

MX23J16G88

Sequential 16G-Bits XtraROM for Amusement

1. FEATURES

- Organization
 - 512M x 32bit / 16,844,324,864bit

- Page Size : 512 double words (support sequential read)

- Memory Area: Please refer to "7. MEMORY AREA"
- Read Operation
 - Latency : 30us
 - Read Cycle Time : 60ns
- Voltage Supply : 3.0V ~ 3.6V
- Current
 - Read : 200mA
 - Stand-by : 400uA
- · Command/Address/Data Multiplexed Port
- Package : 70-pin SSOP
- · All devices are RoHS compliant

2. GENERAL DESCRIPTION

The MX23J16G88 is a single 3.3V XtraROM, density 16Gbit, factory pre-programmed ROM with Macronix NBit technology.

It utilizes the 32 bit multiplexed I/O bus for command, address, and data inputs/outputs.

Simple design structure makes the cost of the device and competitive over the other types of code-storage memory IC.

3. ORDER INFORMATION

Part No.	Read Cycle Time	Package
MX23J16G88MC-60G	60ns	70 SSOP

4. PIN CONFIGURATIONS

70 SSOP

1023	1	70	Þ	1022
1024	2	69	Þ	IO21
1025	3	68	Þ	IO20
1026	4	67	Þ	VCC2
1027	5	66	Þ	GND2
GND2	6	65	Þ	IO19
VCC2	7	64	Þ	IO18
IO28	8	63	Þ	IO17
1029	9	62	Þ	IO16
IO30	10	61	Þ	TEST
IO31	11	60	Þ	NC
NC	12	59	Þ	VCC1
CE	13	58	P	GND1
RES	14	57	P	RE
VCC1	15	56	\square	R/B
GND1	16	55	P	NC
NC	17	54		NC
NC	18	53	\square	NC
NC	19	52		NC
NC	20	51		GND1
R/B	21	50	\square	VCC1
RE	22	49		RES
GND1	23	48		CE
VCC1	24	47		NC
NC	25	46	\square	IO15
TEST	26	45	\square	IO14
100	27	44		IO13
IO1	28	43	\square	IO12
102	29	42		VCC2
103	30	41		GND2
GND2	31	40		IO11
VCC2	32	39		IO10
104	33	38		109
105	34	37		108
106	35	36	Р	107

5. PIN DESCRIPTION

Symbol	Туре	Pin Function
CE	I	Chip Enable
IO0~IO31	I/O	Command / Address / Data Multiplexed I/O Port
RE	I	Read Clock
VCC1	I	Power (3.3V)
VCC2	I	Power (3.3V, for I/O)
GND1	I	Ground
GND2	I	Ground (for I/O)
NC		All pins = Connected to Floating
(Note 3)		All pins = Connected to GND
R/B	OD	Ready/Busy output pin (Note 1)
RES	Ι	RESET (Low Active)
TEST	I	Test Pin (Note 2)

Note 1 : R/\overline{B} (2 pins)=connected in PC board. R/B open drain.

Note 2 : TEST pin can be connected to GND, VCC or Open.

Note 3 : All NC pins = Connected to Floating or All NC pins = Connected to GND

6. BLOCK DIAGRAM

7. MEMORY AREA

	Product	MX23J16G88 (32IO)	
	End address	1F5F_FFFh	
0000_0000h			
	U	ser Data Area	
1F5F FFFFh			
1F60_0000h	NI		
1FFF_FFFFh	IN	UII-USEU AIEa	

8. ABSOLUTE MAXIMUM RATINGS

Item	Symbol	Ratings
Voltage on any Pin Relative to VSS	V _{IN}	-0.5V to 4.6V
Ambient Operating Temperature	Topr	0°C to 85°C
Storage Temperature	Tstg	-55°C to 125°C

9. DC CHARACTERISTICS

Table 1. DC Characteristics ($T_{opr} = 0 \sim 85^{\circ}C$, VCC = 3.0~3.6V)

Item	Symbol	Test Conditions	Min.	Max.	Unit
Input High Voltage	V _{IH}	-	2	V _{cc} +0.5V	V
Input Low Voltage	V _{IL}	-	-0.5	0.8	V
Output High Voltage	V _{OH}	I _{OH} = -400uA	2.4	-	V
Output Low Voltage	V _{OL}	I _{OL} = 1.6mA	-	0.4	V
Operating Current *	I _{cc}	$\label{eq:CE} \begin{array}{l} \overline{\text{CE}} \; = V_{\text{IL}}, \; I_{\text{OUT}} = 0\text{mA}, \\ t_{\text{CS}} = 100\text{ns}, \; t_{\text{CH}} = 100\text{ns}, \\ t_{\text{CEPH}} = 100\text{ns}, \; t_{\text{CYC}} = 50\text{ns}, \\ t_{\text{WH}} = 25\text{ns}, \; t_{\text{WL}} = 25\text{ns} \end{array}$	-	200	mA
Standby Current (CMOS)	I _{STB}	$\overline{CE} = V_{cc} - 0.2V, IO=Hi-z,$ $\overline{RE} = V_{cc} - 0.2V$	$\overline{E} = V_{cc} - 0.2V$, IO=Hi-z, RE = $V_{cc} - 0.2V$		uA
Input Leakage Current	I _{LI}	$V_{IN} = 0$ to $V_{CC}(max)$	-	±10	uA
Output Leakage Current	I _{LO}	$V_{OUT} = 0$ to $V_{CC}(max)$	-	±10	uA

* note: output load : 30pF * Recommended Operation Condition, Vcc Rise Time 30mV/mS

10. AC CHARACTERISTICS

Table 2. AC TEST CONDITION

Parameter	Test Condition
Input Pulse Level	0.3V to 2.7V
Input Rise and Fall Times	3ns
Output Timing Levels	1.5V/1.5V
Output Load	90uA + 30pF

AC Test Conditions

Table 3. AC Characteristics for Command Input ($T_{opr} = 0 \sim 85^{\circ}C$, VCC = 3.0~3.6V)

Parameter	Symbol	Min.	Unit
CE Setup Time	t _{cs}	50	ns
CE Hold Time	t _{cн}	50	ns
CE High Pulse Width	t _{CEPH}	100	ns
Data-in Setup Time	t _{DIS}	15	ns
Data-in Hold Time	t _{DIH}	15	ns
Data-out Hold Time *	t _{DOH}	10	ns
Read cycle time	t _{cyc}	60	ns
RE High Pulse Width	t _{wH}	30	ns
RE Low Pulse Width	t _{wL}	30	ns
Ready to RE low	t _{RR}	20	ns
RES Low Pulse Width	t _{RES}	100	ns
RES High Time Before Read	t _{RH}	1	ms

* RES filter glitch which pulse width is less than 5ns.

P/N: PM1672 Confidential

POR SEQUENCE

POR Timing Waveform

Symbol	Parameter	Min.	Max.	Unit
tVR	VCC Rise Time	50	500000	us/V
tR	Input Signal Rise Time		20	us/V
tF	Input Signal Fall Time		20	us/V
tVCS	VCC Setup Time	2		ms
tRES2	RES Low Time 2	100		ns
tRH	RES High Time Before Read	1		ms

Table 4. AC Characteristics for Data Output ($T_{opr} = 0 \sim 85^{\circ}C$, VCC = 3.0~3.6V)

Parameter	Symbol	Min.	Max.	Unit
Read Latency Time *1	tL	-	30	us
RE Access Time	t _{REA}	-	25	ns
RE High to Busy	t _{RB}	-	250* ²	ns

 *¹ The read latency will only be needed at the first page read.
 *² tRB=250ns max. including Tf at 10Kohm pull-up condition. Note:

AC Timing Condition

Command Input and Data Output Timing Waveform

Table 5. Read Command Definitions

Command Bus cycles		1st	2nd	3rd	4th	5th	6th	7th	8th
	bus cycle	bus cycle							
	cycles	command	address	address	address	address	address	address	address
Read Mode	8	BFBFBFBFH	Addr0	Addr1	Addr2	00000000H	don't care	don't care	don't care

Addr0 : A24~A28 (IO0/8/16/24=A24, IO1/9/17/25=A25, IO2/10/18/26=A26, IO3/11/19/27=A27, IO4/12/20/28=A28) Addr1 : A16~A23 (IO0/8/16/24=A16, IO1/9/17/25=A17, IO2/10/18/26=A18, IO3/11/19/27=A19, IO4/12/20/28=A20,

 $\frac{105/13/21/29=A21, 106/14/22/30=A22, 107/15/23/31=A23)}{Addr2 : A8-A15 (100/8/16/24=A8, 101/0/17/25=A0, 102/10/18/26=A10, 102/11/10/27=A11, 104/12/20/28=A12, 102/11/10/27=A11, 104/12/20/28=A12, 102/10/18/26=A10, 102/11/10/27=A11, 104/12/20/28=A12, 102/11/10/27=A11, 104/12/20/28=A12, 102/10/18/26=A10, 102/11/10/27=A11, 104/12/20/28=A12, 102/10/18/26=A10, 102/11/10/27=A11, 104/12/20/28=A12, 102/10/18/26=A10, 102/18/26=A10, 102/18/26=$

Addr2 : A8~A15 (IO0/8/16/24=A8, IO1/9/17/25=A9, IO2/10/18/26=A10, IO3/11/19/27=A11, IO4/12/20/28=A12, IO5/13/21/29=A13, IO6/14/22/30=A14, IO7/15/23/31=A15)

Note : The starting address of every page (A8~A0) is 0, Each page has 512 double words

RES Timing Waveform

READY/BUSY

The device has a R/B output that provides a hardware method of indicating the device is ready for read. The R/B is normally high but transitions to low after read command is issued. It returns to high when the internal controller has finish the read operation.

The pin is an open-drain driver thereby allowing two or more R/\overline{B} outputs to be Or-tied. A5K Ω ~ 50K Ω pull-up resistor is required to allow R/B to transition high indicating the device is ready for read.

Note:

- 1. Rbusy must be higher than 5K Ω . 10K Ω is recommended.
- 2. A schmitt trigger is suggested to provide on the user input port due to the slow slew rate of the tr and tf.

11. PART NAME DESCRIPTION

12. PACKAGE INFORMATION

Doc. Title: Package Outline for SSOP 70L (500MIL)

Dimensions (inch dimensions are derived from the original mm dimensions)

SY UNIT	MBOL	А	A1	A2	b	С	D	Е	E1	е	L	L1	Θ
	Min.	-	0.10	2.56	0.30	0.17	28.37	15.73	12.47		0.61	1.51	0
mm	Nom.		0.15	2.69	0.35	0.20	28.50	16.03	12.60	0.80	0.81	1.71	5
	Max.	3.05	0.23	2.82	0.43	0.25	28.63	16.33	12.73		1.01	1.91	10
	Min.		0.004	0.101	0.012	0.007	1.117	0.619	0.491		0.024	0.060	0
Inch	Nom.		0.006	0.106	0.014	0.008	1.122	0.631	0.496	0.031	0.032	0.068	5
	Max.	0.120	0.009	0.111	0.017	0.010	1.127	0.643	0.501		0.040	0.075	10

Dwg. No.	Revision	Reference			
		JEDEC	EIAJ		
6110-1503	8	MO-174			

MX23J16G88

REVISION HISTORY

Revision No.	Description	Page	Date
0.01	1. Changed title from "Advanced Information" to "Preliminary"	P1	APR/18/2011
	2. Modified Data-in Setup Time & Data-in Hold Time	P4	
	3. Modified RE Access Time	P5	
0.02	1. Revised NC connect	P1	JUL/25/2011
1.0	1. Removed "Preliminary"	P1	DEC/19/2011
1.1	1. Added AC Test Conditions	P4	MAR/05/2012
	2. Added POR SEQUENCE	P5	
1.2	1. Modified POR SEQUENCE	P5	MAY/08/2012
	2. Added Part Name Description	P10	
	3. Modified table 2 from "Input and Output Timing Levels" to	P4	
	"Output Timing Levels"		

Except for customized products which has been expressly identified in the applicable agreement, Macronix's products are designed, developed, and/or manufactured for ordinary business, industrial, personal, and/or household applications only, and not for use in any applications which may, directly or indirectly, cause death, personal injury, or severe property damages. In the event Macronix products are used in contradicted to their target usage above, the buyer shall take any and all actions to ensure said Macronix's product qualified for its actual use in accordance with the applicable laws and regulations; and Macronix as well as it's suppliers and/or distributors shall be released from any and all liability arisen therefrom.

Copyright© Macronix International Co., Ltd. 2011~2012. All rights reserved, including the trademarks and tradename thereof, such as Macronix, MXIC, MXIC Logo, MX Logo, Integrated Solutions Provider, NBit, Nbit, NBiit, Macronix NBit, eLiteFlash, XtraROM, Phines, KH Logo, BE-SONOS, KSMC, Kingtech, MXSMIO, Macronix vEE, Macronix MAP, Rich Audio, Rich Book, Rich TV, and FitCAM. The names and brands of other companies are for identification purposes only and may be claimed as the property of the respective companies.

For the contact and order information, please visit Macronix's Web site at: http://www.macronix.com

MACRONIX INTERNATIONAL CO., LTD. reserves the right to change product and specifications without notice.