Freescale Semiconductor

Technical Data

RF LDMOS Wideband Integrated Power Amplifiers

The MW7IC18100N wideband integrated circuit is designed with on-chip matching that makes it usable from 1805 to 2050 MHz. This multi-stage structure is rated for 24 to 32 Volt operation and covers all typical cellular base station modulations including GSM EDGE and CDMA.

Final Application

• Typical GSM Performance: $V_{DD} = 28$ Volts, $I_{DQ1} = 180$ mA, $I_{DQ2} = 1000$ mA, $P_{out} = 100$ Watts CW, 1805-1880 MHz or 1930-1990 MHz Power Gain — 30 dB Power Added Efficiency — 48%

GSM EDGE Application

 Typical GSM EDGE Performance: V_{DD} = 28 Volts, I_{DQ1} = 215 mA, I_{DQ2} = 800 mA, P_{out} = 40 Watts Avg., 1805-1880 MHz or 1930-1990 MHz Power Gain — 31 dB

Power Added Efficiency — 35% Spectral Regrowth @ 400 kHz Offset = -63 dBc Spectral Regrowth @ 600 kHz Offset = -80 dBc EVM — 1.5% rms

- Capable of Handling 5:1 VSWR, @ 28 Vdc, 1990 MHz, 100 Watts CW Output Power
- Stable into a 5:1 VSWR. All Spurs Below -60 dBc @ 1 mW to 120 W CW ${\rm P}_{\rm out}.$

Features

- Characterized with Series Equivalent Large-Signal Impedance Parameters
 and Common Source Scattering Parameters
- On-Chip Matching (50 Ohm Input, DC Blocked)
- Integrated Quiescent Current Temperature Compensation with Enable/Disable Function ⁽¹⁾
- Integrated ESD Protection
- 200°C Capable Plastic Package
- RoHS Compliant
- In Tape and Reel. R1 Suffix = 500 Units per 44 mm, 13 inch Reel.

 Refer to AN1977, Quiescent Current Thermal Tracking Circuit in the RF Integrated Circuit Family and to AN1987, Quiescent Current Control for the RF Integrated Circuit Device Family. Go to http://www.freescale.com/rf. Select Documentation/Application Notes - AN1977 or AN1987.

Document Number: MW7IC18100N Rev. 1, 6/2007

> MW7IC18100NR1 MW7IC18100GNR1

MW7IC18100NBR1

VRoHS

© Freescale Semiconductor, Inc., 2007. All rights reserved.

Table 1. Maximum Ratings

Rating	Symbol	Value	Unit
Drain-Source Voltage	V _{DSS}	-0.5, +65	Vdc
Gate - Source Voltage	V_{GS}	-0.5, +6	Vdc
Storage Temperature Range	T _{stg}	-65 to +200	°C
Operating Junction Temperature	TJ	200	°C

Table 2. Thermal Characteristics

	Symbol	Value ^(1,2)	Unit	
Thermal Resistance, Junction t	o Case	$R_{\theta JC}$		°C/W
GSM Application	Stage 1, 28 Vdc, I _{DQ1} = 180 mA		2.0	
(P _{out} = 100 W CW)	Stage 2, 28 Vdc, I _{DQ2} = 1000 mA		0.51	

Table 3. ESD Protection Characteristics

Test Methodology	Class
Human Body Model (per JESD22-A114)	O (Minimum)
Machine Model (per EIA/JESD22-A115)	A (Minimum)
Charge Device Model (per JESD22-C101)	III (Minimum)

Table 4. Moisture Sensitivity Level

Test Methodology	Rating	Package Peak Temperature	Unit
Per JESD 22-A113, IPC/JEDEC J-STD-020	3	260	°C

Table 5. Electrical Characteristics ($T_C = 25^{\circ}C$ unless otherwise noted)

Characteristic	Symbol	Min	Тур	Max	Unit
Functional Tests (In Freescale Test Fixture, 50 ohm system) V _{DD} = 28 Vdc, P _{out} = 100 W CW, I _{DQ1} = 180 mA, I _{DQ2} = 1000 mA, f = 1990 M					
Power Gain	G _{ps}	27	30	31	dB
Input Return Loss	IRL	_	-15	-10	dB
Power Added Efficiency	PAE	45	48	_	%
Pout @ 1 dB Compression Point, CW	P1dB	100	112	_	W

Typical GSM EDGE Performances (In Freescale GSM EDGE Test Fixture, 50 ohm system) V_{DD} = 28 Vdc, I_{DQ1} = 215 mA, I_{DQ2} = 800 mA, P_{out} = 40 W Avg., 1805-1880 MHz or 1930-1990 MHz EDGE Modulation.

Power Gain	G _{ps}	—	31		dB
Power Added Efficiency	PAE	—	35	_	%
Error Vector Magnitude	EVM	—	1.5	_	% rms
Spectral Regrowth at 400 kHz Offset	SR1	—	-63	_	dBc
Spectral Regrowth at 600 kHz Offset	SR2	—	-80	_	dBc

1. Refer to AN1955, *Thermal Measurement Methodology of RF Power Amplifiers.* Go to <u>http://www.freescale.com/rf</u>. Select Documentation/Application Notes - AN1955.

2. MTTF calculator available at http://www.freescale.com/rf. Select Tools/Software/Application Software/Calculators to access the MTTF calculators by product.

Characteristic	Symbol	Min	Тур	Max	Unit	
ypical Performances (In Freescale Test Fixture, 50 ohm system) V _{DD} = 28 Vdc, I _{DQ1} = 180 mA, I _{DQ2} = 1000 mA, 1930-1990 MHz Bandwidth						
Gain Flatness in 60 MHz Bandwidth @ P _{out} = 100 W CW	G _F	_	0.37	_	dB	
Average Deviation from Linear Phase in 60 MHz Bandwidth @ P _{out} = 100 W CW	Φ		0.502		0	
Average Group Delay @ P _{out} = 100 W CW, f = 1960 MHz	Delay	—	2.57	—	ns	
Part-to-Part Insertion Phase Variation @ P _{out} = 100 W CW, f = 1960 MHz, Six Sigma Window	$\Delta \Phi$		63.65		0	
Gain Variation over Temperature (-30°C to +85°C)	ΔG		0.048		dB/°C	
Output Power Variation over Temperature (-30°C to +85°C)	∆P1dB		0.004		dBm/°C	

Table 5. Electrical Characteristics (T_C = 25° C unless otherwise noted) (continued)

Figure 3. MW7IC18100NR1(GNR1)(NBR1) Test Circuit Schematic — 1900 MHz

Table 6. MW7IC18100NR1/	(GNR1)(NBR1)	Test Circuit Component Desi	gnations and Values — 1900 MHz

Part	Description	Part Number	Manufacturer
C1, C2, C3, C4, C5	6.8 pF Chip Capacitors	ATC100B6R8BT500XT	ATC
C6, C7, C8, C9	10 µF, 50 V Chip Capacitors	GRM55DR61H106KA88L	Murata
C10, C11	0.2 pF Chip Capacitors	ATC100B0R2BT500XT	ATC
C12, C13	0.5 pF Chip Capacitors	ATC100B0R5BT500XT	ATC
C14	0.8 pF Chip Capacitor	ATC100B0R8BT500XT	ATC
C15	1.5 pF Chip Capacitor	ATC100B1R5BT500XT	ATC
C16	2.2 µF, 16 V Chip Capacitor	C1206C225K4RAC	Kemet
C17	470 µF, 63 V Electrolytic Capacitor, Radial	477KXM063M	Illinois Capacitor
R1, R2	10 KΩ, 1/4 W Chip Resistors	CRCW12061001FKTA	Vishay

Figure 4. MW7IC18100NR1(GNR1)(NBR1) Test Circuit Component Layout — 1900 MHz

Figure 5. Power Gain, Input Return Loss and Power Added Efficiency versus Frequency @ Pout = 100 Watts CW

Figure 6. Power Gain, Input Return Loss, EVM and Power Added Efficiency versus Frequency @ Pout = 40 Watts Avg.

Figure 16. EVM versus Frequency

Figure 18. Spectral Regrowth at 400 kHz versus Output Power

TYPICAL CHARACTERISTICS — 1900 MHz

This above graph displays calculated MTTF in hours when the device is operated at V_{DD} = 28 Vdc, P_{out} = 100 W CW, and PAE = 48%.

MTTF calculator available at http://www.freescale.com/rf. Select Tools/ Software/Application Software/Calculators to access the MTTF calculators by product.

Figure 23. MTTF versus Junction Temperature

GSM TEST SIGNAL

 V_{DD1} = V_{DD2} = 28 Vdc, I_{DQ1} = 180 mA, I_{DQ2} = 1000 mA, P_{out} = 100 W CW

f MHz	Z _{in} Ω	Z _{load} Ω
1880	67.48 - j17.89	2.324 - j3.239
1900	60.03 - j20.86	2.234 - j3.105
1920	53.65 - j21.94	2.135 - j2.965
1940	48.13 - j21.94	2.037 - j2.818
1960	43.52 - j21.22	1.936 - j2.666
1980	39.60 - j20.00	1.851 - j2.509
2000	36.14 - j18.52	1.765 - j2.355
2020	33.19 - j16.57	1.669 - j2.193
2040	30.96 - j14.58	1.559 - j2.012

Z_{in} = Device input impedance as measured from gate to ground.

Z_{load} = Test circuit impedance as measured from drain to ground.

Figure 25. Series Equivalent Input and Load Impedance — 1900 MHz

				24.			-	• •
f	S	11	S	21	S	12	S	22
MHz	S ₁₁	$\angle \phi$	S ₂₁	$\angle \phi$	S ₁₂	$\angle \phi$	S ₂₂	$\angle \phi$
1500	0.612	118.5	6.369	69.06	0.002	102.9	0.615	47.74
1550	0.557	104.3	11.42	18.29	0.003	85.09	0.666	-41.54
1600	0.491	88.33	16.92	-34.34	0.005	59.06	0.844	- 113.4
1650	0.410	70.24	23.21	-84.03	0.005	28.40	0.931	-163.4
1700	0.313	48.99	30.49	- 135.7	0.006	7.983	0.887	155.6
1750	0.216	21.99	32.64	168.8	0.007	- 15.63	0.700	120.3
1800	0.131	-22.83	32.93	114.0	0.006	-35.27	0.475	95.71
1850	0.117	-95.13	32.62	65.01	0.006	-53.22	0.332	82.10
1900	0.185	-146.3	32.58	20.45	0.006	-77.03	0.252	68.30
1950	0.253	-177.3	32.45	-22.53	0.007	-98.93	0.165	47.02
2000	0.303	160.4	32.41	-65.29	0.007	- 108.4	0.052	8.742
2050	0.328	139.5	32.33	- 108.6	0.006	- 127.3	0.070	- 154.8
2100	0.331	117.9	32.50	- 152.7	0.008	- 145.8	0.161	179.9
2150	0.273	91.65	32.84	160.2	0.008	- 169.1	0.257	165.7
2200	0.141	64.27	32.52	109.2	0.008	162.7	0.424	150.3
2250	0.050	172.7	28.92	56.72	0.009	138.3	0.641	123.4
2300	0.194	163.4	21.30	8.112	0.007	112.6	0.804	91.99
2350	0.270	139.7	14.62	-34.53	0.007	97.74	0.879	62.03
2400	0.288	118.9	9.878	-72.70	0.007	84.37	0.910	34.57
2450	0.274	100.6	6.771	- 107.5	0.007	70.79	0.911	8.878
2500	0.236	83.35	4.579	- 141.3	0.007	55.31	0.903	-16.73

Table 7. Common Source S-Parameters (V_{DD} = 28 V, I_{DQ1} = 180 mA, I_{DQ2} = 1000 mA, T_C = 25°C, 50 Ohm System)

NOTE: Load Pull Test Fixture Tuned for Peak Output Power @ 28 V

Test Impedances per Compression Level

	Z_{source}	Z_{load}
P3dB	40.2 - j30.91	0.96 - j3.14

Figure 27. MW7IC18100NR1(GNR1)(NBR1) Test Circuit Schematic — 1800 MHz

Table 8. MW7IC18100NR1(GNR1)(NBR1)	Test Circuit Component Desig	gnations and Values — 1800 MHz
------------------------------------	------------------------------	--------------------------------

Part	Description	Part Number	Manufacturer
C1, C2, C3, C4, C5	6.8 pF Chip Capacitors	ATC100B6R8BT500XT	ATC
C6, C7, C8, C9	10 µF, 50 V Chip Capacitors	GRM55DR61H106KA88L	Murata
C10, C11	0.2 pF Chip Capacitors	ATC100B0R2BT500XT	ATC
C12, C13	0.8 pF Chip Capacitors	ATC100B0R8BT500XT	ATC
C14	1.2 pF Chip Capacitor	ATC100B1R2BT500XT	ATC
C15	1.0 pF Chip Capacitor	ATC100B1R0BT500XT	ATC
C16	2.2 µF, 16 V Chip Capacitor	C1206C225K4RAC	Kemet
C17	470 μ F, 63 V Electrolytic Capacitor, Radial	477KXM063M	Illinois Capacitor
R1, R2	10 KΩ, 1/4 W Chip Resistors	CRCW12061001FKTA	Vishay

Figure 28. MW7IC18100NR1(GNR1)(NBR1) Test Circuit Component Layout — 1800 MHz

Figure 29. Power Gain, Input Return Loss and Power Added Efficiency versus Frequency @ Pout = 100 Watts CW

Figure 30. Power Gain, Input Return Loss, EVM and Power Added Efficiency versus Frequency @ Pout = 40 Watts Avg.

Figure 40. EVM versus Frequency

Figure 42. Spectral Regrowth at 400 kHz versus Output Power

 V_{DD1} = V_{DD2} = 28 Vdc, I_{DQ1} = 180 mA, I_{DQ2} = 1000 mA, P_{out} = 100 W CW

f MHz	Z _{in} Ω	Z _{load} Ω
1760	71.78 + j40.05	2.983 - j3.974
1780	79.83 + j31.13	2.872 - j3.861
1800	84.35 + j19.44	2.757 - j3.745
1820	84.75 + j7.234	2.636 - j3.639
1840	81.21 - j4.076	2.535 - j3.506
1860	74.76 - j12.32	2.434 - j3.376
1880	67.49 - j17.89	2.324 - j3.239
1900	60.03 - j20.86	2.234 - j3.105
1920	53.65 - j21.94	2.135 - j2.965

 Z_{in} = Device input impedance as measured from gate to ground.

Z_{load} = Test circuit impedance as measured from drain to ground.

Figure 46. Series Equivalent Input and Load Impedance — 1800 MHz

Test Impedances per Compression Level

	z_{source}	Z _{load} Ω
P3dB	83.04 - j2.44	1.36 - j3.19

PACKAGE DIMENSIONS

© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.	MECHANICA	L OUTLINE	PRINT VERSION NO	T TO SCALE
TITLE: TO 272 WIDE DOI	DOCUMENT NO: 98ASA10649D REV: 0			
14 ΙΕΔΝ	CASE NUMBER: 1617-01 23 NOV 2005			
		STANDARD: NO	N-JEDEC	

VIEW Y-Y

© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.	LOUTLINE	PRINT VERSION NO	T TO SCALE	
TITLE:	DOCUMENT NO: 98ASA10649D REV: 0			
14 I FAD	CASE NUMBER: 1617-01 23 NOV 2005			
		STANDARD: NO	N-JEDEC	

NOTES:

- 1. CONTROLLING DIMENSION: INCH
- 2. INTERPRET DIMENSIONS AND TOLERANCES PER ASME Y14. 5M-1994.
- 3. DATUM PLANE -H- IS LOCATED AT THE TOP OF LEAD AND IS COINCIDENT WITH THE LEAD WHERE THE LEAD EXITS THE PLASTIC BODY AT THE TOP OF THE PARTING LINE.
- 4. DIMENSIONS "D" AND "E1" DO NOT INCLUDE MOLD PROTRUSION. ALLOWABLE PROTRUSION IS .006 (0.15) PER SIDE. DIMENSIONS "D" AND "E1" DO INCLUDE MOLD MISMATCH AND ARE DETERMINED AT DATUM PLANE -H-.
- 5. DIMENSIONS "b" AND "b1" DO NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE . 005 (0. 13) TOTAL IN EXCESS OF THE "b" AND "b1" DIMENSIONS AT MAXIMUM MATERIAL CONDITION.
- 6. HATCHING REPRESENTS THE EXPOSED AREA OFTHE HEAT SLUG.
- 7. DIM A2 APPLIES WITHIN ZONE "J" ONLY.

	IN	ICH	MIL	LIMETER			INCH	MILLIMETER	
DIM	MIN	MAX	MIN	MAX	DIM	MIN	MAX	MIN	MAX
A	.100	.104	2.54	2.64	b	.154	.160	3.91	4.06
A1	.039	.043	0.96	1.12	Ь1	.010	.016	0.25	o.41
A2	.040	.042	1.02	1.07	c1	.007	.011	.18	.28
D	.928	.932	23.57	23.67	е	.0	20 BSC	(0.51 BSC
D1	.810	BSC	20	.57 BSC	e1	.0	40 BSC	1	.02 BSC
E	.551	.559	14.00	14.20	e2	.1105 BSC		2.807 BSC	
E1	.353	.357	8.97	9.07	r1	.063	.068	1.6	1.73
E2	.346	.350	8.79	8.89					
F	.025	5 BSC	0.	64 BSC	aaa		.004	.10	
М	.600		15.24						
N	.270		6.86						
							1		
© ₽	FREESCALE SEM ALL RIGH	MICONDUCTOR, HTS RESERVED.	INC.	MECHANICA	L OUT	LINE	PRINT VER	SION NO	TTO SCALE
TITLE:				DOCL	MENT NO): 98ASA10649	D	REV: O	
IO-2/2 WIDE BODY			CASE	CASE NUMBER: 1617-01 23 NOV 20			23 NOV 2005		
					STAN	STANDARD: NON-JEDEC			

© FREESCALE SEMICONDUCTOR, INC. All RIGHTS RESERVED.	MECHANICA	L OUTLINE	PRINT VERSION NO	T TO SCALE
TITLE: TO 270 WIDE BO	DOCUMENT NO: 98ASA10650D REV: 0			
14 FAD	CASE NUMBER: 1618-01 29 SEP 2005			
	STANDARD: NO	N-JEDEC		

© FREESCALE SEMICONDUCTOR, INC. All Rights reserved.			LOUTLINE	PRINT VERSION NO	T TO SCALE	
TITLE:	TITLE: TO-270 WIDE BODY 14 LEAD			DOCUMENT NO: 98ASA10650D REV: 0		
				CASE NUMBER: 1618-01 29 SEP 2005		
			STANDARD: NO	N-JEDEC		

NOTES:

- 1. CONTROLLING DIMENSION: INCH
- 2. INTERPRET DIMENSIONS AND TOLERANCES PER ASME Y14.5M-1994.
- 3. DATUM PLANE -H- IS LOCATED AT THE TOP OF LEAD AND IS COINCIDENT WITH THE LEAD WHERE THE LEAD EXITS THE PLASTIC BODY AT THE TOP OF THE PARTING LINE.
- 4. DIMENSIONS "D" AND "E1" DO NOT INCLUDE MOLD PROTRUSION. ALLOWABLE PROTRUSION IS .006 PER SIDE. DIMENSIONS "D" AND "E1" DO INCLUDE MOLD MISMATCH AND ARE DETERMINED AT DATUM PLANE -H-.
- 5. DIMENSIONS "b" AND "b1" DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE .005 TOTAL IN EXCESS OF THE "b" AND "b1" DIMENSION AT MAXIMUM MATERIAL CONDITION.
- 6. DATUMS -A- AND -B- TO BE DETERMINED AT DATUM PLANE -H-.
- 7. DIMENSION A2 APPLIES WITHIN ZONE "J" ONLY.
- 8. HATCHING REPRESENTS THE EXPOSED AREA OF THE HEAT SLUG.

	IN	СН	MIL	LIMETER			NCH	MIL	MILLIMETER	
DIM	MIN	MAX	MIN	MAX	DIM	MIN	MAX	MIN	MAX	
А	.100	.104	2.54	2.64	F	.02	25 BSC	0.	64 BSC	
A1	.039	.043	0.99	1.09	b	.154	.160	3.91	4.06	
A2	.040	.042	1.02	1.07	Ь1	.010	.016	0.25	0.41	
D	.712	.720	18.08	18.29	c1	.007	.011	.18	.28	
D1	.688	.692	17.48	17.58	е	.02	20 BSC	0.	51 BSC	
D2	.011	.019	0.28	0.48	e1	.04	O BSC	1.	02 BSC	
D3	.600		15.24		e2	.11(.1105 BSC 2.807 BSC		307 BSC	
E	.551	.559	14	14.2						
E1	.353	.357	8.97	9.07	aaa		.004 .10		.10	
E2	.132	.140	3.35	3.56						
E3	.124	.132	3.15	3.35						
E4	.270		6.86							
E5	.346	.350	8.79	8.89						
© F	REESCALE SEM ALL RIGH	IICONDUCTOR, TS RESERVED.	INC.	MECHANIC	AL OU	TLINE	PRINT VEF	RSION NC	T TO SCALE	
TITLE:					DOOL	JMENT NO): 98ASA1065	OD	REV: 0	
TO-270 WIDE BODY				CASE	CASE NUMBER: 1618-01 29 SEP 2			29 SEP 2005		
			νU		STAN	STANDARD: NON-JEDEC				

© FREESCALE SEMICONDUCTOR, INC. All rights reserved.	MECHANICA	LOUTLINE	PRINT VERSION NO	T TO SCALE
TITLE: TO-270 WIDE BO	DOCUMENT NO: 98ASA10653D REV: 0			
14 LEAD	CASE NUMBER: 1621-01 30 SEP 2005			
GULL WING		STANDARD: NO	N-JEDEC	

NOTES:

- 1. CONTROLLING DIMENSION: INCH
- 2. INTERPRET DIMENSIONS AND TOLERANCES PER ASME Y14.5M-1994.
- 3. DATUM PLANE -H- IS LOCATED AT THE TOP OF LEAD AND IS COINCIDENT WITH THE LEAD WHERE THE LEAD EXITS THE PLASTIC BODY AT THE TOP OF THE PARTING LINE.
- 4. DIMENSIONS "D" AND "E1" DO NOT INCLUDE MOLD PROTRUSION. ALLOWABLE PROTRUSION IS .006 PER SIDE. DIMENSIONS "D" AND "E1" DO INCLUDE MOLD MISMATCH AND ARE DETERMINED AT DATUM PLANE -H-.
- 5. DIMENSIONS "b" AND "b1" DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE .005 TOTAL IN EXCESS OF THE "b" AND "b1" DIMENSION AT MAXIMUM MATERIAL CONDITION.
- 6. DATUMS -A- AND -B- TO BE DETERMINED AT DATUM PLANE -H-.
- 7. HATCHING REPRESENTS THE EXPOSED AREA OF THE HEAT SLUG.

	IN	СН	MIL	LIMETER			INCH	MIL	MILLIMETER	
DIM	MIN	MAX	MIN	MAX	DIM	MIN	MAX	MIN	MAX	
A	.100	.104	2.54	2.64	L	.018	.024	0.46	0.61	
A1	.001	.004	0.02	0.10	L1	.01	0 BSC	0.	25 BSC	
A2	.099	.110	2.51	2.79	b	.154	.160	3.91	4.06	
D	.712	.720	18.08	18.29	b1	.010	.016	0.25	0.41	
D1	.688	.692	17.48	17.58	c1	.007	.011	.18	.28	
D2	.011	.019	0.28	0.48	e	.04	HO BSC	1.	02 BSC	
D3	.600		15.24		e1	.02	20 BSC	SC 0.51 BSC		
E	.429	.437	10.9	11.1	e2	.1105 BSC		2.807 BSC		
E1	.353	.357	8.97	9.07	t	2'	8'	2.	8'	
E2	.132	.140	3.35	3.56						
E3	.124	.132	3.15	3.35	aaa		.004	.10		
E4	.270		6.86							
E5	.346	.350	8.79	8.89						
© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.			AL OU	TLINE	PRINT VEF	RSION NC	T TO SCALE			
TITLE: TO-270 WIDE BODY				DOCI	DOCUMENT NO: 98ASA10653D REV:		REV: 0			
14 LEAD				CASE	CASE NUMBER: 1621-01 30 SEP 2			30 SEP 2005		
		GULL W	ING		STAN	STANDARD: NON-JEDEC				

PRODUCT DOCUMENTATION

Refer to the following documents to aid your design process.

Application Notes

- AN1907: Solder Reflow Attach Method for High Power RF Devices in Plastic Packages
- AN1955: Thermal Measurement Methodology of RF Power Amplifiers
- AN1977: Quiescent Current Thermal Tracking Circuit in the RF Integrated Circuit Family
- AN1987: Quiescent Current Control for the RF Integrated Circuit Device Family
- AN3263: Bolt Down Mounting Method for High Power RF Transistors and RFICs in Over-Molded Plastic Packages

Engineering Bulletins

• EB212: Using Data Sheet Impedances for RF LDMOS Devices

REVISION HISTORY

The following table summarizes revisions to this document.

Revision	Date	Description
0	May 2007	Initial Release of Data Sheet
1	June 2007	 Removed Case Operating Temperature from Maximum Ratings table, p. 2. Case Operating Temperature rating will be added to the Maximum Ratings table when parts' Operating Junction Temperature is increased to 225°C.

How to Reach Us:

Home Page: www.freescale.com

www.ireescale.com

Web Support: http://www.freescale.com/support

USA/Europe or Locations Not Listed:

Freescale Semiconductor, Inc. Technical Information Center, EL516 2100 East Elliot Road Tempe, Arizona 85284 +1-800-521-6274 or +1-480-768-2130 www.freescale.com/support

Europe, Middle East, and Africa:

Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) www.freescale.com/support

Japan:

Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1-8-1, Shimo-Meguro, Meguro-ku, Tokyo 153-0064 Japan 0120 191014 or +81 3 5437 9125 support.japan@freescale.com

Asia/Pacific:

Freescale Semiconductor Hong Kong Ltd. Technical Information Center 2 Dai King Street Tai Po Industrial Estate Tai Po, N.T., Hong Kong +800 2666 8080 support.asia@freescale.com

For Literature Requests Only:

Freescale Semiconductor Literature Distribution Center P.O. Box 5405 Denver, Colorado 80217 1-800-441-2447 or 303-675-2140 Fax: 303-675-2150 LDCForFreescaleSemiconductor@hibbertgroup.com Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals", must be validated for each customer application by customer's technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part.

Freescale [™] and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. © Freescale Semiconductor, Inc. 2007. All rights reserved.

