------|----------------------|----------------------------------------|
| 1  |     | Operating Supply Vo                  | V <sub>DD</sub>         | 4.75             | 5        | 5.25     | V        | Connections Fig. 5a  |                                        |
| 2  |     | (V <sub>DD</sub> - V <sub>EE</sub> ) |                         | 8                |          | 13       | V        | Connections Fig. 5b  |                                        |
| 3  | S   | Internal Logic Groun                 | Vapos                   | 4.75             |          | 5.25     | V        | Connections Fig. 5a  |                                        |
| 4  | 0   | (V <sub>DD</sub> - V <sub>SS</sub> ) |                         | * DDSS           | 6.0      | 6.5      | 7.5      | <u>v</u>             | Connections Fig. 5b                    |
| 5  | 1   | Operating Supply Current             |                         | laa              |          | 1.3      | 4        | mA                   | 5V                                     |
| 6  |     | operating ouppit ou                  | .00                     |                  | 2.5      | 5        | mA       | 12V VDD - Vss = 5.5V |                                        |
| 7  |     | Internal Logic Groun                 | I <sub>SS</sub>         |                  | 5.5      | 6.7      | mA       | 12V RSSEE = 900Ω     |                                        |
| 8  | Y   | Operating Power Consumption          |                         | Po               |          | 6.5      |          | mW                   | 5V                                     |
| 9  |     |                                      |                         |                  | 66       |          | mW       | _ 12V                |                                        |
| 10 |     | High Level Input Volt                | age                     | V <sub>IH</sub>  | 3.5      | 4        |          | <u>v</u>             | 5V                                     |
| 11 | l.  | (All Inputs Except OS                | iC1)                    | +                | 8.5      | 9        |          | <u> </u>             | 12V                                    |
| 12 |     | Low Level Input Volta                | VIL                     |                  | 1        | 1.5      | <u> </u> | 5V                   |                                        |
| 13 | Į   | (All Inputs Except OS                |                         | <u> </u>         | 3        | 3.5      | <u> </u> | 12V                  |                                        |
| 14 |     | High Level Input Volt                | V <sub>IHO</sub>        | 3.5              | 4.5      |          | <u> </u> | 5V                   |                                        |
| 15 | 1   | 0501                                 |                         | 10.5             | 11       |          | <u> </u> | 12V                  |                                        |
| 16 | N   | Low Level Input Volta                | age                     | VILO             |          | 0.5      | 1.5      | V V                  | SV Her V <sub>SS</sub>                 |
| 11 | P   | OSCI                                 | - 1-1                   |                  | +        | 0.5      | 1.5      | <u>v</u>             | 12V Her V <sub>SS</sub>                |
| 18 | U   | Steering input I nrest               | noia                    | VTSt             | 2.04     | 2.27     | 2.5      | <u>v</u>             | 50                                     |
| 19 | T   | Voltage                              |                         |                  | 5.4      | 6.0      | 6.6      | V                    | 120                                    |
| 20 | s   | Pull Down Sink Current               |                         | l IIII           | 10       | 25       | 75       | ALL                  | 50                                     |
| 21 |     |                                      |                         |                  | 10       | 190      | 400      | ALL                  | 120                                    |
| 22 |     | Pull Up Source Current               |                         | In T             | 2        | 7        | 45       | ALL                  | 50                                     |
| 23 |     |                                      |                         |                  | 10       | 55       | 250      | AIA                  | 12V                                    |
| 24 |     | Input High Leakage C                 | ut High Leakage Current |                  |          | 0.1      | 1.5      | AIA                  | 5V 0r 12V                              |
| 25 | L   | Input Low Leakage C                  | urrent                  |                  | +        | 0.1      | 1.5      | ALA                  |                                        |
| 26 | 0   | High Level Output Voltage            |                         | V <sub>OH</sub>  | 4.9      |          |          | <u>v</u>             | 5V                                     |
| 27 | Y Y | (All Outputs Except C                |                         | 11.9 V 12V       | 12V      |          |          |                      |                                        |
| 28 | P   | Low Level Output vo                  |                         |                  |          | 0.1      | <u>v</u> | 5V                   |                                        |
| 29 | Ŭ   | (All Outputs Except C                | V <sub>OHO</sub> 4.9    |                  |          | 0.1      | <u> </u> | 12V                  |                                        |
| 30 |     | High Level Output Voltage            |                         | 4.9              |          |          | <u> </u> | 5V                   |                                        |
| 31 | 3   | Low Level Output V                   |                         |                  | <u> </u> | 5V Ref V |          |                      |                                        |
| 33 |     |                                      |                         | V <sub>OLO</sub> |          |          | 0.1      | v                    | 12V Ref V                              |
| 34 |     | Output Drive                         | P Channel               |                  | 101      | 0.6      | 0.1      | mA                   | $5V V_{au} = 45V$                      |
| 35 |     | Current                              | Fonanner                | I <sub>ОН</sub>  | 0.4      | 0.8      |          | mA                   | $12VV_{OH} = 115V$                     |
| 36 | 0   | (All Outpute                         | N Channel               | <u> </u>         | 0.5      | 1.0      |          | mA                   | 5V V 0.5V                              |
| 37 | U   | Except OSC2)                         | Sink                    | OL               | 1.0      | 1.2      |          | mA                   | $12VV_{0L} = 0.5V$                     |
| 38 | Т   | Output Drive                         | B Channel               |                  | 1.0      | 120      |          | 114                  | $5V_{V_{2}} = 45V_{2}$                 |
| 30 | Ρ   | Current                              | Pouroo                  | Гоно             | - 30     | 120      |          |                      | $12VV_{0H} = 115V$                     |
| 40 | U   | Current                              | Source                  |                  | 30       | 120      |          | 414                  | $5V V_{\odot} = 0.5V$                  |
| 41 | Т   | 0302                                 | Sink                    | IOLO             | 100      | 100      |          |                      | $12V V_{cc} = 0.5V$                    |
| 42 | S   | Tristate Output                      |                         |                  | 100      | 160      | 1.5      |                      | $5V \text{ App} V_{\text{ev}} = 0.5V$  |
| 43 |     |                                      |                         | 4                | <b> </b> | 0.035    | 1.5      |                      | $5V \text{ Appl } V_{OL} = 5V$         |
| 44 |     | (High Impodence                      |                         | 1 !              |          | 0.1      | 1.5      |                      | $12V \text{ Appl } V_{\text{OH}} = 0V$ |
| 45 |     | (migh impedance                      | $L_1 \cdot L_4 = \Pi$   | loz              |          | 0.1      | 1.5      |                      |                                        |
| 40 |     | ( State)                             | $-1 \cdot -4 = -1$      |                  |          | 0.3      | 1.5      |                      | 1 12 V VPH VOH = 12V                   |

All "typical" parametric information is for design aid only, not guaranteed and not subject to production testing.

### AC ELECTRICAL CHARACTERISTICS

#### Test conditions (unless otherwise stated):

 $T_{amb} = +25^{\circ}C; V_{DD} = +5V; f_{c} = 3.579545 MHz$ 

|    |          | Characte                                                | pristic                                  | Symbol                  | Min    | Тур    | Max    | Unit          | Test Con            | ditions         |  |
|----|----------|---------------------------------------------------------|------------------------------------------|-------------------------|--------|--------|--------|---------------|---------------------|-----------------|--|
| 1  | -        | Tone Frequency                                          | ∆f <sub>A</sub>                          |                         | -      | ±2.5   | % Nom. |               |                     |                 |  |
| 2  |          | Tone Frequency Deviation Reject                         |                                          | ∆f <sub>R</sub>         | ±3.5   |        |        | % Nom.        |                     |                 |  |
| 3  |          | Tone Present Detection Time                             |                                          | t <sub>DP</sub>         | 6      |        | 10     | ms            |                     |                 |  |
| 4  | 'e       | Tone Absent Detection Time                              |                                          | t <sub>DA</sub>         | 0.6    | 4      | 10     | ms            |                     |                 |  |
| 5  |          | Guard Time (Adjustable)                                 |                                          | t <sub>GT(P or E)</sub> |        | 20     |        | ms            | See Fig. 3          |                 |  |
| 6  | L C      | Time to Receive = $(t_{DP} + t_{GTP})$                  |                                          | t <sub>REC</sub>        | 28     | 30     | 35     | ms            | Fig. 7a R =         | 300k Ω          |  |
| 7  |          | Invalid Tone Duration (fn of tREC)                      |                                          | <sup>t</sup> REC        |        |        | 20     | ms            | C =                 | 0.1µF           |  |
| 8  |          | Interdigit Pause = $(t_{DA} + t_{GTA})$                 |                                          | t <sub>iD</sub>         | 30     |        |        | ms            |                     |                 |  |
| 9  | n        | Acceptable Drop                                         | Out (f <sub>n</sub> of t <sub>iD</sub> ) | t <sub>DO</sub>         |        |        | 20     | ms            |                     |                 |  |
| 10 | I/P      | FL FH Input Transition Time                             |                                          | t <sub>T</sub>          |        |        | 1.0    | us            | 10% - 90% \         | / <sub>DD</sub> |  |
| 11 |          | Capacitance Any Input                                   |                                          | С                       |        | 5      | 7.5    | pF            |                     |                 |  |
| 12 |          | Propogation Delay St to L <sub>1</sub> - L <sub>4</sub> |                                          | t <sub>PL</sub>         |        | 8      | 11     | μs            | V <sub>DD</sub> 5V  |                 |  |
| 13 |          |                                                         |                                          |                         |        | 8      | 11     | Jus           | V <sub>DD</sub> 12V |                 |  |
| 14 | U<br>T   | Propogation Delay St to StD                             |                                          | t <sub>PStD</sub>       |        | 12     | 14     | <i>i</i> us 🗸 | V <sub>DD</sub> 5V  |                 |  |
| 15 | <u>.</u> |                                                         |                                          |                         |        | 12     | 14     | AUS           | V <sub>DD</sub> 12V |                 |  |
| 16 |          | Propogation                                             | Enable                                   | t <sub>PTE</sub>        |        | 300    |        | ns            | V <sub>DD</sub> 5V  |                 |  |
| 17 | Ţ        | Delay TOE to                                            |                                          |                         |        | 200    |        | ns            | V <sub>DD</sub> 12V |                 |  |
| 18 | l<br>c   | L <sub>1</sub> · L <sub>4</sub>                         | Disable                                  | t <sub>ern</sub>        |        | 300    |        | ns            | V <sub>DD</sub> 5V  |                 |  |
| 19 | 3        |                                                         |                                          |                         |        | 200    |        | ns            | V <sub>DD</sub> 12V |                 |  |
| 20 |          | Crystal/Clock Fre                                       | quency                                   | f <sub>c</sub> 3        | 3.5759 | 3.5795 | 3.5831 | MHz           | OSC 1               | OSC 2           |  |
| 21 | С        | Clock                                                   | Rise Time                                | tLHCI                   |        |        | 110    | ns            | 10% - 90%           | Externally      |  |
| 22 | L        | Input                                                   | Fall Time                                | t <sub>HLCI</sub>       |        |        | 110    | ns            | $V_{DD} = V_{SS}$   | Applied         |  |
| 23 | 0        | (OSC 1)                                                 | Duty Cycle                               | DC <sub>CI</sub>        | 40     | 50     | 60     | %             |                     | Clock           |  |
| 24 | C        | Clock Output                                            | Capacitive                               | CLOC                    |        |        | 30     | pF            | With Clock          | Drive to OSC 1  |  |
| 25 | κ        | (OSC 2)                                                 | Load                                     | CLOX                    |        |        |        | nF            | Sinusoidal O        | utput           |  |
|    |          |                                                         |                                          |                         |        |        |        |               | With Crystal        |                 |  |

#### ABSOLUTE MAXIMUM RATINGS

The absolute maximum ratings are limiting values above which operating life may be shortened or specified parameters may be degraded.

| Para                                     | meter                             | Min                   | Max                   |           |                                                                                                  |              | Max    |  |
|------------------------------------------|-----------------------------------|-----------------------|-----------------------|-----------|--------------------------------------------------------------------------------------------------|--------------|--------|--|
| V <sub>DD</sub> - V <sub>EE</sub>        |                                   |                       | 16                    | v         | Bower Dissination                                                                                | DG Package*  | 1000mW |  |
| Voo - Vee (LO                            | w                                 |                       |                       | <u> </u>  |                                                                                                  | DP Package** | 450mW  |  |
| Impedance S                              | upply)                            |                       | 5.5                   | v         | * Derate 16mW/ °C above 75 °C<br>** Derate 6.3mW/ °C above 25 °C<br>All leads soldered to PC boa |              |        |  |
| Voltage on an<br>except OSC1             | ny pin<br>OSC2                    | V <sub>EE</sub> -0.3  | V <sub>DD</sub> + 0.3 | v         |                                                                                                  |              |        |  |
| Voltage OSC                              | 1 OSC2                            | V <sub>SS</sub> - 0.3 | V <sub>DD</sub> + 0.3 | V         | 1                                                                                                |              |        |  |
| Max current<br>(except V <sub>DD</sub> & | at any pin<br>& V <sub>EE</sub> ) |                       | 10                    | mA        |                                                                                                  |              |        |  |
| Operating<br>Temperature                 | DP/DG<br>Package                  | - 40                  | + 85                  | °C        |                                                                                                  |              |        |  |
| Storage                                  | DG Package                        | - 55                  | +175                  | °C        | ]                                                                                                |              |        |  |
| Temperature                              | DP Package                        | - 55                  | +125                  | <b>°C</b> |                                                                                                  |              |        |  |

#### Original Detected Tone TOE L4 L3 L2 L1 Character INH ESt ESt St GT StD\* Character ø None L L L L L L Ζ Ζ Ζ Ζ н z X Х Ł н L L н L L 1 L н DR Н н z н н L L 2 н L н L D н L Н н н н 3 Η L L Н Н (b) Inhibit function (c) Steering L н L L 4 н DR L Ł 5 Η н н \* DELAYED WRT St. н 6 н L н L н FOR THE PURPOSE OF THESE TABLES CONSIDER: L н 7 н н 8 н н L L L V<sub>St</sub> < V<sub>TSt</sub> LOGIC LOW (L) V<sub>St</sub> > V<sub>TSt</sub> LOGIC HIGH (H) L L 9 Н н н 0 н Н L н L H≕LOGIC HIGH L≕LOGIC LOW Ø"=""DON'T CARE" LOGIC HIGH OR LOW Z = HIGH IMPEDANCE X=ANY CHARACTER ¥ н н L н Н L Ł Η н н 4 D н Н Н L Н A н н L в н н С н н н н н D н L L L L (a) Output coding





Fig.3 Timing diagram

### **PIN FUNCTIONS**

| Pin | Name                                                                                                                                                                                        | Description                                                                                                                                                                                                                                                                                           |                                                                                                               |  |  |  |  |  |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| 1   | OSC2                                                                                                                                                                                        | CLOCK OUTPUT                                                                                                                                                                                                                                                                                          | 3.58MHz crystal with parallel 5M $\Omega$ resistor connected between these pips completes internal oscillator |  |  |  |  |  |
| 2   | OSC1                                                                                                                                                                                        | CLOCK INPUT                                                                                                                                                                                                                                                                                           | running between $V_{DD}$ and $V_{SS}$ .                                                                       |  |  |  |  |  |
| 3   | IC                                                                                                                                                                                          | Internal connection for testing only (reset) Note 1                                                                                                                                                                                                                                                   |                                                                                                               |  |  |  |  |  |
| 4   | FH                                                                                                                                                                                          | High frequency group input. Accepts single rectangular wave High group tone from DTMF filter                                                                                                                                                                                                          |                                                                                                               |  |  |  |  |  |
| 5   | L1                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                       |                                                                                                               |  |  |  |  |  |
| 6   | L2                                                                                                                                                                                          | Data Outputs. 3 state<br>Provides 4 Bit binary                                                                                                                                                                                                                                                        | buffered<br>word corresponding to the tone pair decoded, when                                                 |  |  |  |  |  |
| 7   | L3                                                                                                                                                                                          | enabled by TOE<br>See Table 1 for state table                                                                                                                                                                                                                                                         |                                                                                                               |  |  |  |  |  |
| 8   | L4                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                       |                                                                                                               |  |  |  |  |  |
| 9   | TOE                                                                                                                                                                                         | 3 state output enable input. Logic high on this input enables outputs L1-L4.<br>Internal pull up                                                                                                                                                                                                      |                                                                                                               |  |  |  |  |  |
| 10  | 10 $V_{SS}$ Internal logic ground. For $V_{DD} \cdot V_{EE} = 5V V_{SS}$ connected to $V_{EE}$ .<br>For $V_{DD} \cdot V_{EE} > 8V$ , $V_{SS}$ connected via resistor to $V_{EE}$ see Fig. 5 |                                                                                                                                                                                                                                                                                                       |                                                                                                               |  |  |  |  |  |
| 11  | V <sub>EE</sub>                                                                                                                                                                             | Negative power supply. External logic ground                                                                                                                                                                                                                                                          |                                                                                                               |  |  |  |  |  |
| 12  | INH                                                                                                                                                                                         | Inhibit input. Logic high inhibits detection of tones<br>representing characters #, *, A, B, C, D. Internal pull down                                                                                                                                                                                 |                                                                                                               |  |  |  |  |  |
| 13  | FL                                                                                                                                                                                          | Low frequency group input. Accepts single rectangular wave low group tone from DTMF filter                                                                                                                                                                                                            |                                                                                                               |  |  |  |  |  |
| 14  | St                                                                                                                                                                                          | Steering input. A voltage greater than $V_{TSt}$ on this input causes the device to accept validity of the detected tone pair and latch the corresponding codeword at the outputs Voltage $< V_{TSt}$ on this pin frees the device to accept a new tone pair. See Table 1c and Functional Description |                                                                                                               |  |  |  |  |  |
| 15  | StD                                                                                                                                                                                         | Delayed Steering Output. Flags when a valid tone pair has been received. Presents logic high when output latch updated. When St voltage exceeds $V_{TSt}$ . Returns to logic low when St voltage falls below $V_{TSt}$                                                                                |                                                                                                               |  |  |  |  |  |
| 16  | ESt                                                                                                                                                                                         | Early Steering Output. Presents a logic high immediately the digital algorithm detects a recognisable tone pair. Any momentary loss of the incoming tone or excessive distortion of the tone will cause ESt to return to a logic low                                                                  |                                                                                                               |  |  |  |  |  |
| 17  | GT                                                                                                                                                                                          | Guard Time Output. 3 state output. Normally connected to St, is used in the steering algorithm and is a function of St and ESt (See Table 1c)                                                                                                                                                         |                                                                                                               |  |  |  |  |  |
| 18  | V <sub>DD</sub>                                                                                                                                                                             | Positive power supply                                                                                                                                                                                                                                                                                 |                                                                                                               |  |  |  |  |  |

Note 1: Must be left open circuit.

#### MV8860

#### **OPERATING NOTES**

The MV8860 is a CMOS Digital DTMF detector and decoder. Used in conjunction with a suitable DTMF filter (MV8865) it can detect and decode all 16 Standard DTMF tone pairs, accurately discriminating between adjacent frequencies in both high and low groups in the presence of noise and normal voice signals.

To form a complete DTMF receiver the MV8860 must be preceded by a DTMF filter, the function of which is to separate the high group and low group components of the composite dual tone signal and limit the resulting pair of sinewave signals to produce rectangular wave signals having the same frequencies as the individual components of the composite DTMF input. The high group and low group rectangular waves are applied to the MV8860s FH and FL inputs, respectively. The MV8865 DTMF filter provides these functions.

Within the MV8860 the FL and FH signals are operated on by a complex averaging algorithm. This is implemented using digital counting techniques (Control/Discriminators, Fig.2) to determine the frequencies of the incoming tones and verify that they correspond to standard DTMF frequencies. When both high group and low group signals have been simultaneously detected, a flag ESt (Logic High), is generated. ESt is generated (cancelled) rapidly on detecting the presence (absence) of a DTMF tone pair (see Fig.3) and is used to perform a final validity check.

The final validity check requires the input DTMF signal to be present uninterrupted by drop out or excessive distortion (which would result in ESt being cancelled) for a minimum time ( $t_{REC}$ ) before being considered valid. This contributes greatly to the talk off performance of the system. The check also imposes a minimum period of 'tone absent' before a valid received tone is recognised as having ended. This allows short periods of drop out ( $t_{DO}$ ) or excessive noise to occur during a received tone, without it being misinterpreted as two successive characters by the steering circuit (ESt, St, GT). A capacitor C (Fig.7a) is charged via resistor R from ESt which a DTMF tone pair is detected. After a period  $t_{GTP}$ ,  $V_C$  exceeds the St input threshold voltage  $V_{TSt}$ , setting an internal flag indicating the detected signal is valid. Functioning of the check algorithm is completed by the three state output GT which is

normally connected to St and operates under the control of ESt and St. Its mode of operation is shown by the steering state table (Table 1c) and timing diagram (Fig.3).

Internally the presence of the ESt flag allows the control/discriminator to identify the detected tones to the code converter which in turn presents a 4 bit binary code word, corresponding to the original transmitted character, to the output latch. The appearance of the internal St flag clocks the latch, presenting the output code at the tristate outputs L<sub>1</sub> to L<sub>4</sub>. The St internal flag is delayed (by t<sub>PStD</sub>) and appears at the StD output to provide a strobe output function indicating that a new character has been received and the output updated. StD will return to a logic low after the St flag has been reset by V<sub>C</sub> (Fig.7a) falling below V<sub>TS1</sub>.

Increasing the 'time to receive' (t<sub>REC</sub>) tends to further improve talk off performance (discrimination against voice simulation of a DTMF tone pair) but degrades the acceptable signal to noise ratio for the incoming signal. Increasing interdigit pause t<sub>ID</sub> further reduces the probability of receiving the same character twice and improves acceptable signal to noise ratio but imposes a longer interdigit pause. Reducing t<sub>REC</sub> or t<sub>ID</sub> has the opposite effect respectively. The values of t<sub>REC</sub> and t<sub>ID</sub> can be tailored by adjusting t<sub>GTP</sub> and t<sub>GTA</sub> as shown in Fig.7.

When  $L_1$  to  $L_4$  are connected to a data bus TOE may be controlled by external circuitry or connected directly to StD automatically enabling the outputs whenever a tone is received. In either case StD may be used to flag external circuitry indicating a character has been received.

The MV8860 may be operated from either a 5V or 8 to 13V supply by use of the internal zener reference. The relevant connection diagrams are shown in Fig.5.

When using the MV8860 with the MV8865 DTMF filter it is only necessary to use the MV8865 crystal oscillator (see Fig.6). When using the higher supply voltage range the MV8865 OSC2 output should be capacitively coupled to the MV8860 OSC1 input as shown in Fig.6.

Where it is desirable to receive only the characters available on a rotary dial telephone, taking INH to a logic high inhibits detection of the additional DTMF characters. Incidentally this also further improves talk off due to the reduced number of detectable tones.



Fig.4 DTMF matrix, indicating character-tone pair correspondence

Fig.5 Power supply connection options

#### MV8860



Fig.6 Single-ended input receiver using the MV8865 (5V operation)



Fig.7 Guard time adjustment