Freescale Semiconductor, Inc. MOTOROLA SEMICONDUCTOR TECHNICAL DATA

The Wideband IC Line

RF LDMOS Wideband Integrated Power Amplifiers

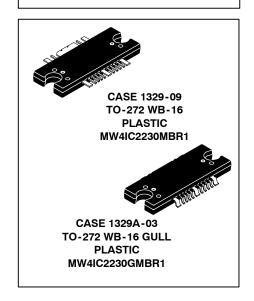
The MW4IC2230 wideband integrated circuit is designed for W-CDMA base station applications. It uses Motorola's newest High Voltage (26 to 28 Volts) LDMOS IC technology and integrates a multi-stage structure. Its wideband On-Chip design makes it usable from 1600 to 2400 MHz. The linearity performances cover all modulations for cellular applications: GSM, GSM EDGE, TDMA, CDMA and W-CDMA.

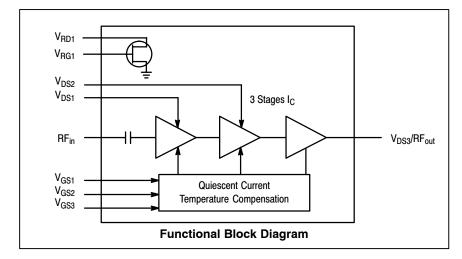
Final Application

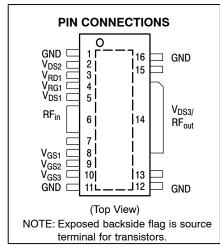
Typical Single-carrier W-CDMA Performance: V_{DD} = 28 Volts, I_{DQ1} = 60 mA, I_{DQ2} = 350 mA, P_{out} = 5 Watts Avg., f = 2140 MHz, Channel Bandwidth = 3.84 MHz, Peak/Avg. = 8.5 dB @ 0.01% Probability on

Power Gain - 31 dB Drain Efficiency — 15% ACPR @ 5 MHz = -45 dBc @ 3.84 MHz Bandwidth

Driver Application


Typical Single-carrier W-CDMA Performance: V_{DD} = 28 Volts, I_{DQ1} = 60 mA, I_{DQ2} = 350 mA, P_{out} = 0.4 Watts Avg., f = 2140 MHz, Channel Bandwidth = 3.84 MHz, Peak/Avg. = 8.5 dB @ 0.01% Probability on CCDF. Power Gain — 31.5 dB


ACPR @ 5 MHz = -53.5 dBc @ 3.84 MHz Bandwidth


- Capable of Handling 3:1 VSWR, @ 28 Vdc, 2170 MHz, 5 Watts CW **Output Power**
- Characterized with Series Equivalent Large-Signal Impedance Parameters
- On-Chip Matching (50 Ohm Input, DC Blocked, >5 Ohm Output)
- Integrated Temperature Compensation with Enable/Disable Function
- On-Chip Current Mirror g_m Reference FET for Self Biasing Application (1)
- Integrated ESD Protection
- Also Available in Gull Wing for Surface Mount
- In Tape and Reel. R1 Suffix = 500 Units per 44 mm, 13 inch Reel

MW4IC2230MBR1 MW4IC2230GMBR1

2110-2170 MHz, 30 W, 28 V SINGLE W-CDMA **RF LDMOS WIDEBAND** INTEGRATED POWER AMPLIFIERS

(1) Refer to AN1987/D, Quiescent Current Control for the RF Integrated Circuit Device Family. Go to http://www.motorola.com/semiconductors/rf. Select Documentation/Application Notes - AN1987.

> MOTOROLA intelligence everywhere

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Drain-Source Voltage	V _{DSS}	65	Vdc
Gate-Source Voltage	V _{GS}	-0.5, +8	Vdc
Storage Temperature Range	T _{stg}	-65 to +175	°C
Operating Channel Temperature	TJ	175	°C
Input Power	P _{in}	20	dBm

THERMAL CHARACTERISTICS

Characteristic		Value (1)	Unit
Thermal Resistance, Junction to Case			°C/W
Stage 1	$R_{\theta JC}$	10.5	
Stage 2		5.1	
Stage 3		2.3	

ESD PROTECTION CHARACTERISTICS

Test Conditions	Class
Human Body Model	2 (Minimum)
Machine Model	M3 (Minimum)
Charge Device Model	C5 (Minimum)

MOISTURE SENSITIVITY LEVEL

Test Methodology	Rating
Per JESD 22-A113	3

ELECTRICAL CHARACTERISTICS (T_C = 25°C unless otherwise noted)

Characteristic	Symbol	Min	Тур	Max	Unit
----------------	--------	-----	-----	-----	------

FUNCTIONAL TESTS (In Motorola Test Fixture, 50 ohm system) $V_{DD} = 28$ Vdc, $I_{DQ1} = 60$ mA, $I_{DQ2} = 350$ mA, $I_{DQ3} = 265$ mA, Pout = 0.4 W Avg., f = 2110 MHz, f = 2170 MHz, Single-carrier W-CDMA. ACPR measured in 3.84 MHz Channel Bandwidth @ ±5 MHz Offset. Peak/Avg. Ratio = 8.5 dB @ 0.01% Probability on CCDF.

Power Gain	G _{ps}	29	31.5	_	dB
Input Return Loss	IRL	_	-25	-10	dB
Adjacent Channel Power Ratio $P_{out} = 0.4 \text{ W Avg.}$ $P_{out} = 1.26 \text{ W Avg.}$		_ _	-53.5 -52	-50 —	dBc
Stability (10 mW <p<sub>out<5 W CW, Load VSWR = 3:1, All Phase Angles, 24 V<vds<28 td="" v)<=""><td></td><td colspan="3">No Spurious > -60 dBc</td><td></td></vds<28></p<sub>		No Spurious > -60 dBc			

TYPICAL PERFORMANCES (In Motorola Test Fixture tuned for 0.4 W Avg. W-CDMA driver) VDD = 28 Vdc, IDQ1 = 60 mA, IDQ2 = 350 mA, I_{DQ3} = 265 mA, 2110 MHz<Frequency <2170 MHz

Saturated Pulsed Output Power (f = 1 kHz, Duty Cycle 10%)	P _{sat}	_	43	_	Watts
Quiescent Current Accuracy over Temperature (-10 to 85°C)	ΔI_{QT}	_	±5	_	%
Gain Flatness in 30 MHz Bandwidth	G _F	_	0.13	_	dB
Deviation from Linear Phase in 30 MHz Bandwidth	Φ	_	±1	_	0
Delay @ P _{out} = 0.4 W CW Including Output Matching	Delay	_	1.6	_	ns
Part to Part Phase Variation	ΦΔ	_	±15	=	0

⁽¹⁾ MTTF calculator available at http://www.motorola.com/semiconductors/rf. Select Tools/Software/Application Software/Calculators to access the MTTF calculators by product.

(continued)

ELECTRICAL CHARACTERISTICS — **continued** (T_C = 25°C unless otherwise noted)

Characteristic	Symbol	Min	Тур	Max	Unit
TYPICAL PERFORMANCES (In Motorola Reference Application Circuit tuned for 2-carrier W-CDMA signal) V _{DD} = 28 Vdc,					
Pout = 0.4 W Avg., I _{DQ1} = 60 mA, I _{DQ2} = 400 mA, I _{DQ3} = 245 mA, f1 = 2112.5 MHz, f2 = 2122.5 MHz and f1 = 2157.5 MHz, f2 = 2167.5 MHz,					
2-carrier W-CDMA, 3.84 MHz Channel Bandwidth Carriers. ACPR measured in 3.84 MHz Channel Bandwidth @ ±5 MHz Offset. IM3					
measured in 3.84 MHz Channel Bandwidth @ ±10 MHz Offset. Peak/Avg. = 8.5 dB @ 0.01% Probability on CCDF.					

Power Gain	G _{ps}	_	31.5	_	dB
Intermodulation Distortion	IM3	_	-52	_	dBc
Adjacent Channel Power Ratio	ACPR	_	-55	_	dBc
Input Return Loss	IRL	_	-26	_	dB

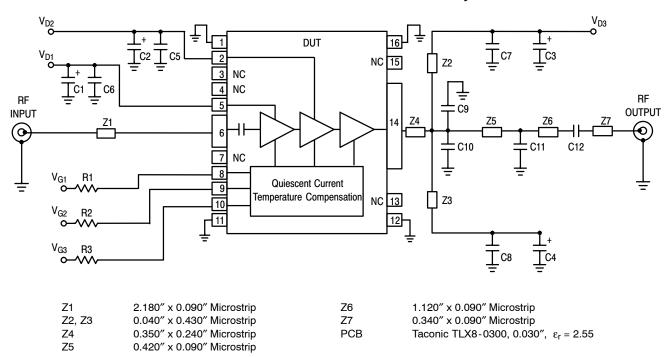


Figure 1. MW4IC2230MBR1(GMBR1) Test Circuit Schematic

Table 1. MW4IC2230MBR1(GMBR1) Test Circuit Component Designations and Values

	` ,	·	
Part	Description	Part Number	Manufacturer
C1, C2, C3, C4	10 μF, 35 V Tantalum Capacitors	TAJD106K035	AVX
C5, C6, C7, C8, C12	8.2 pF 100B Chip Capacitors	100B8R2CW	ATC
C9, C10	1.8 pF 100B Chip Capacitors	100B1R8BW	ATC
C11	0.3 pF 100B Chip Capacitor	100B0R3BW	ATC
R1, R2, R3	1.8 kΩ Chip Resistors (1206)		

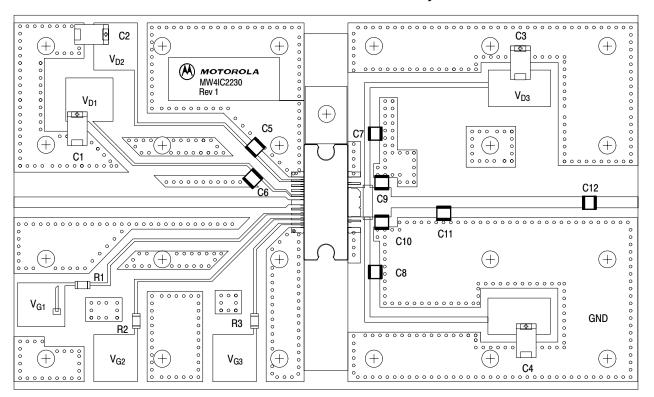


Figure 2. MW4IC2230MBR1(GMBR1) Test Circuit Component Layout

TYPICAL CHARACTERISTICS

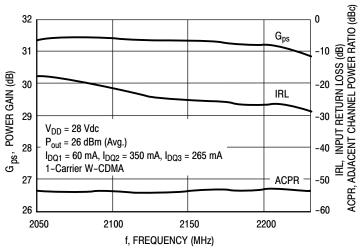


Figure 3. Single-Carrier W-CDMA Wideband Performance

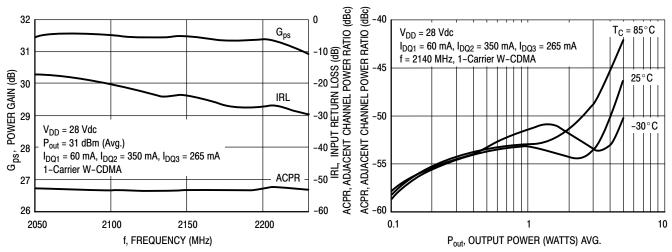


Figure 4. Single-Carrier W-CDMA Wideband Performance

Figure 5. Adjacent Channel Power Ratio versus Output Power

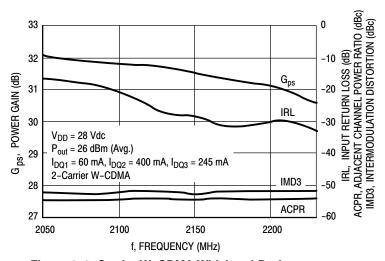
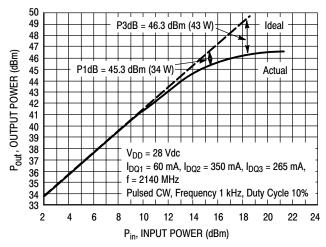
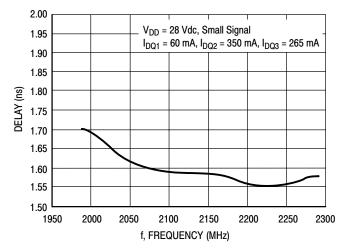
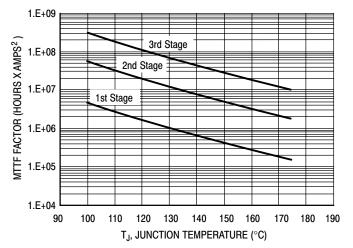



Figure 6. 2-Carrier W-CDMA Wideband Performance

TYPICAL CHARACTERISTICS

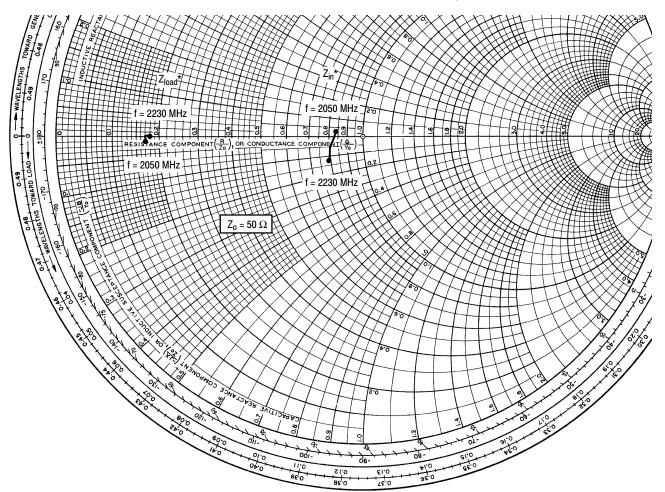

Figure 7. Output Power versus Input Power

Figure 8. Delay versus Frequency

This above graph displays calculated MTTF in hours x ampere² drain current. Life tests at elevated temperatures have correlated to better than $\pm 10\%$ of the theoretical prediction for metal failure. Divide MTTF factor by ID2 for MTTF in a particular application.

Figure 9. MTTF Factor versus Temperature Junction

 V_{DD} = 28 V, I_{DQ1} = 60 mA, I_{DQ2} = 350 mA, I_{DQ3} = 265 mA, P_{out} = 26 dBm

- DD =						
f MHz	$oldsymbol{Z_{in}}{\Omega}$	$oldsymbol{Z_{load}}{\Omega}$				
2050	42.18 + j1.49	8.52 - j0.46				
2110	41.06 - j1.30	8.58 - j0.20				
2140	40.49 - j2.42	8.63 - j0.09				
2170	40.05 - j3.45	8.69 - j0.01				
2230	39.29 - j6.31	8.81 + j0.04				

 Z_{in} = Device input impedance as measured from gate to ground.

 Z_{load} = Test circuit impedance as measured from drain to ground.

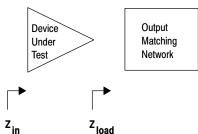
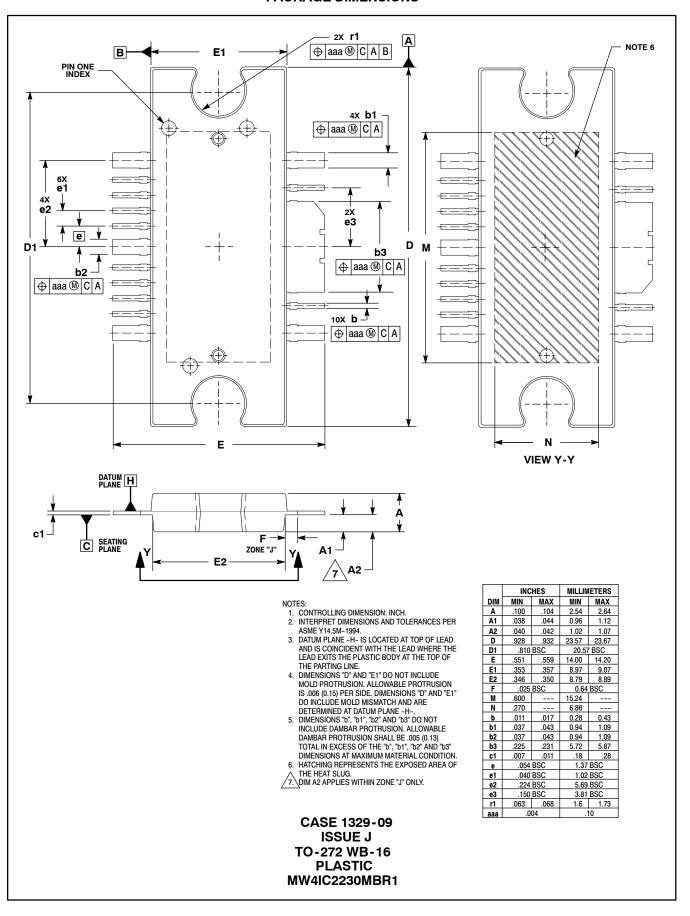
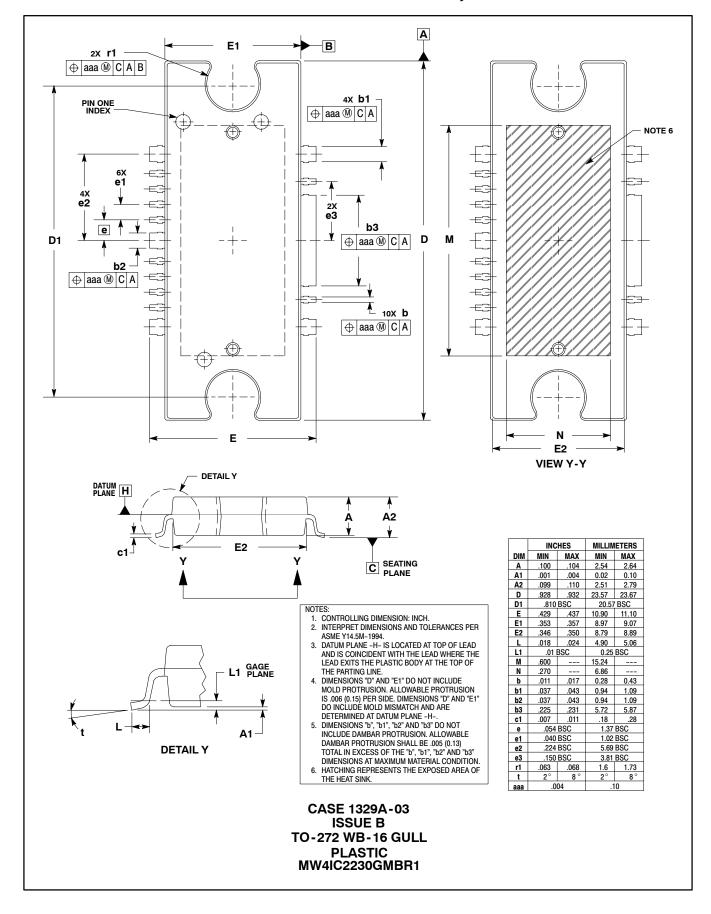




Figure 10. Series Equivalent Input and Load Impedance

PACKAGE DIMENSIONS

Information in this document is provided solely to enable system and software implementers to use Motorola products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document.

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in Motorola data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals", must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part.

MOTOROLA and the Stylized M Logo are registered in the US Patent and Trademark Office. All other product or service names are the property of their respective owners. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

© Motorola Inc. 2004

HOW TO REACH US:

USA/EUROPE/LOCATIONS NOT LISTED: Motorola Literature Distribution P.O. Box 5405, Denver, Colorado 80217 1-800-521-6274 or 480-768-2130 JAPAN: Motorola Japan Ltd.; SPS, Technical Information Center, 3-20-1, Minami-Azabu, Minato-ku, Tokyo 106-8573, Japan 81-3-3440-3569

ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; Silicon Harbour Centre, 2 Dai King Street, Tai Po Industrial Estate, Tai Po, N.T., Hong Kong 852-26688334

HOME PAGE: http://motorola.com/semiconductors

