250W, 28V High Power RF LDMOS FETs

Description

The MX0525 is a 250-watt, highly rugged, unmatched LDMOS FET, designed for wide-band commercial and industrial applications with frequencies HF to 1 GHz.

•Typical Performance (On Innogration fixture with device soldered):

 V_{DD} = 28 Volts, I_{DQ} = 1200 mA, CW.

Frequency	Gp (dB)	P _{-1dB} (W)	η _D @P ₋₁ (%)
1000 MHz	17	250	60

• Typical Performance (On Innogration fixture with device soldered):

 V_{DD} = 28 Volts, I_{DQ} = 1500 mA, CW.

Freq(MHz)	Gain (dB) P-1(W)		Eff(%)
30	30 18.9 107		57.5
100	19.3	204	56.5
150	18.6	195	56.6
200	18.5	166	52.5
250	18.9	141	51.5
300	18.8	159	54.5
350	19.1	166	55.6
400	19.1	155	51.7
450	19.4	170	51.0
512	20.6	170	51.7

• Typical Performance (In Demo Fixture): Pout= 40 Watts @ 30 MHz-512 MHz,

 $V_{DD} = 28 \text{ Volts}$, $I_{DQ} = 1.5 \text{ A}$, Two tone space 100KHz.

Freq(MHz)	30	100	200	300	400	512
IMD3(dBc)	-38	-37	-33	-37	-39	-36

Features

- High Efficiency and Linear Gain Operations
- Integrated ESD Protection
- Excellent thermal stability, low HCI drift

- Large Positive and Negative Gate/Source Voltage Range for Improved Class C Operation
- Pb-free, RoHS-compliant

Suitable Applications

- 2-30MHz (HF or Short wave communication)
- 30-88MHz (Ground communication)
- 54-88MHz (TV VHF I)
- 88-108MHz (FM)
- 118 -140MHz (Avionics)

Table 1. Maximum Ratings

- Rating
 Symbol
 Value
 Unit

 Drain--Source Voltage
 V_{DSS}
 +95
 Vdc
- 136-174MHz (Commercial ground communication)
- 160-230MHz (TV VHF III)
- 30-512MHz (Jammer, Ground/Air communication)
- 470-860MHz (TV UHF)
- 100kHz 1000MHz (ISM, instrumentation)

MX0525 LDMOS TRANSISTOR

Document Number: MX0525 Product Datasheet V1.0

GateSource Voltage	$V_{\sf GS}$	-10 to +10	Vdc
Operating Voltage	V_{DD}	+40	Vdc
Storage Temperature Range	Tstg	-65 to +150	°C
Case Operating Temperature	T _c	+150	°C
Operating Junction Temperature	TJ	+225	°C

Table 2. Thermal Characteristics

Characteristic	Symbol	Value	Unit
Thermal Resistance, Junction to Case	Rejc	0.32	°C/W
T _C = 85°C, T _J =200°C, DC test	KAJC	0.32	C/VV

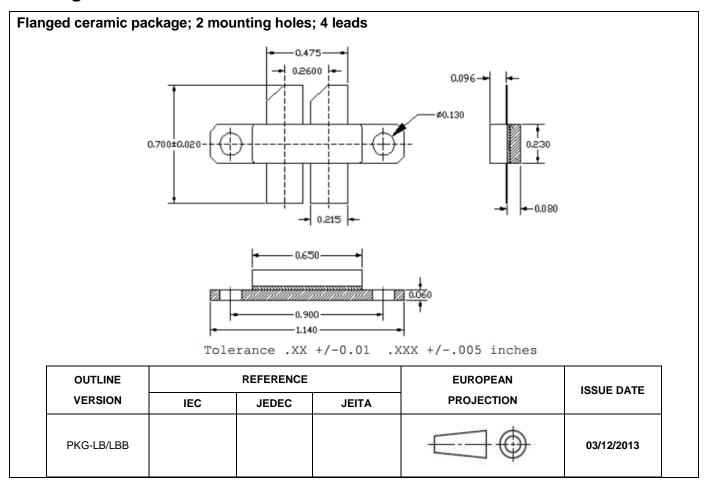
Table 3. ESD Protection Characteristics

Test Methodology	Class		
Human Body Model (per JESD22A114)	Class 2		

Table 4. Electrical Characteristics ($T_A = 25$ °C unless otherwise noted)

Characteristic		Min	Тур	Max	Unit
DC Characteristics (per half section)					
Drain-Source Voltage	$V_{(BR)DSS}$	90			V
V _{GS} =0, I _{DS} =1.0mA	V (BR)DSS	90	90		V
Zero Gate Voltage Drain Leakage Current				1	^
$(V_{DS} = 75V, V_{GS} = 0 V)$	I _{DSS}			ı	μΑ
Zero Gate Voltage Drain Leakage Current				1	
$(V_{DS} = 28 \text{ V}, V_{GS} = 0 \text{ V})$	I _{DSS}			1	μΑ
GateSource Leakage Current				1	^
$(V_{GS} = 10 \text{ V}, V_{DS} = 0 \text{ V})$	I _{GSS}			ı	μΑ
Gate Threshold Voltage	\/ (th)	V _{GS} (th)	2.15		V
$(V_{DS} = 28V, I_D = 650 \mu A)$	V _{GS} (tii)				V
Gate Quiescent Voltage	$V_{GS(Q)}$		3.0		V
$(V_{DD} = 28 \text{ V}, I_D = 700 \text{ mA}, \text{ Measured in Functional Test})$	V GS(Q)	Q)	3.0		V
Common Source Input Capacitance	C _{ISS}		128		pF
$(V_{GS} = 0V, V_{DS} = 28 V, f = 1 MHz)$	CISS		120		ρι
Common Source Output Capacitance	Coss		43		nE
(V _{GS} = 0V, V _{DS} =28 V, f = 1 MHz)	Coss	Coss			pF
Common Source Feedback Capacitance	C		2.4		nE
$(V_{GS} = 0V, V_{DS} = 28 V, f = 1 MHz)$	C _{RSS}		2.4		pF

Functional Tests (In Demo Test Fixture, 50 ohm system) $V_{DD} = 28 \text{ Vdc}$, $I_{DQ} = 1200 \text{ mA}$, f = 1000 MHz, CW Signal Measurements.


Power Gain	Gp	 17		dB
Drain Efficiency@P1dB	$\eta_{\scriptscriptstyle D}$	 60		%
1 dB Compression Point	P _{-1dB}	 250	——	W
Input Return Loss	IRL	 -7		dB

Load Mismatch (In Innogration Test Fixture, 50 ohm system): $V_{DD} = 28 \text{ Vdc}$, $I_{DQ} = 1200 \text{ mA}$, f = 1000 MHz

VSWR 20:1 at 250W pulse CW Output Power	No Device Degradation
---	-----------------------

MX0525 LDMOS TRANSISTOR

Package Outline

MX0525 LDMOS TRANSISTOR

Document Number: MX0525 Product Datasheet V1.0

Revision history

Table 5. Document revision history

Date	Revision	Datasheet Status
2017/10/13	Rev 1.0	Product Datasheet

Disclaimers

Specifications are subject to change without notice. Innogration believes the information contained within this data sheet to be accurate and reliable. However, no responsibility is assumed by Innogration for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Innogration . Innogration makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose. "Typical" parameters are the average values expected by Innogration in large quantities and are provided for information purposes only. These values can and do vary in different applications and actual performance can vary over time. All operating parameters should be validated by customer's technical experts for each application. Innogration products are not designed, intended or authorized for use as components in applications intended for surgical implant into the body or to support or sustain life, in applications in which the failure of the Innogration product could result in personal injury or death or in applications for planning, construction, maintenance or direct operation of a nuclear facility. For any concerns or questions related to terms or conditions, pls check with Innogration and authorized distributors Copyright © by Innogration (Suzhou) Co.,Ltd.