

MACRONIX
INTERNATIONAL CO., LTD.

MX35UF1G14AC
MX35UF2G14AC

1.8V, 1G/2G-bit Serial NAND Flash Memory

MX35UFxG14AC

MACRONIX
INTERNATIONAL CO., LTD.

MX35UF1G14AC
MX35UF2G14AC

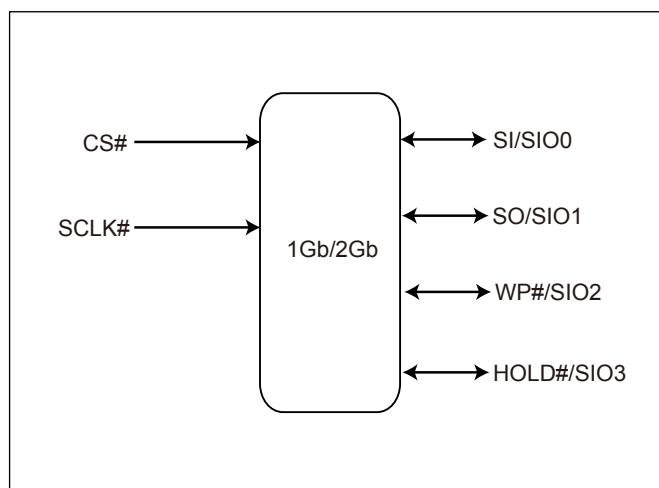
1.8V, 1Gb/2Gb Serial NAND Flash Memory

1. FEATURES

- 1Gb/2Gb SLC NAND Flash
 - Bus: x4
 - Page size: (2048+64) byte
 - Block size: (128K+4K) byte
- 4-bit ECC/ 528B is required
- **Fast Read Access**
 - Supports Random data read out by x1 x2 & x4 modes, (1-1-1,1-1-2, 1-1-4)^{Note 1}
 - Latency of array to register: 25us
 - Frequency: 104MHz
- **Page Program Operation**
 - Page program time: 320us (typ)
- **Block Erase Operation**
 - Block erase time: 1ms (typ.)
- **Single Voltage Operation:**
 - VCC: 1.7 - 1.95V
- **BP bits for block group protection**
- **Low Power Dissipation**
 - Max 30mA
Active current (Read/Program/Erase)
- **Sleep Mode**
 - 50uA (Max) standby current
- **High Reliability**
 - Program / Erase Endurance: Typical 100K cycles (with 4-bit ECC per (512+16) Byte)
 - Data Retention: 10 years
- **Wide Temperature Operating Range**
 - 40°C to +85°C
- **Package:**
 - 8-WSON (8x6mm)

All packaged devices are RoHS Compliant and Halogen-free.

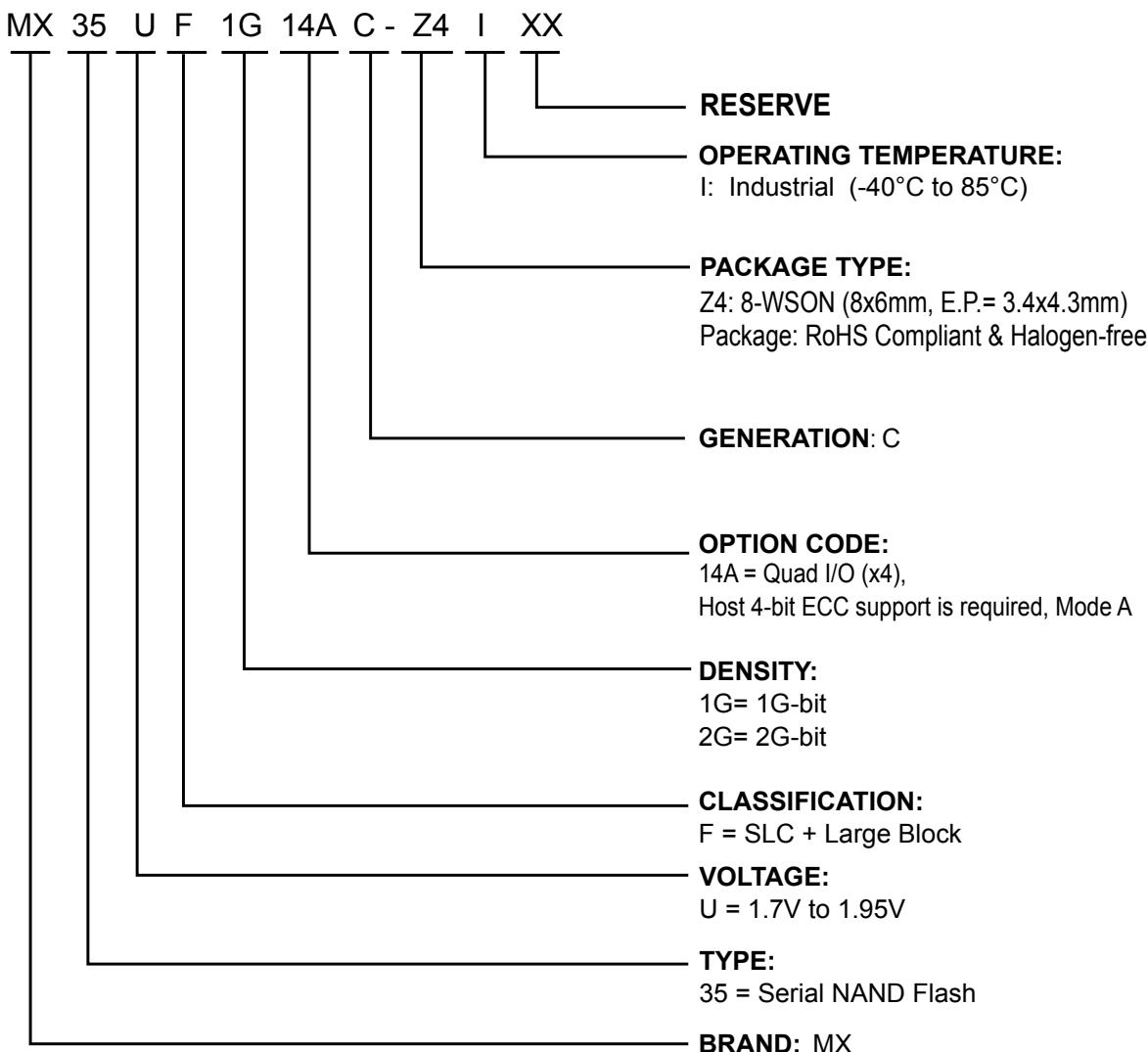
Note 1. Which indicates the number of I/O for command, address and data.


2. GENERAL DESCRIPTIONS

The MX35UFxG14AC is a 1Gb/2Gb SLC NAND Flash memory device with Serial interface.

The memory array of this device adopted the same cell architecture as the parallel NAND, however implementing the industry standard serial interface.

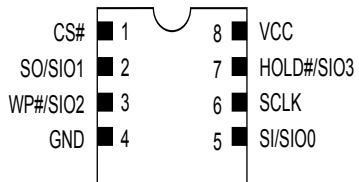
The device needs the micro controller of host side to support 4-bit ECC/528-byte operation.


Figure 1. Logic Diagram

3. ORDERING INFORMATION

Part Name Description

Macronix NAND Flash devices are available in different configurations and densities. Verify valid part numbers by using Macronix's product search at <http://www.Macronix.com>. Contact Macronix sales for devices not found.



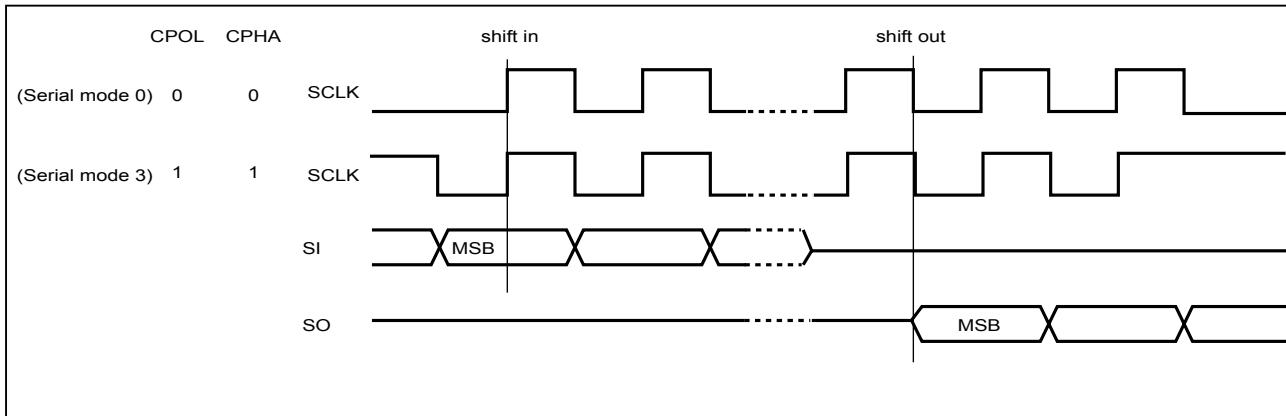
Please contact Macronix regional sales for the latest product selection and available form factors.

Part Number	Density	Organization	VCC Range	Package	Temperature Grade
MX35UF1G14AC-Z4I	1Gb	x4	1.8V	8-WSON	Industrial
MX35UF2G14AC-Z4I	2Gb	x4	1.8V	8-WSON	Industrial

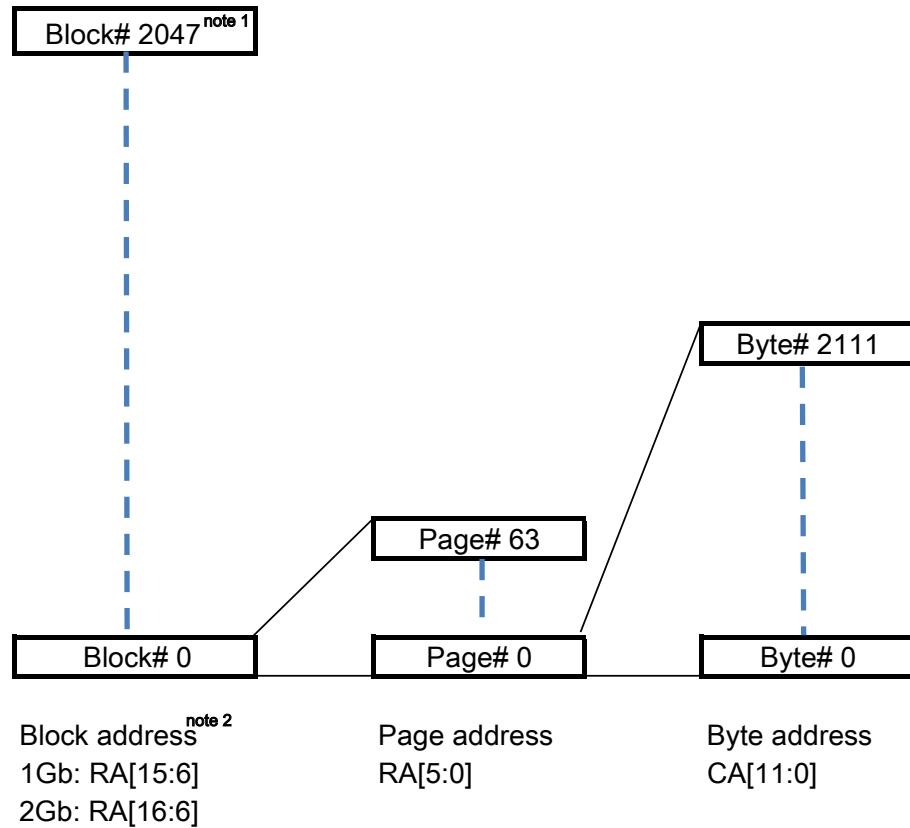
4. BALL ASSIGNMENT AND DESCRIPTIONS

Figure 2. 8-WSON (8x6mm)

5. PIN DESCRIPTIONS


SYMBOL	DESCRIPTION
CS#	Chip Select
SI/SIO0	Serial Data Input (for 1 x I/O)/ Serial Data Input & Output (for 1-1-2 or 1-1-4 ^{note1} read mode)
SO/SIO1	Serial Data Output (for 1 x I/O)/ Serial Data Input & Output (for 1-1-2 or 1-1-4 ^{note1} read mode)
SCLK	Clock Input
WP#/SIO2	Write protection: connect to GND or Serial Data Input & Output (for 1-1-4 ^{note1} read mode)
HOLD#/SIO3	Hold or Serial Data Input & Output (for 1-1-4 ^{note1} read mode)
VCC	+1.8V Power Supply
GND	Ground

Note 1. Which indicates the number of I/O for command, address, and data.


6. DEVICE OPERATION

1. Before a command is issued, status register should be checked via get features operations to ensure device is ready for the intended operation.
2. When incorrect command is inputted to this device, this device becomes standby mode and keeps the standby mode until next CS# falling edge. In standby mode, SO pin of this device should be High-Z.
3. When correct command is inputted to this device, this device becomes active mode and keeps the active mode until next CS# rising edge.
4. Input data is latched on the rising edge of Serial Clock (SCLK) and data shifts out on the falling edge of SCLK. The difference of Serial mode 0 and mode 3 is shown as "Serial Modes Supported".
5. During the progress of Write Status Register, Program, Erase operation, to access the memory array is neglected and not affect the current operation of Write Status Register, Program, Erase.

Figure 3. Serial Mode Supported

7. ADDRESS MAPPING

Note 1: 2047 for 2Gb, 1023 for 1Gb
Note 2: RA[6] is for plane select, for 2Gb

8. COMMAND DESCRIPTION

Table 1. Command Set

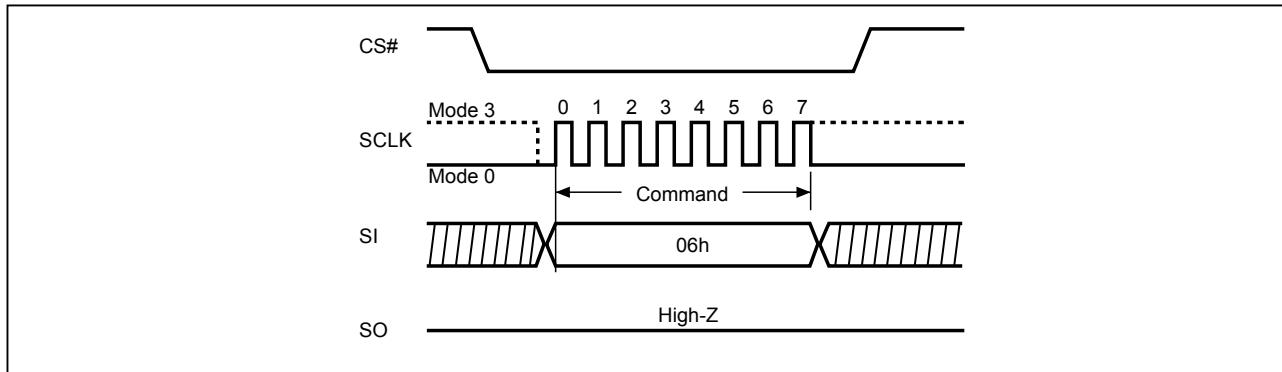
Read/Write Array Commands

Command Type	Get Feature	Set Feature	Page Read	Read From Cache	Read From Cache x2
Command Code	0Fh	1Fh	13h	03h, 0Bh	3Bh
Address Bytes	1	1	3	2	2
Dummy Bytes	0	0	0	1	1
Data Bytes	1	1	0	1 to 2112	1 to 2112
Actions	Get features	Set features	Array read	Output cache data on SO	Output cache data on SI and SO

Command Type	Read From Cache x4	Read ID	Block Erase	Program Execute	Program Load
Command Code	6Bh	9Fh	D8h	10h	02h
Address Bytes	2	0	3	3	2
Dummy Bytes	1	1	0	0	0
Data Bytes	1 to 2112	2	0	0	1 to 2112
Actions	Output cache data on SI, SO, WP#, HOLD#	Read device ID	Block erase	Enter block/page address, no data, execute	Load program data with cache reset first

Command Type	PROGRAM LOAD RANDOM DATA	WRITE ENABLE	WRITE DISABLE	PROGRAM LOAD x4	PROGRAM LOAD RANDOM DATA x4	RESET
Command Code	84h	06h	04h	32h	34h	FFh
Address Bytes	2	0	0	2	2	0
Dummy Bytes	0	0	0	0	0	0
Data Bytes	1 to 2112	0	0	1 to 2112	1 to 2112	0
Actions	Load program data without cache reset			Program Load operation with X4 data input	Program Load random data operation with X4 data input	Reset the device

8-1. WRITE Operations

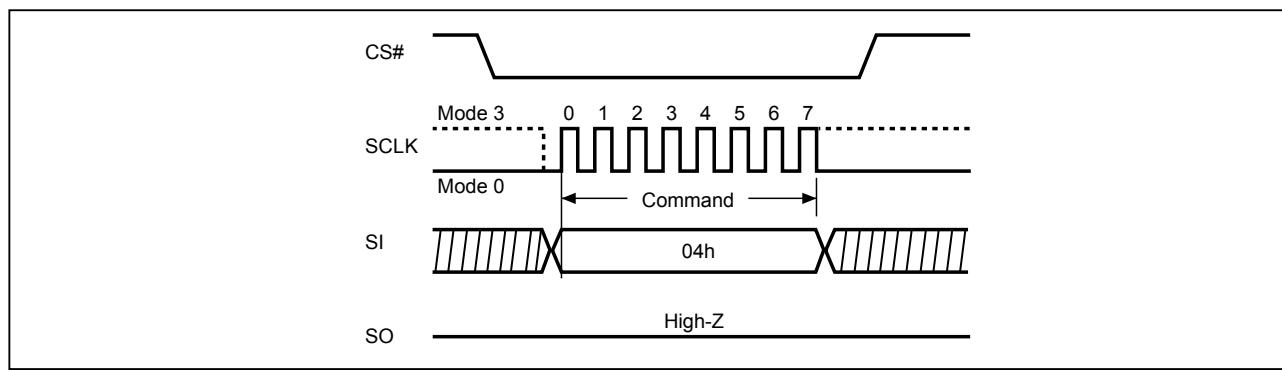

8-1-1. Write Enable

The Write Enable (WREN, 06h) instruction is for setting Write Enable Latch (WEL) bit. For those instructions like Page Program, Secure OTP program, Block Erase, which are intended to change the device content WEL bit should be set every time after the WREN instruction setting the WEL bit.

The sequence of issuing WREN instruction is: CS# goes low → sending WREN instruction code → CS# goes high.

The WEL bit is reset after the completion of program/erase/secure OTP program operations.

Figure 4. Write Enable (WREN) Sequence


8-1-2. Write Disable (04h)

The Write Disable (WRDI, 04h) instruction is to reset Write Enable Latch (WEL) bit.

The sequence of issuing WRDI instruction is: CS# goes low → sending WRDI instruction code → CS# goes high. It disables the following operations:

- Block Erase
- Secure OTP program
- Page program

Figure 5. Write Disable (WRDI) Sequence

8-2. Function Operations

8-2-1. GET Functions (0Fh) and SET Features (1Fh)

By issuing a one byte address into the function address, the device may then decide if it's a function read or function modification. (0Fh) is for the "GET FEATURE"; (1Fh) is for the "SET FEATURE".

The RESET command (FFh) will not clear the previous feature setting, the feature setting data bits remain until the power is being cycled or modified by the settings in the table below. After a RESET command (FFh) is issued, the Status register OIP bit0 will go high. This bit can be polled to determine when the Reset operation is complete, as it will return to the default value (0) after the reset operation is finished. Issuing the RESET command (FFh) has no effect on the Block Protection and Configuration registers.

The Block Protection and Configuration registers (except "Secure OTP Protect" bit) will return to their default state after a power cycle, and can also be changed using the Set Feature command. Issuing the Get Feature command to read the selected register value will not affect register content.

Table 2. Features Settings

Register	Address	Data Bits							
		bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0
Configurataion	B0h	Secure OTP Protect	Secure OTP Enable	Reserved	Reserved	Reserved	Reserved	Reserved	QE
Status	C0h	Reserved	Reserved	Reserved	Reserved	P_Fail	E_Fail	WEL	OIP
Block Protection	A0h	BPRWD ¹	Reserved	BP2	BP1	BP0	Invert	Complementary	SP ²

Note 1: If BPRWD is enabled and WP# is LOW, then the block protection register cannot be changed.

Note 2: SP bit is for Solid-protection. Once the SP bit sets as 1, the rest of the protection bits (BPx bits, Invert bits, complementary bits) cannot be changed during the current power cycle.

Note 3: All the reserved bits must keep low including the undefined register.

Figure 6. GET FEATURES (0Fh) Timing

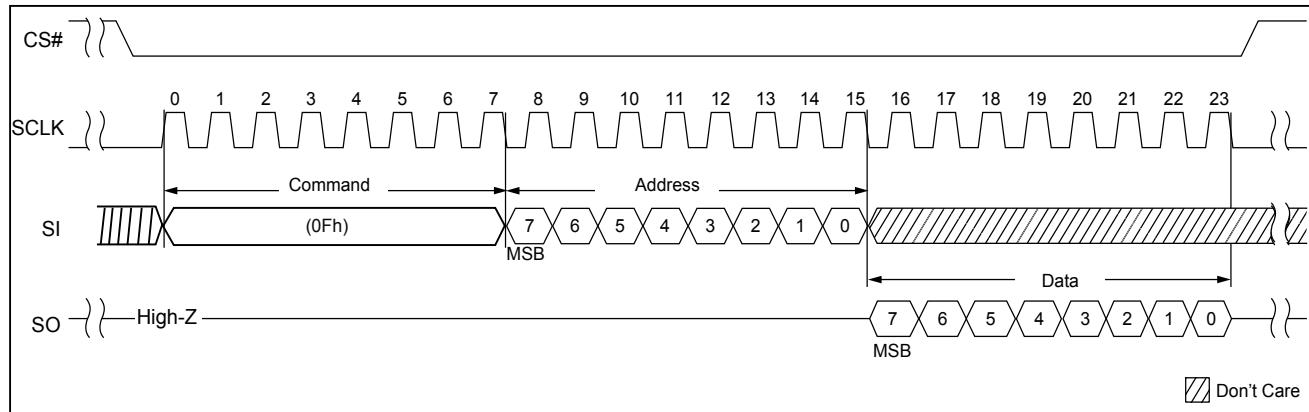
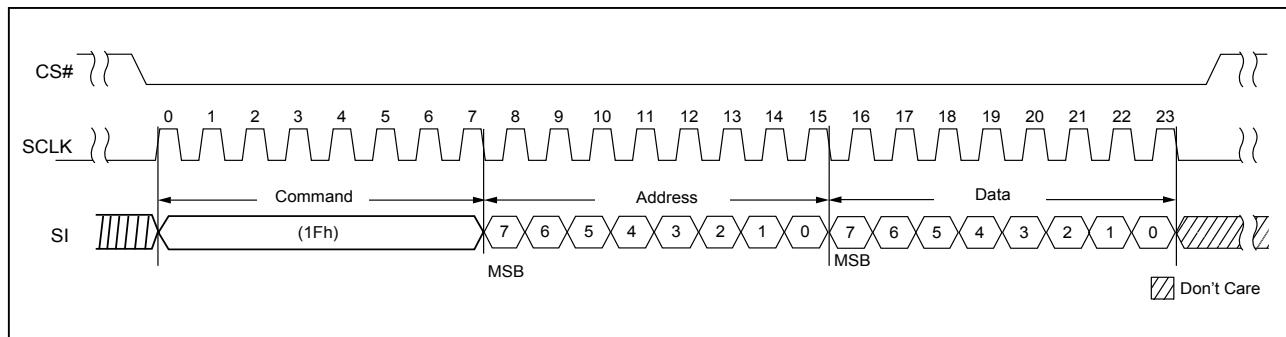



Figure 7. SET FEATURES (1Fh) Timing

8-3. READ Operations

The device supports "Power-on Read" function, after power up, the device will automatically load the data of the 1st page of 1st block from array to cache. The host micro-controller may directly read the 1st page of 1st block data from the cache buffer.

8-3-1. PAGE READ (13h)

The page read operation transfers data from array to cache by issuing the page read (13h) command followed by the 24-bit address (including the dummy/block/page address).

The device will have a period of time (tRD) being busy after the CS# goes high. The 0Fh (GET FEATURE) may be used to poll the operation status.

After read operation is completed, the RANDOM DATA READ (03h or 0Bh), Read from cache (x2) (3Bh), and Read from cache (x4) (6Bh) may be issued to fetch the data.

Wrap Read Operation

There are four wrap address bits which define the four wrap length as the table below. After the Read from cache command (03h, 0Bh, 3Bh, 6Bh), setting the wrap address bits, and followed by the 12-bit column address to define the starting address. The starting address for wrap read only can be 0 - 2111. The data will be output from the starting address, once it reaches the end of the boundary of wrap length, the data will be wrap around the beginning starting wrap address until CS# goes high.

Table 3. Wrap Address bit Table

Wrap [1]	Wrap [0]	Wrap Length (byte)
0	0	2112
0	1	2048
1	0	64
1	1	16

8-3-2. QE bit

The Quad Enable (QE) bit, volatile bit, while it is "0" (factory default), it performs non-Quad and WP#, HOLD# are enabled. While QE is "1", it performs Quad I/O mode and WP#, HOLD# are disabled. In another word, if the system goes into four I/O mode (QE=1), the feature of Hardware Protection Mode(HPM) and HOLD will be disabled. Upon power recycle, the QE bit will go into the factory default setting "0".

Figure 8. PAGE READ (13h) Timing x1

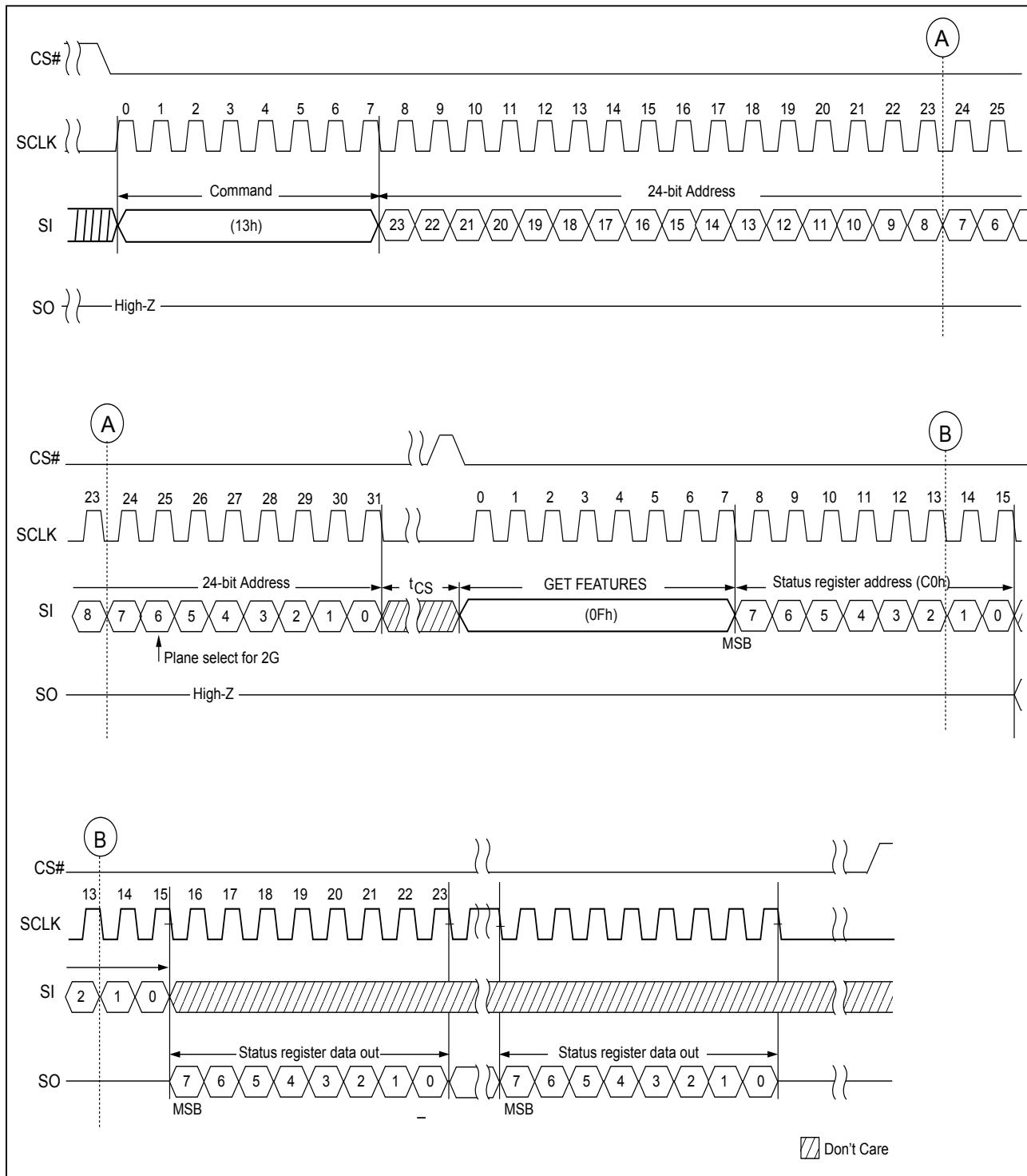


Figure 9. RANDOM DATA READ (03h or 0Bh) Timing

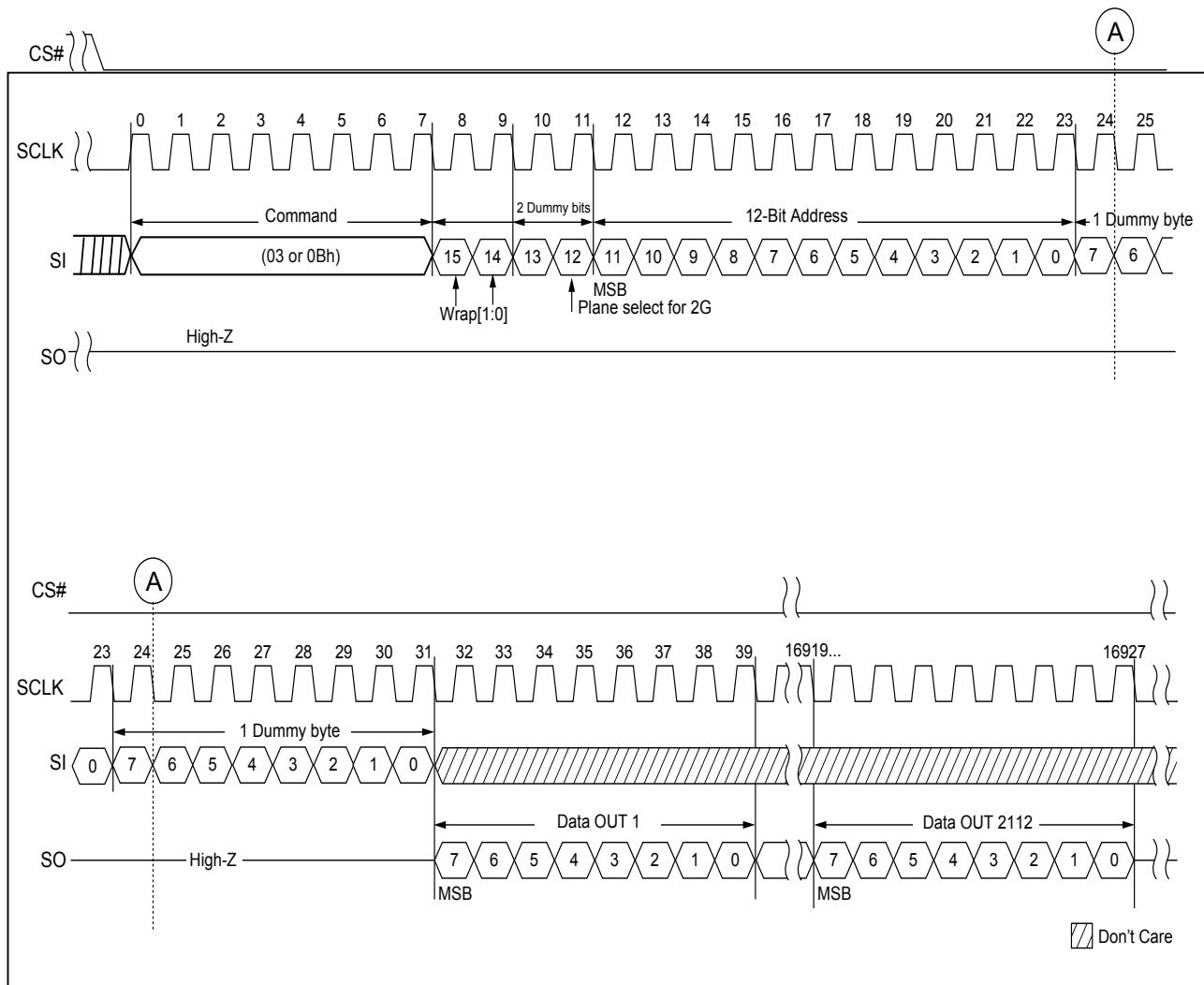


Figure 10. READ FROM CACHE x 2

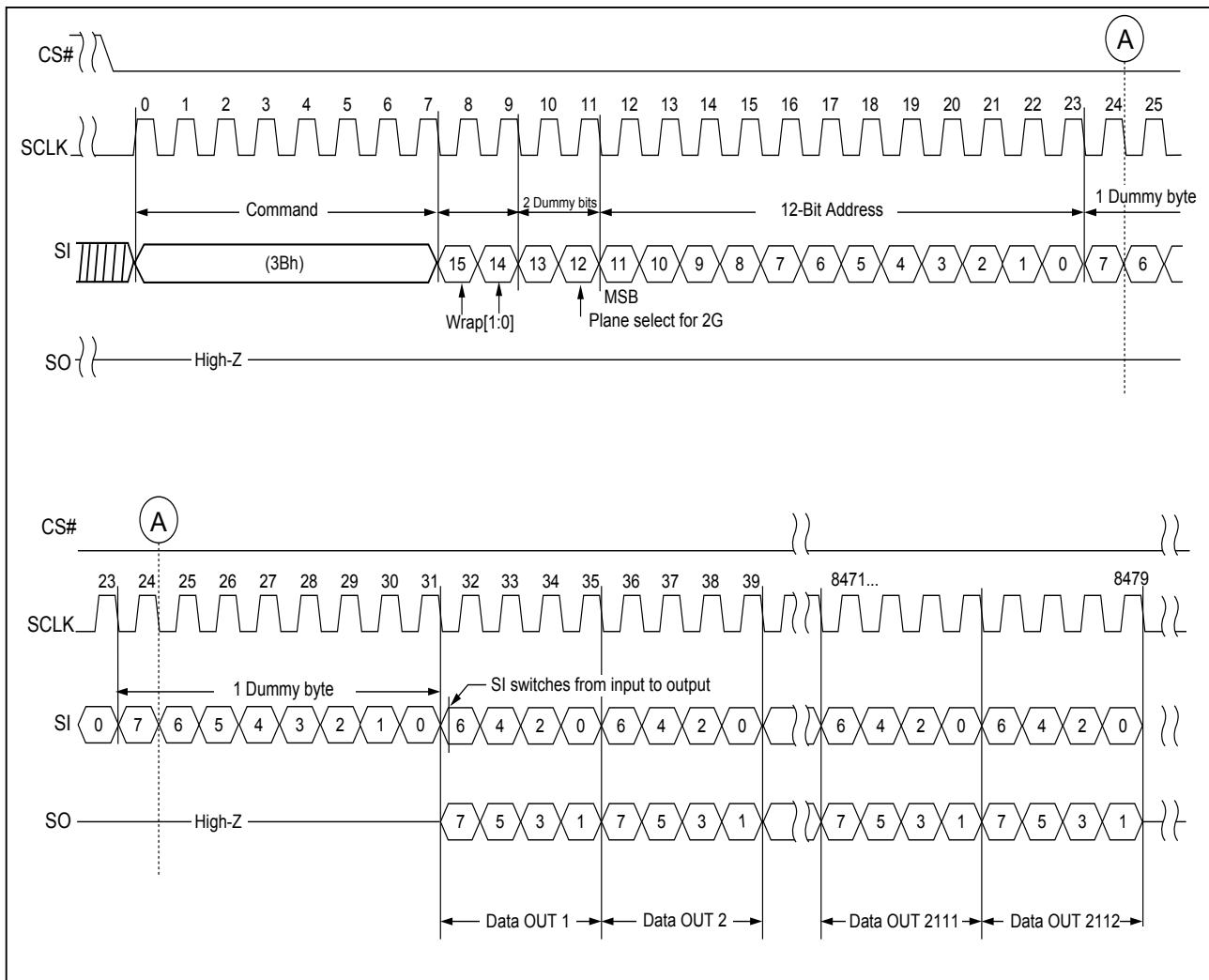
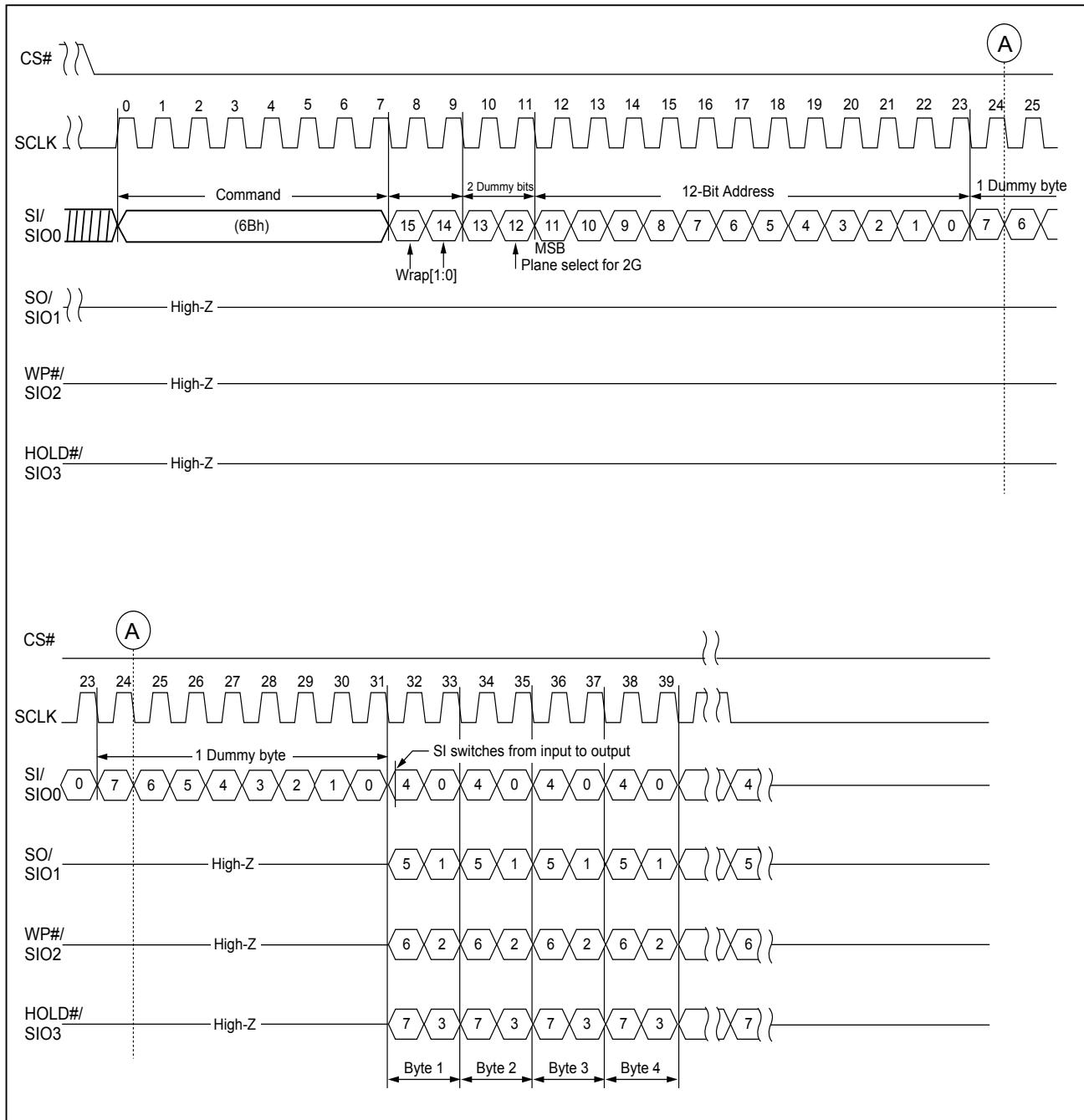
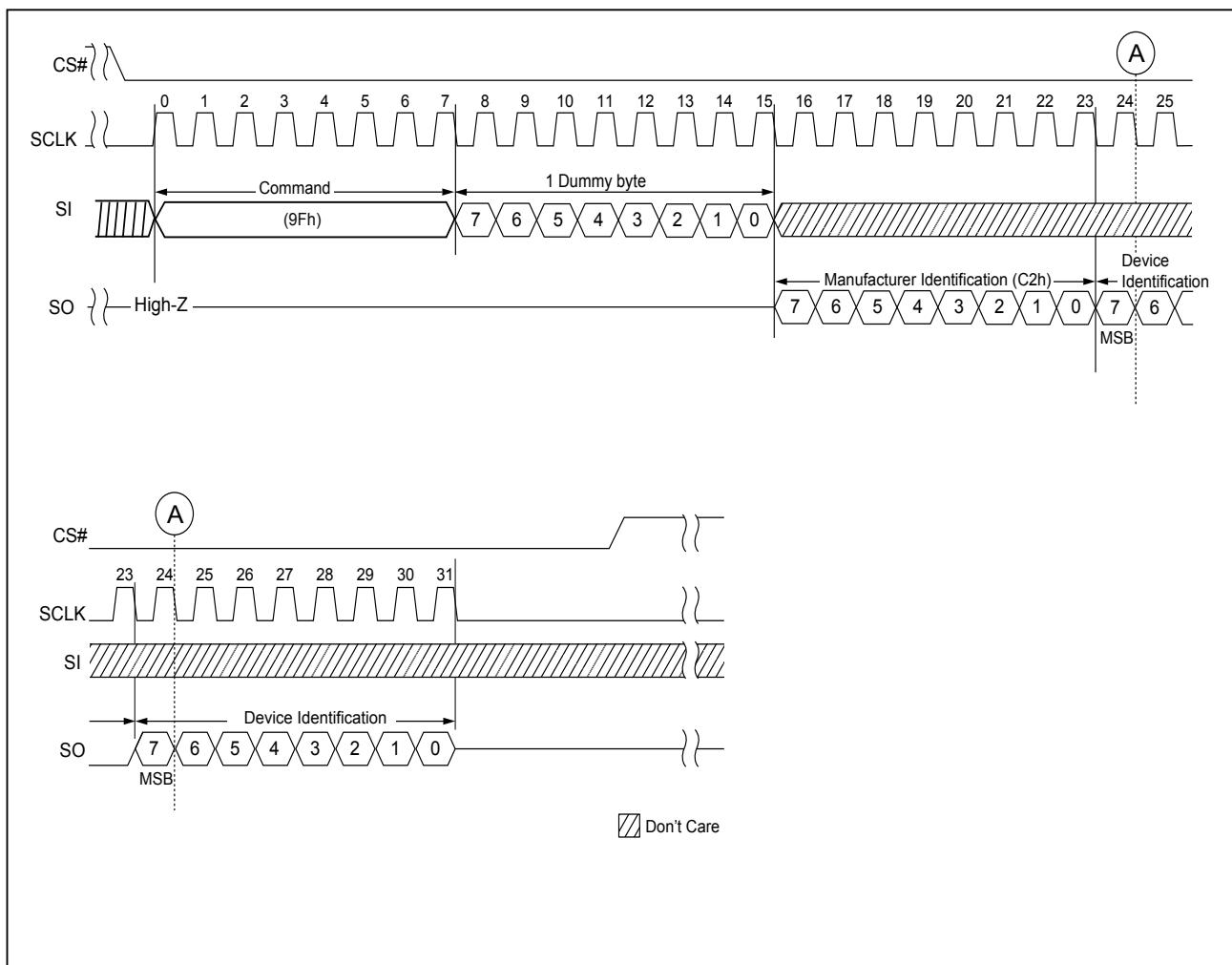



Figure 11. READ FROM CACHE x 4


8-3-3. READ ID (9Fh)

The READ ID command is shown as the table below.

Table 4. READ ID Table

Byte	Description	I/O7	I/O6	I/O5	I/O4	I/O3	I/O2	I/O1	I/O0	Value
Byte 0	Manufacturer ID (Macronix)	1	1	0	0	0	0	1	0	C2h
Byte 1	Device ID (Serial NAND)	1	0	0	1	0	0	0	0	90h (for 1Gb)
		1	0	1	0	0	0	0	0	A0h (for 2Gb)

Figure 12. READ ID (9Fh) Timing

8-4. Parameter Page

The parameter page is accessed by the following command flows:

Issue 1Fh (SET FEATURE) command with Secure OTP enable (B0h for address & 40h for data) --> Issue 13h (PAGE READ) with 01h address, issue 0Fh (GET FEATURE) with C0h function address to poll the status of read completion. --> Issue 03h (READ FROM CACHE) with address A[11:0]=000h and read data --> Issue 1Fh (SET FEATURE) with function address B0h to disable Secure OTP function (data byte = 10h or 00h) [exit parameter page read].

8-5. Parameter Page Data Structure Table

Table 5. Parameter Page Data Structure (For MX35UF1G14AC)

Revision Information and Features Block			
Byte#	Description		Data
0-3	Parameter Page Signature		4Fh, 4Eh, 46h, 49h
4-5	Revision Number		00h, 00h
6-7	Features Supported (N/A)		00h, 00h
8-9	Optional Commands Supported		06h, 00h
10-31	Reserved		00h
Manufacturer Information Block			
Byte#	Description		Data
32-43	Device Manufacturer (12 ASCII characters)		4Dh, 41h, 43h, 52h, 4Fh, 4Eh, 49h, 58h, 20h, 20h, 20h, 20h
44-63	Device Model (20 ASCII Characters)	MX35UF1G14AC	4Dh, 58h, 33h, 35h, 55h, 46h, 31h, 47h, 31h, 34h, 41h, 43h, 20h, 20h, 20h, 20h, 20h, 20h, 20h, 20h
64	Manufacturer ID		C2h
65-66	Date Code		00h, 00h
67-79	Reserved		00h
Memory Organization Block			
Byte#	Description		Data
80-83	Number of Data Bytes per Page		2048-byte
84-85	Number of Spare Bytes per Page		64-byte
86-89	Number of Data Bytes per Partial Page		512-byte
90-91	Number of Spare Bytes per Partial Page		16-byte
92-95	Number of Pages per Block		40h, 00h, 00h, 00h
96-99	Number of Blocks per Unit		00h, 04h, 00h, 00h
100	Number of Logical Units		01h
101	Number of Address Cycles (N/A)		00h
102	Number of Bits per Cell		01h
103-104	Bad Blocks Maximum per unit		14h, 00h
105-106	Block endurance		01h, 05h
107	Guarantee Valid Blocks at Beginning of Target		01h
108-109	Block endurance for guaranteed valid blocks		00h, 00h
110	Number of Programs per Page		04h
111	Partial Programming Attributes		00h
112	Number of ECC bits		04h
113	Number of Interleaved Address Bits (N/A)		00h
114	Interleaved Operation Attributes (N/A)		00h
115-127	Reserved		00h

Electrical Parameters Block			
Byte#	Description		Data
128	I/O Pin Capacitance		0Ah
129-130	Timing Mode Support (N/A)		00h, 00h
131-132	Program Cache Timing (N/A)		00h, 00h
133-134	tPROG Maximum Page Program Time (uS)	600us	58h, 02h
135-136	BE Maximum Block Erase time (uS)	3500us	ACh, 0Dh
137-138	tRD Maximum Page Read time (uS)	25us	19h, 00h
139-140	tCCS Minimum (N/A)	0ns	00h, 00h
141-163	Reserved		00h
Vendor Blocks			
Byte#	Description		Data
164-165	Vendor Specific Revision Number		00h, 00h
166-253	Vendor Specific		00h
254-255	Integrity CRC		Set at Test <i>(Note)</i>
Redundant Parameter Pages			
Byte#	Description		Data
256-511	Value of Bytes 0-255		Same as 0~255 Byte
512-767	Value of Bytes 0-255		Same as 0~255 Byte
768+	Additional Redundant Parameter Pages		

Note:

The Integrity CRC (Cycling Redundancy Check) field is used to verify that the contents of the parameters page were transferred correctly to the host. Please refer to ONFI 1.0 specifications for details.

The CRC shall be calculated using the following 16-bit generator polynomial:
 $G(X) = X^{16} + X^{15} + X^2 + 1$

Table 6. Parameter Page Data Structure (For MX35UF2G14AC)

Revision Information and Features Block		
Byte#	Description	Data
0-3	Parameter Page Signature	4Fh, 4Eh, 46h, 49h
4-5	Revision Number	00h, 00h
6-7	Features Supported (N/A)	00h, 00h
8-9	Optional Commands Supported	06h, 00h
10-31	Reserved	00h
Manufacturer Information Block		
Byte#	Description	Data
32-43	Device Manufacturer (12 ASCII characters)	4Dh, 41h, 43h, 52h, 4Fh, 4Eh, 49h, 58h, 20h, 20h, 20h, 20h
44-63	Device Model (20 ASCII Characters)	MX35UF2G14AC 4Dh, 58h, 33h, 35h, 55h, 46h, 32h, 47h, 31h, 34h, 41h, 43h, 20h, 20h, 20h, 20h, 20h, 20h, 20h, 20h
64	Manufacturer ID	C2h
65-66	Date Code	00h, 00h
67-79	Reserved	00h
Memory Organization Block		
Byte#	Description	Data
80-83	Number of Data Bytes per Page	2048-byte 00h, 08h, 00h, 00h
84-85	Number of Spare Bytes per Page	64-byte 40h, 00h
86-89	Number of Data Bytes per Partial Page	512-byte 00h, 02h, 00h, 00h
90-91	Number of Spare Bytes per Partial Page	16-byte 10h, 00h
92-95	Number of Pages per Block	40h, 00h, 00h, 00h
96-99	Number of Blocks per Unit	00h, 08h, 00h, 00h
100	Number of Logical Units	01h
101	Number of Address Cycles (N/A)	00h
102	Number of Bits per Cell	01h
103-104	Bad Blocks Maximum per unit	28h, 00h
105-106	Block endurance	01h, 05h
107	Guarantee Valid Blocks at Beginning of Target	01h
108-109	Block endurance for guaranteed valid blocks	00h, 00h
110	Number of Programs per Page	04h
111	Partial Programming Attributes	00h
112	Number of ECC bits	04h
113	Number of Interleaved Address Bits (N/A)	00h
114	Interleaved Operation Attributes (N/A)	00h
115-127	Reserved	00h

Electrical Parameters Block			
Byte#	Description		Data
128	I/O Pin Capacitance		0Ah
129-130	Timing Mode Support (N/A)		00h, 00h
131-132	Program Cache Timing (N/A)		00h, 00h
133-134	tPROG Maximum Page Program Time (uS)	600us	58h, 02h
135-136	BE Maximum Block Erase time (uS)	3500us	ACh, 0Dh
137-138	tRD Maximum Page Read time (uS)	25us	19h, 00h
139-140	tCCS Minimum (N/A)	0ns	00h, 00h
141-163	Reserved		00h
Vendor Blocks			
Byte#	Description		Data
164-165	Vendor Specific Revision Number		00h, 00h
166-253	Vendor Specific		00h
254-255	Integrity CRC		Set at Test <i>(Note)</i>
Redundant Parameter Pages			
Byte#	Description		Data
256-511	Value of Bytes 0-255		Same as 0~255 Byte
512-767	Value of Bytes 0-255		Same as 0~255 Byte
768+	Additional Redundant Parameter Pages		

Note:

The Integrity CRC (Cycling Redundancy Check) field is used to verify that the contents of the parameters page were transferred correctly to the host. Please refer to ONFI 1.0 specifications for details.

The CRC shall be calculated using the following 16-bit generator polynomial:

$$G(X) = X^{16} + X^{15} + X^2 + 1$$

8-6. UniqueID Page

The UniqueID page is accessed by the following command flows:

Issue 1Fh (SET FEATURE) command with Secure OTP enable (B0h for address & 40h for data) → Issue 13h (PAGE READ) with 00h address, issue 0Fh (GET FEATURE) with C0h function address to poll the status of read completion → Issue 03h (READ FROM CACHE) with address A[11:0]=000h and read data → Issue 1Fh (SET FEATURE) with function address B0h to disable Secure OTP function (data byte =10h or 00h) [exit unique ID read]

UniqueID data: 16x32byte of UniqueID data. On each 32byte, the first 16byte and following 16byte should be XOR to be FFh.

8-7. Program Operations

8-7-1. PAGE PROGRAM

With following operation sequences, the PAGE PROGRAM operation programs the page from byte 1 to byte 2112.

WRITE ENABLE (06h) → PROGRAM LOAD (02h) → PROGRAM LOAD RANDOM DATA (84h) if needed → PROGRAM EXECUTE (10h) → GET FEATUR from command to read status (0Fh).

WEL bit is set with the WRITE ENABLE (06h) issued. The program operation will be ignored if 06h command not issued. In a single page, four partial page programs are allowed. Exceeded bytes (Page address is larger than 2112) for "PROGRAM LOAD" or "PROGRAM LOAD RANDOM DATA", the exceeding bytes will be ignored. When CS goes high, the "PROGRAM LOAD" or "PROGRAM LOAD RANDOM DATA" operation terminates. Please note "**Figure 13. PROGRAM LOAD (02h) Timing**" and "**Figure 14. PROGRAM LOAD RANDOM DATA (84h) Timing**" below for PROGRAM LOAD.

After PROGRAM LOAD is done, the programming of data should be as following steps: issue 10h (PROGRAM EXECUTE) with 1byte command code, 24 bits address → code programming to memory and busy for tPROG → Program complete.

During programming, status to be polled by the status register. The OIP bit is "1" during the tPROG timing, and is cleared to "0" when Program Cycle is completed, and the Write Enable Latch (WEL) bit is cleared

Operation shows in the Figure below.

Figure 13. PROGRAM LOAD (02h) Timing

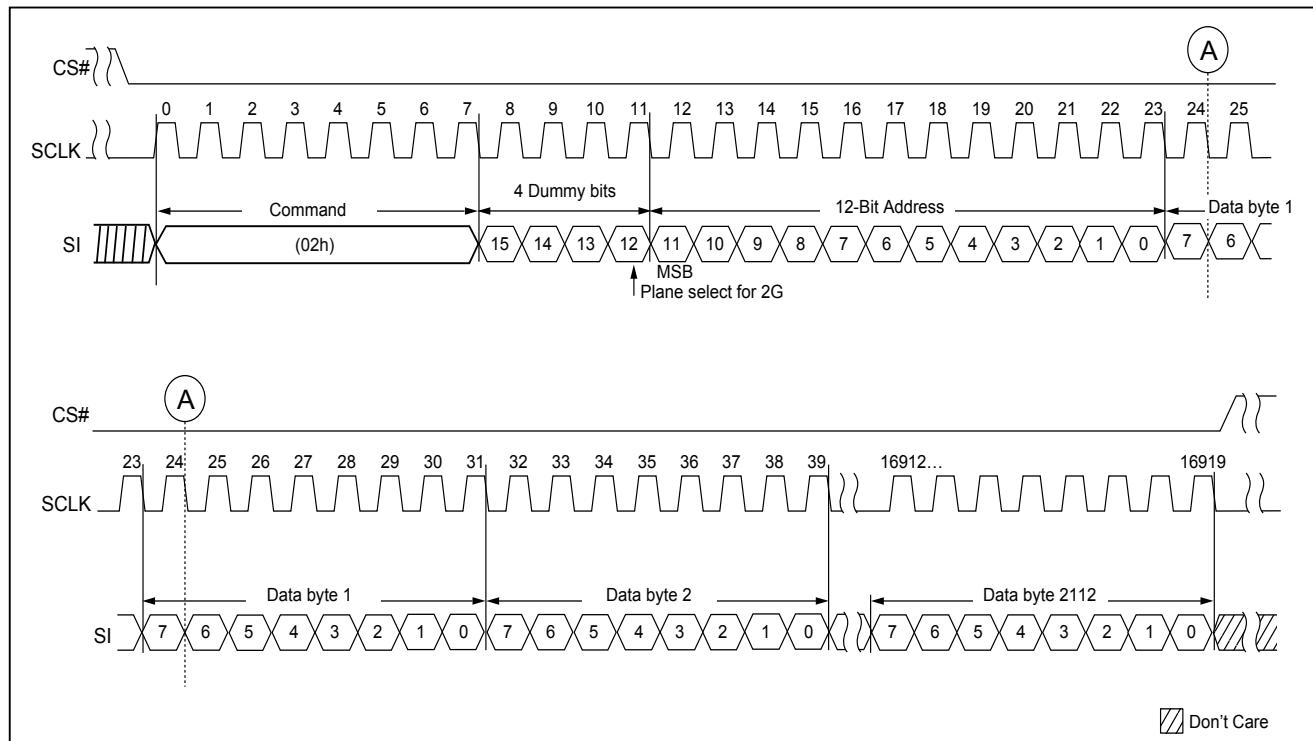
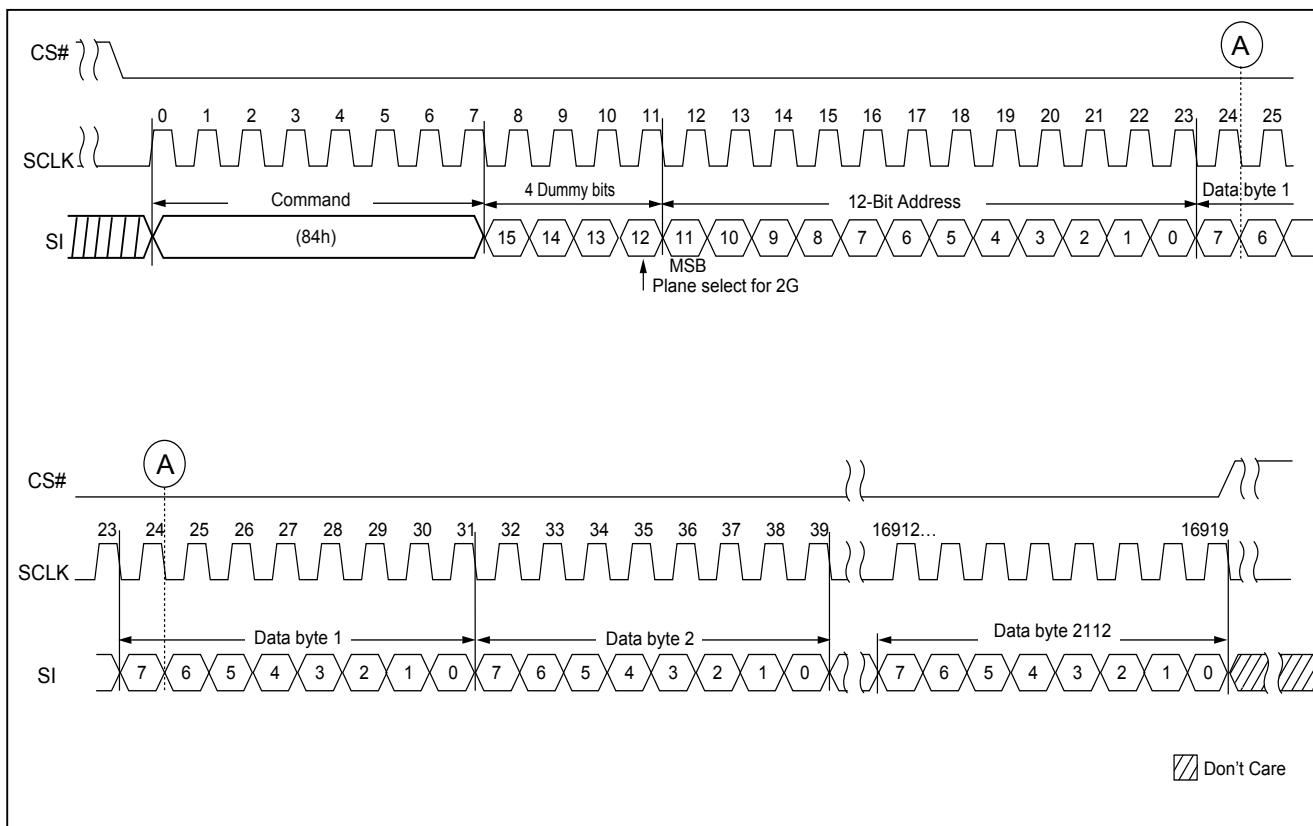



Figure 14. PROGRAM LOAD RANDOM DATA (84h) Timing

8-7-2. QUAD IO PAGE PROGRAM

QUAD IO PAGE PROGRAM conducts the 2Kbyte program with 4 I/O mode. The steps are: WRITE ENABLE (06h) → PROGRAM LOAD X4 (32h) → PROGRAM LOAD RANDOM DATA (34h) if needed → PROGRAM EXECUTE (10h) → Poll status by issuing GET FEATURE (0Fh).

Figure 15. PROGRAM LOAD X4 (32h) Timing

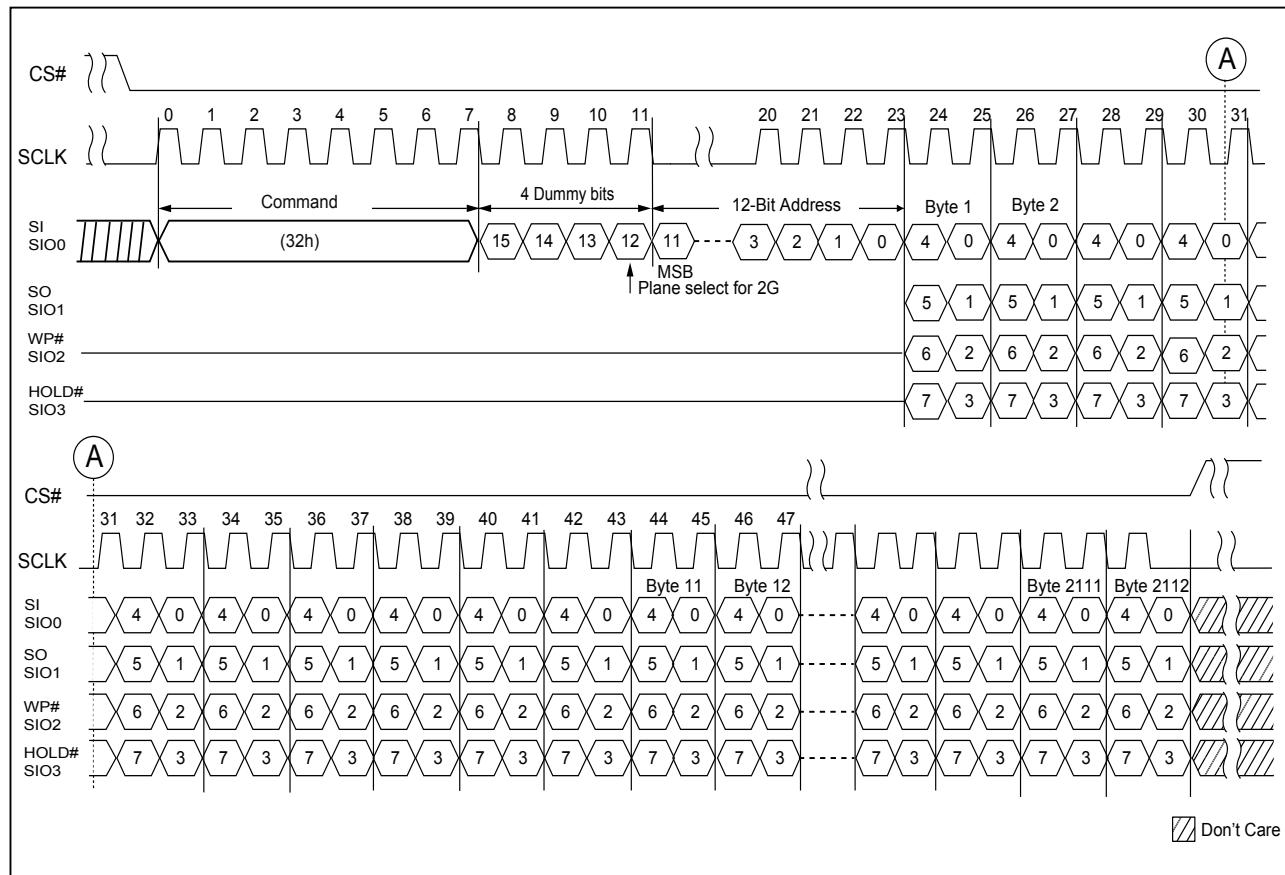


Figure 16. QUAD IO PROGRAM RANDOM INPUT (34h) Timing

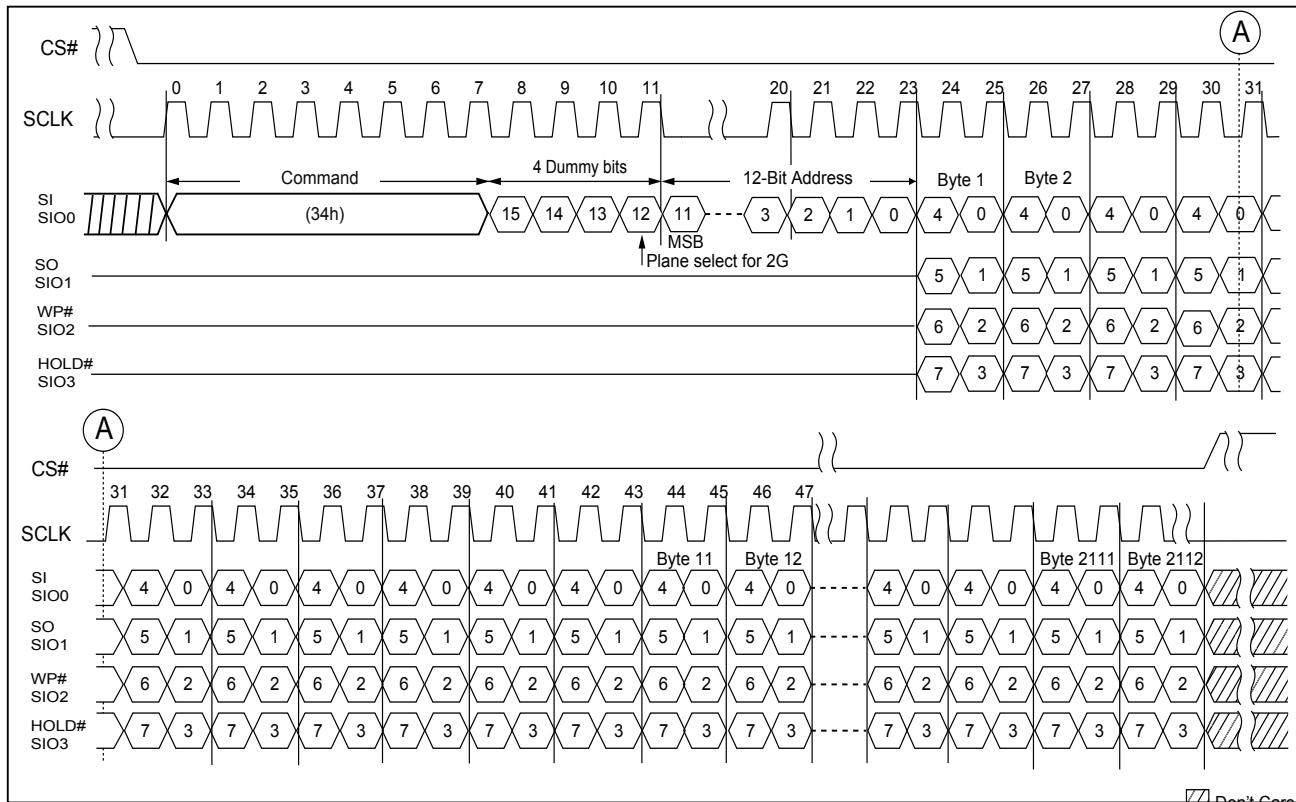
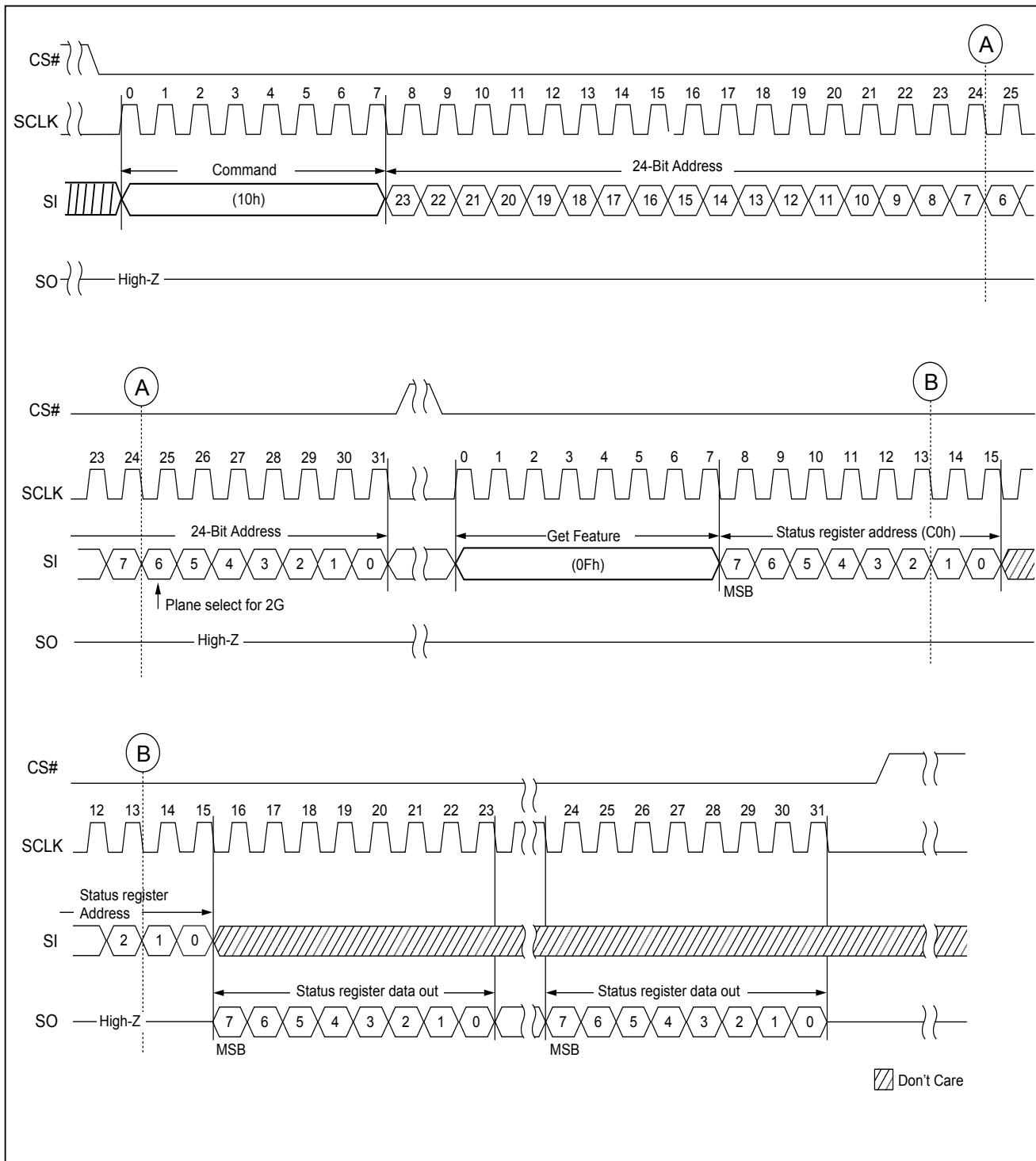
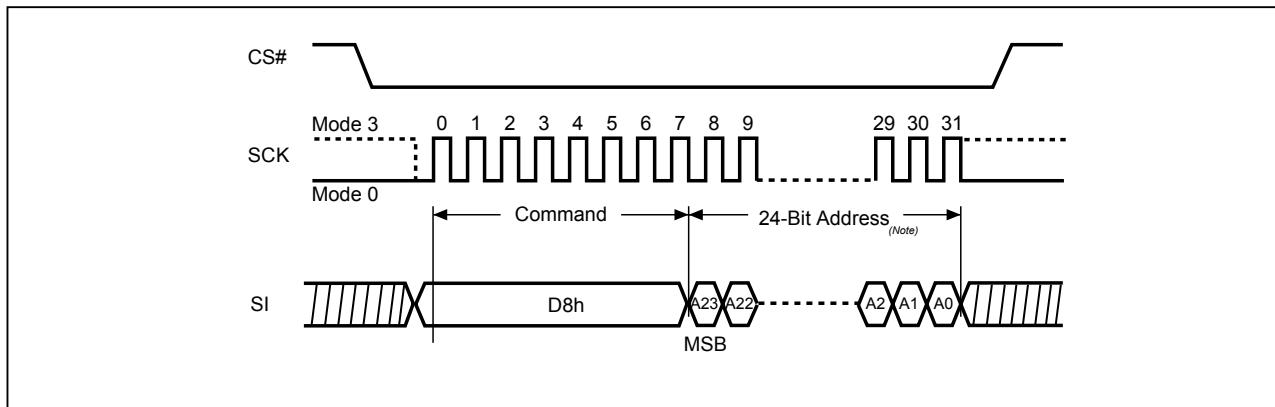



Figure 17. PROGRAM EXECUTE (10h) Timing

9. BLOCK OPERATIONS


9-1. Block Erase (D8h)

The Block Erase (D8h) instruction is for erasing the data of the chosen block to be "1". The instruction is used for a block of 128K-byte erase operation. A Write Enable (WREN) instruction be executed to set the Write Enable Latch (WEL) bit before sending the Block Erase (D8h). Any address of the block is a valid address for Block Erase (D8h) instruction. The CS# must go high exactly at the byte boundary (the least significant bit of address byte been latched-in); otherwise, the instruction will be rejected and not executed. Finally, a Get Feature(0Fh) instruction to check the status is necessary.

The sequence of issuing Block Erase instruction is: CS# goes low → sending Block Erase instruction code → 24-bit address on SI → CS# goes high.

The self-timed Block Erase Cycle time (tBE) is initiated as soon as Chip Select (CS#) goes high. The Get Feature (0Fh) instruction with Address (C0h) may check the status of the operation during the Block Erase cycle is in progress (please refer to the **"Figure 6. GET FEATURES (0Fh) Timing"** and **"Table 2. Features Settings"**). The OIP bit is "1" during the tBE timing, and is cleared to "0" when Block Erase Cycle is completed, and the Write Enable Latch (WEL) bit is cleared.

Figure 18. Block Erase (BE) Sequence

Note: The 24-bit Address includes: 17-bit row address and 7-bit dummy (for 2Gb), or 16-bit row address and 8-bit dummy (for 1Gb).

9-2. Feature Register

Feature register defines various register's definitions (Block Protection, Secure OTP, Status register). The definition of each register is as "**Table 7. Definition of Protection Bits**" below:

9-2-1. Block Protection Feature

The Block Protection feature includes three block protection bits (BPx), Block Protection Register Write Disable (BPRWD), Inverse bit (INVERT), complement bit (COMPLEMENTARY) and Solid Protection Bit (SP).

Soft Protection Mode (SPM)

The SPM uses the BPx bits, INVERT, and COMPLEMENTARY bits to allow part of memory to be protected as read only. The protected area definition is shown as "**Table 7. Definition of Protection Bits**", the protected areas are more flexible which may protect various area by setting value of BP0-BP2 and Invert bit, and Complementary bit. These are volatile bits and can be modified by set feature command.

After power-up, the chip is in protection state, that is, the feature bits BPx is 1, all other bits (BPRWD, INVERT, COMPLEMENTARY and SP) are 0. The Set feature instruction (1Fh) with feature address (A0h) may change the value of the block protection bits and un-protect whole chip or a certain area for further program/erase operation. For example, after the power-on, the whole chip is protected from program/erase operation, the top 1/64 area may be un-protected by using the Set feature instruction (1Fh) with the feature address (A0h) to change the values of BP2 and BP1 from "1" to "0" as "**Table 7. Definition of Protection Bits**".

Hardware Protection Mode (HPM) & Solid Protection Mode (SDPM)

Under the Hardware Protection mode and Solid Protection Mode, the (BPx, INVERT, COMPLEMENTART) bits can not be changed.

Hardware Protection Mode: The device enters HPM if BPRWD bits is set to 1 and WP#/SIO2 is driven to 0.

Note 1: HPM also requires SP bit to be 0 state.

Note 2: The Quad mode is not supported in HPM.

Solid Protection Mode: If SP bit is set to 1, the device enters SDPM. After that, the selected block is solid protected and can not be un-protected until next power cycle.

Table 7. Definition of Protection Bits

BP2	BP1	BP0	Invert	Complementary	Protection Area
0	0	0	x	x	all unlocked
0	0	1	0	0	upper 1/64 locked
0	1	0	0	0	upper 1/32 locked
0	1	1	0	0	upper 1/16 locked
1	0	0	0	0	upper 1/8 locked
1	0	1	0	0	upper 1/4 locked
1	1	0	0	0	upper 1/2 locked
1	1	1	x	x	all locked (default)
0	0	1	1	0	lower 1/64 locked
0	1	0	1	0	lower 1/32 locked
0	1	1	1	0	lower 1/16 locked
1	0	0	1	0	lower 1/8 locked
1	0	1	1	0	lower 1/4 locked
1	1	0	1	0	lower 1/2 locked
0	0	1	0	1	lower 63/64 locked
0	1	0	0	1	lower 31/32 locked
0	1	1	0	1	lower 15/16 locked
1	0	0	0	1	lower 7/8 locked
1	0	1	0	1	lower 3/4 locked
1	1	0	0	1	block 0
0	0	1	1	1	upper 63/64 locked
0	1	0	1	1	upper 31/32 locked
0	1	1	1	1	upper 15/16 locked
1	0	0	1	1	upper 7/8 locked
1	0	1	1	1	upper 3/4 locked
1	1	0	1	1	block0

Note: Block #0 is at lower portion.

9-2-2. Secure OTP (One-Time-Programmable) Feature

There is an Secure OTP area which has 30 full pages (30 x 2112-byte) from page 02h to page 1Fh guarantee to be good for system device serial number storage or other fixed code storage. The Secure OTP area is a non-erasable and one-time-programmable area, which is default to "1" and allows partial page program to be "0", once the Secure OTP protection mode is set, the Secure OTP area becomes read-only and cannot be programmed again.

The Secure OTP operation is operated by the Set Feature instruction with feature address (B0h) to access the Secure OTP operation mode and Secure OTP protection mode.

To check the NAND device is ready or busy in the Secure OTP operation mode, the status register bit 0 (OIP bit) may report the status by Get Feature command operation.

To exit the Secure OTP operation or protect mode, it can be done by writing "0" to both Bit7 ("Secure OTP Protect" Bit) and bit6 ("Secure OTP Enable" Bit) for returning to the normal operation.

Secure OTP Read

1. Issuing the Set Feature instruction (1Fh)
2. Sending the Feature address (B0h) and set the "Secure OTP Enable" Bit as "1".
3. Issuing normal Page Read command (13h)

Secure OTP Program (if the "Secure OTP Protect" Bit is "0")

1. Issuing the Set Feature instruction (1Fh)
2. Sending the Feature address (B0h) and set the "Secure OTP Enable" Bit as "1".
3. Issuing Page Program command (02h)
4. Issuing program execute command (10h)

Secure OTP Protection

1. Issuing the Set Feature instruction (1Fh)
2. Sending the Feature address (B0h) and set both the "Secure OTP Protect" Bit and "Secure OTP Enable" Bit as "1".
3. Issuing program execute command (10h)

Table 8. Secure OTP States

Secure OTP Protect Bit ^{Note1}	Secure OTP Enable Bit	State
0	0	Normal operation
0	1	Access the Secure OTP for reading or programming
1	0	Not applicable
1	1	Secure OTP Protection by using the Program Execution command (10h) ^{Note2}

Note 1. "Secure OTP Protect" Bit is non-volatile.

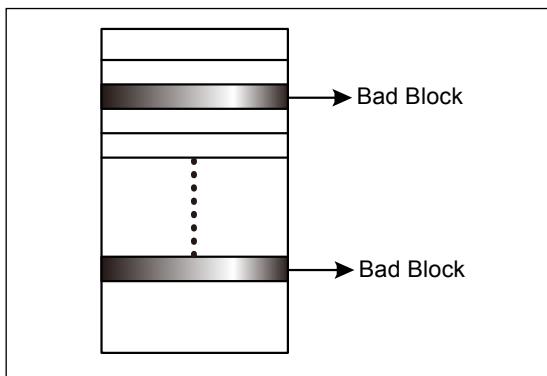
Note 2. Once the "Secure OTP Protect" Bit and "Secure OTP Enable" Bit are set as "1", the Secure OTP becomes read only.

9-2-3. Status Register

The MX35UFxG14AC provides a status register that outputs the device status by writing a Get Feature command (0Fh) with the feature address (C0h), and then the IO pins output the status.

The Get Feature (0Fh) command with the feature address(C0h) will keep the device at the status read mode unless next valid command is issued. The resulting information is outlined in the table below.

Table 9. Status Register Bit Descriptions


SR Bit	Bit Name	Description
SR[0] (OIP)	Operation in progress	The bit value indicates whether the device is busy in operations of read/ program execute/ erase/ reset command. 1: Busy, 0: Ready
SR[1] (WEL)	Write enable latch	The bit value indicates whether the device is set to internal write enable latch. When WEL bit sets to 1, which means the internal write enable latch is set, and then the device can accept program/ erase/secure OTP program operation. 1: write enable, 0: not write enable The bit value will be cleared (as "0") by issuing Write Disable command(04h) or the completion of program/erase/secure OTP program operations.
SR[2] (ERS_Fail)	Erase fail	The bit value shows the status of erase failure or if host erase any invalid address or protected area (including protected blocks or protected Secure OTP area). 0: Passed, 1: Failed The bit value will be cleared (as "0") by RESET command or at the beginning of the block erase command operation.
SR[3] (PGM_Fail)	Program fail	The bit value shows the status of program failure or if host program any invalid address or protected area (including protected blocks or protected Secure OTP area). 0: Passed, 1: Failed The bit value will be cleared (as "0") by RESET command or during the program execute command operation.
SR[7:4]	Reserved	

10. SOFTWARE ALGORITHM

10-1. Invalid Blocks (Bad Blocks)

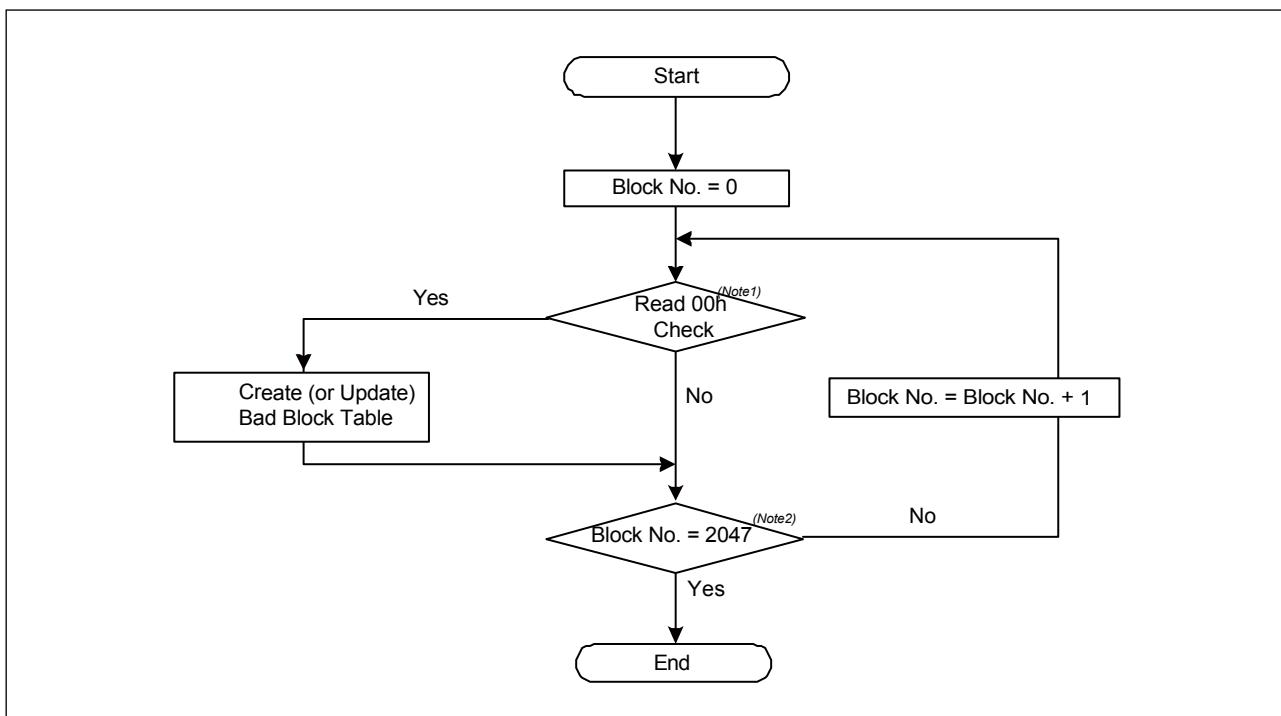
The bad blocks are included in the device while it gets shipped. During the time of using the device, the additional bad blocks might be increasing; therefore, it is necessary to check the bad block marks and avoid using the bad blocks. Furthermore, please read out the bad block information before any erase operation since the bad block marks may be cleared by any erase operation.

Figure 19. Bad Blocks

While the device is shipped, the value of all data bytes of the good blocks are FFh. The 1st byte of the 1st and 2nd page in the spare area for bad block will be 00h. The erase operation at the bad blocks is not recommended.

After the device is installed in the system, the bad block checking is recommended. The figure of "**Figure 20. Bad Block Test Flow**" shows the brief test flow by the system software managing the bad blocks while the bad blocks were found. When a block gets damaged, it should not be used any more.

Due to the blocks are isolated from bit-line by the selected gate, the performance of good blocks will not be impacted by bad ones.


Table 10. Valid Blocks

	Density	Min.	Typ.	Max.	Unit	Remark
Valid (Good) Block Number	1Gb	1004		1024	Block	Block 0 is guaranteed to be good (with ECC)
	2Gb	2008		2048		

10-2. Bad Block Test Flow

Although the initial bad blocks are marked by the flash vendor, they could be inadvertently erased and destroyed by a user that does not pay attention to them. To prevent this from occurring, it is necessary to always know where any bad blocks are located. Continually checking for bad block markers during normal use would be very time consuming, so it is highly recommended to initially locate all bad blocks and build a bad block table and reference it during normal NAND flash use. This will prevent having the initial bad block markers erased by an unexpected program or erase operation. Failure to keep track of bad blocks can be fatal for the application. For example, if boot code is programmed into a bad block, a boot up failure may occur. The following figure of **Bad Block Test Flow** shows the recommended flow for creating a bad block table.

Figure 20. Bad Block Test Flow

Note 1: Read 00h check is at the 1st byte of the 1st and 2nd pages of the block spare area.

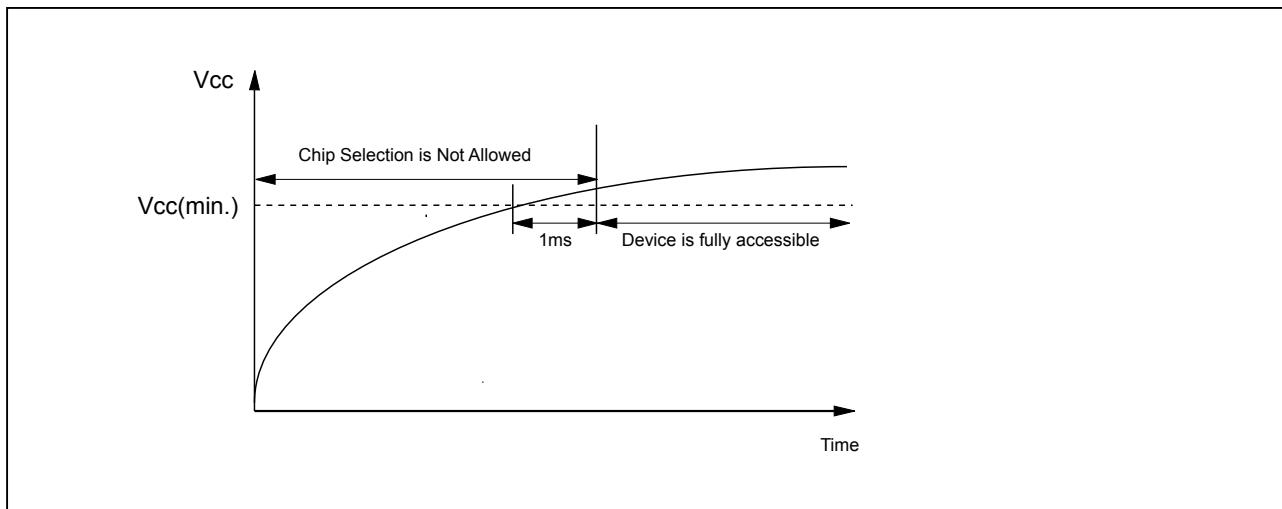
Note 2: The Block No. = 1023 for 1Gb, 2047 for 2Gb.

10-3. Failure Phenomena for Read/Program/Erase Operations

The device may fail during a Read, Program or Erase operation. The following possible failure modes should be considered when implementing a highly reliable system:

Table 11. Failure Modes

Failure Mode	Detection and Countermeasure	Sequence
Erase Failure	Status Read after Erase	Block Replacement
Programming Failure	Status Read after Program	Block Replacement
Read Failure	Read Failure	ECC


11. DEVICE POWER-UP

11-1. Power-up

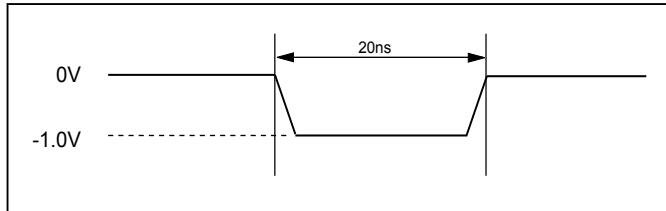
After the Chip reaches the power on level, the internal power on reset sequence will be triggered. During the internal power on reset period, no any external command is accepted. The device can be fully accessible when VCC reaches the power-on level and wait 1mS.

During the power on and power off sequence, it is necessary to keep the WP# = Low for internal data protection.

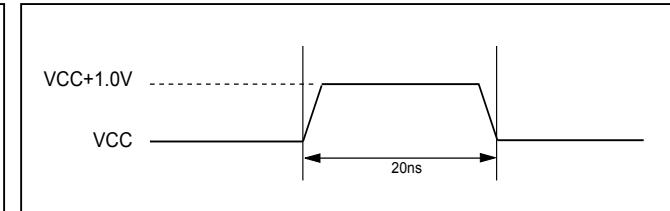
Figure 21. Power On Sequence

12. PARAMETERS

12-1. ABSOLUTE MAXIMUM RATINGS


Temperature under Bias	-50°C to +125°C
Storage temperature	-65°C to +150°C
All input voltages with respect to ground (Note 2)	-0.6V to 2.4V
VCC supply voltage with respect to ground (Note 2)	-0.6V to 2.4V
ESD protection	>2000V

Notes:


1. The reliability of device may be impaired by exposing to extreme maximum rating conditions for long range of time.
2. Permanent damage may be caused by the stresses higher than the "Absolute Maximum Ratings" listed.
3. During voltage transitions, all pins may overshoot to VCC +1.0V or -1.0V for period up to 20ns.

See the two waveforms as below.

Figure 23. Maximum Negative Overshoot Waveform

Figure 22. Maximum Positive Overshoot Waveform

Table 12. AC Testing Conditions

Testing Conditions	Value	Unit
Input pulse level	0 to VCC	V
Output load capacitance	1TTL+CL(30)	pF
Input rising & falling time	2.5	ns
Input timing measurement reference levels	VCC/2	V
Output timing measurement reference levels	VCC/2	V

Table 13. Capacitance

TA = +25°C, F = 1 MHz

Symbol	Parameter	Min.	Typ.	Max.	Units	Conditions
CIN	Input capacitance			10	pF	VIN = 0V
COUT	Output capacitance			10	pF	VOUT = 0V

Table 14. Operating Range

Temperature	VCC	Tolerance
-40°C to + 85°C	1.8V	1.7 to 1.95V

Table 15. DC Characteristics

Symbol	Parameter	Min.	Typical	Max.	Unit	Test Conditions
ILI	Input leakage current			+/- 10	uA	VIN= 0 to VCC Max.
ILO	Output leakage current			+/- 10	uA	VOUT= 0 to VCC Max.
ISB	VCC standby current (CMOS)		10	50	uA	VIN=VCC or GND, CS#=VCC
ICC1	VCC active current (Sequential Read)		23	30	mA	f=104MHz
ICC2	VCC active current (Program)		23	30	mA	
ICC3	VCC active current (Erase)		15	30	mA	
VIL	Input low level	-0.3		0.2VCC	V	
VIH	Input high level	0.8VCC		VCC + 0.3	V	
VOL	Outout low voltage			0.1	V	IOL= -100uA
VOH	Outout high voltage	VCC-0.1			V	IOH= 100uA

Table 16. General Timing Characteristics

Symbol	Parameter	Min.	Max.	Unit
fC	Clock Frequency	-	104	MHz
tCHHH	HOLD# high hold time relative to SCLK	5	-	ns
tCHHL	HOLD# low hold time relative to SCLK	5	-	ns
tCS	Command deselect time	100	-	ns
tCHSH	Chip select# hold time	4	-	ns
tSLCH	Chip select# setup time	4	-	ns
tSHCH	Chip select# non-active setup time	4	-	ns
tCHSL	Chip select# non-active hold time	4	-	ns
tDIS	Output disable time	-	20	ns
tHC	Hold# non-active setup time relative to SCLK	5	-	ns
tHD	Hold# setup time relative to SCLK	5	-	ns
tHDDAT	Data input hold time	3.5	-	ns
tHO	Output hold time	1	-	ns
tHZ	Hold to output High-Z	-	15	ns
tLZ	Hold to output low-Z	-	15	ns
tSUDAT	Data input setup time	3.5	-	ns
tV	Clock LOW to output Valid	-	8	ns
tWH	Clock HIGH time	4	-	ns
tWL	Clock LOW time	4	-	ns
tWPH	WP# hold time	100	-	ns
tWPS	WP# setup time	20	-	ns

Table 17. PROGRAM/READ/ERASE Characteristics

Symbol	Parameter	Min	Typ.	Max.	Unit
tRD	Data transfer time from NAND Flash array to data register.		-	25	us
tRST	Device reset time (Read/ Program/ Erase)		-	5/10/500	us
tPROG	Page programming time		320	600	us
tERS	Block Erase Time		1	3.5	ms
NOP	Number of partial-page programming operation supported		-	4	cycle

Figure 24. WP# Setup Timing and Hold Timing during SET FEATURE when BPRWD=1

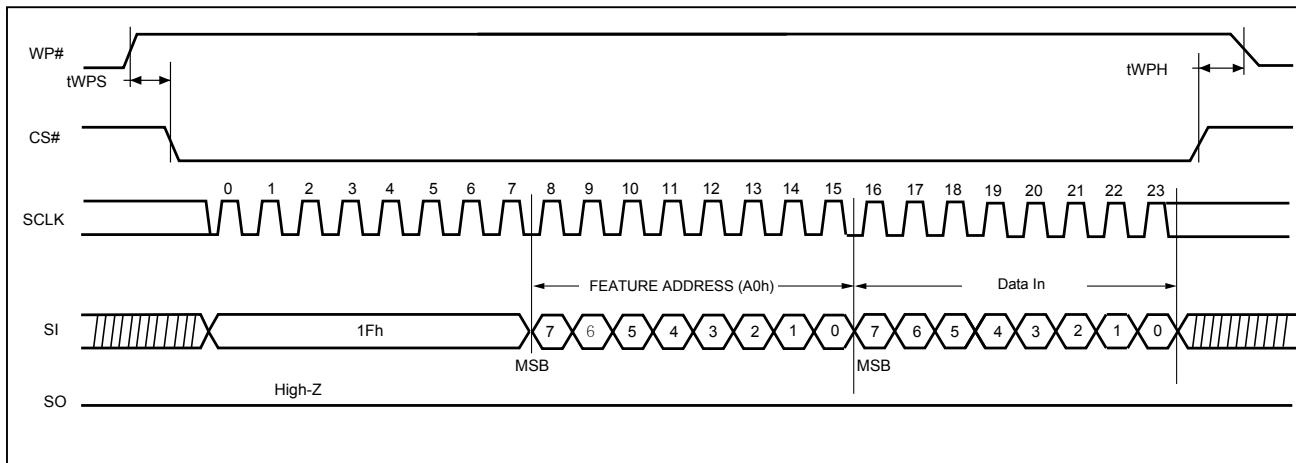


Figure 25. Serial Input Timing

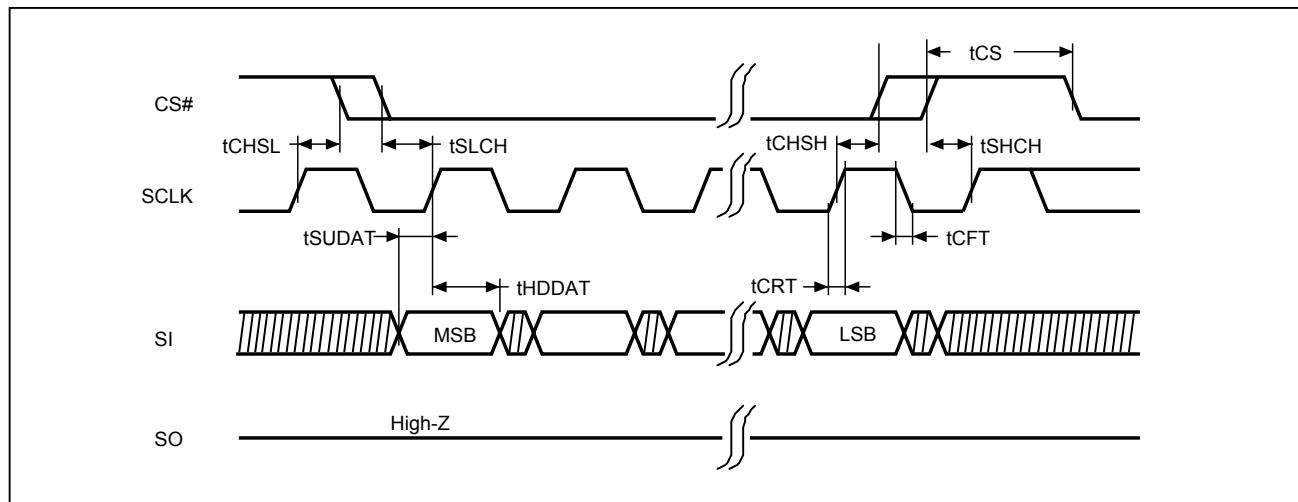
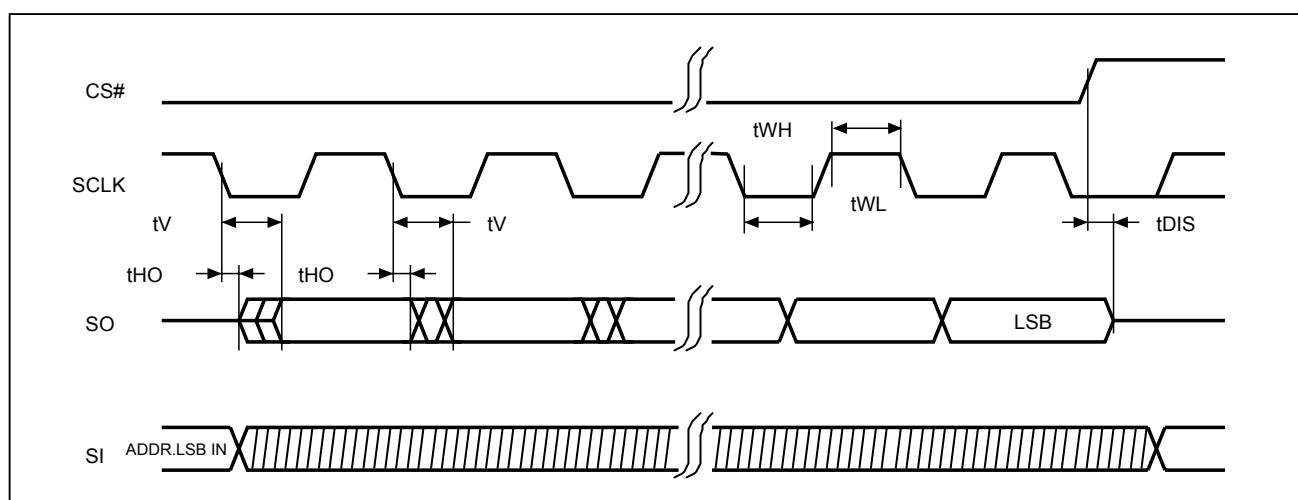
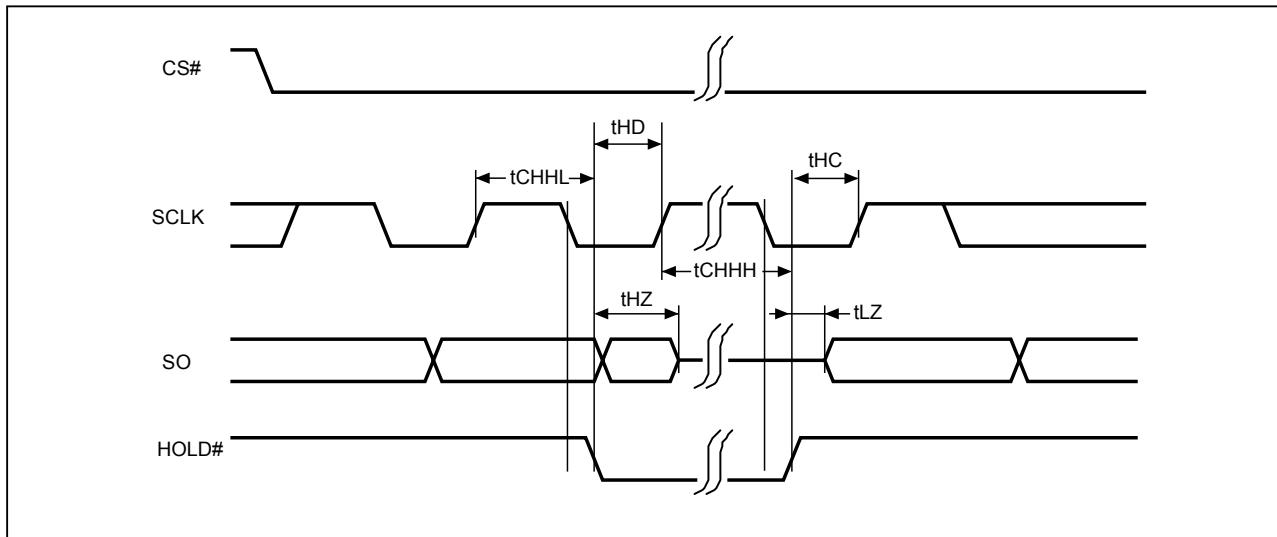




Figure 26. Serial Output Timing

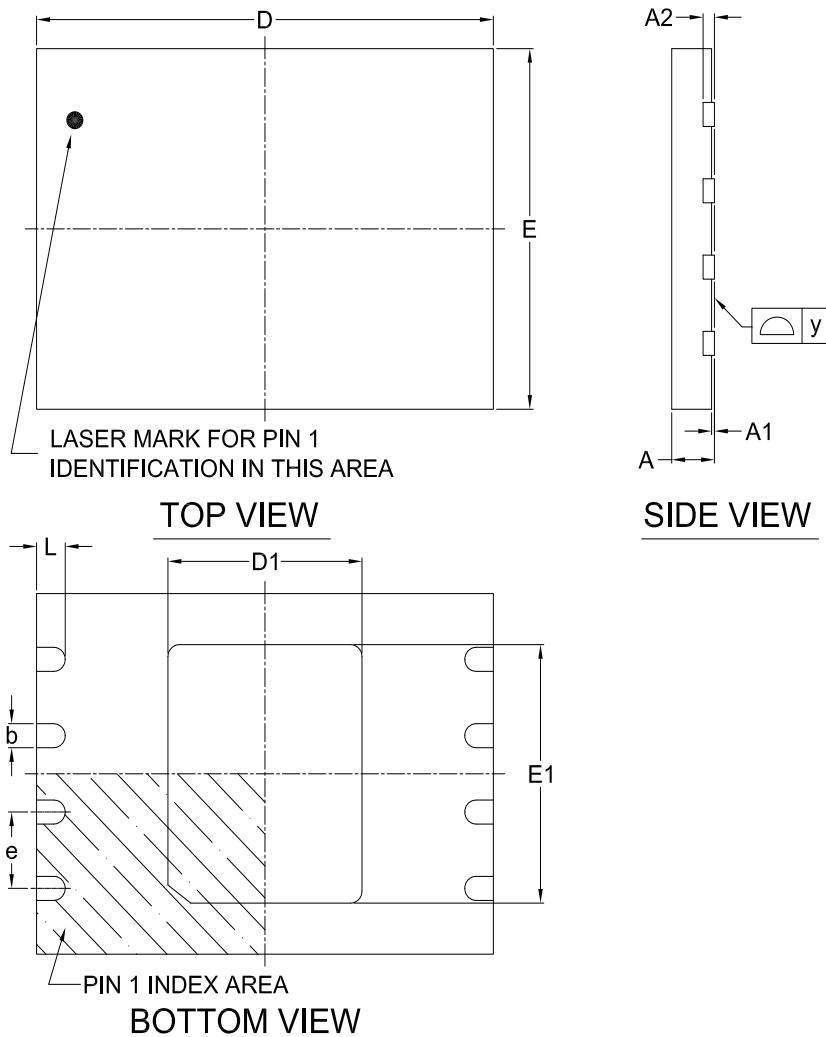


Figure 27. Hold Timing

Note: SI is "don't care" during HOLD operation.

13. PACKAGE INFORMATION

Doc. Title: Package Outline for WSON 8L (8x6x0.8MM, LEAD PITCH 1.27MM, E.P. 3.4x4.3MM)

Note:

This package has an exposed metal pad underneath the package. It is recommended to leave the metal pad floating or to connect it to the same group as the GND pin of the package. Do not connect the metal pad to any other voltage or signal line on the PCB. Avoid placing vias or traces underneath the metal pad. Connection of this metal pad to any other voltage or signal line can result in shorts and/or electrical malfunction of the device.

Dimensions (inch dimensions are derived from the original mm dimensions)

SYMBOL UNIT	A	A1	A2	b	D	D1	E	E1	L	e	y
mm	Min.	0.70	—	—	0.35	7.90	3.35	5.90	4.25	0.45	—
	Nom.	—	—	0.20	0.40	8.00	3.40	6.00	4.30	0.50	1.27
	Max.	0.80	0.05	—	0.48	8.10	3.45	6.10	4.35	0.55	—
Inch	Min.	0.028	—	—	0.014	0.311	0.132	0.232	0.167	0.018	0.00
	Nom.	—	—	0.008	0.016	0.315	0.134	0.236	0.169	0.020	0.05
	Max.	0.032	0.002	—	0.019	0.319	0.136	0.240	0.171	0.022	0.002

14. REVISION HISTORY

Revision	Descriptions	Page
October 08, 2014		All
0.00	1. Initial Released	

August 25, 2016

0.01	1. Supplementary of the host ECC requirement 2. Supplementary of the dual /quad mode as "1-1-2" & "1-1-4" 3. Added reliability spec of P/E endurance and data retention 4. Revised package type from Z2 to Z4. 5. Corrected byte44-63 of parameter page 6. Supplement the block#0 condition 7. Revised the bad block mark from non-FFh to 00h, also revised the page of bad block mark from 1st or 2nd page to 1st and 2nd page, and the figure of bad block test flow. 8. Added overshoot/undershoot waveforms 9. Added the value of input rising/falling time 10. Corrected the value of Cin/Cout 11. Corrected the typical value of ISB/ICC1/ICC2/ICC3. Corrected the VOL/VOH value 12. Corrected Min. column of Program/Read/Erase Characteristics Table as Typ. column and tRST value is corrected as Max.	P5,6 P5,8 P5 P7,40 P21 P33 P34 P36 P36 P36 P37 P37 P37
------	---	--

January 17, 2017

0.02	1. Added new features for Page Read Cache Sequential	P5,11,19-21,40
------	--	----------------

June 06, 2017

0.03	1. Part name renamed from MX35UF1G14AB to MX35UFxG14AC 2. Re-wording the reset command effect on the feature setting 3. Renamed the register of address B0h from "Secure OTP" to "Configuration" 4. Tighten parameter timing of tCHSH/tSLCH/tSHCH/tCHSL from 5ns to 4ns and tWH/tWL from 4.5 to 4	ALL P13 P13 P40
------	--	--------------------------

September 14, 2017

0.04	1. Added 2Gb specifications 2. Supplement of the WEL clear after completion of program/erase/secure OTP program operation 3. Removed the specifications of Page Read Cache Sequential 4. Improved the tolerance for min./max. dimensions of D1, E1 and L Symbols in WSON 8L Package outline	ALL P12, 25 P5, 11 P42
------	--	---------------------------------

February 07, 2018

1.0	1. Removed "Advanced Information" page title 2. Corrected the symbol of voltage in ordering information section 3. Added "Macronix Proprietary" footnote	ALL Page 7 ALL
-----	--	----------------------

MACRONIX
INTERNATIONAL CO., LTD.

MX35UF1G14AC
MX35UF2G14AC

November 18, 2020

- | | | |
|-----|---|---------|
| 1.1 | 1. Correction of typo in Table 3. Wrap Address bit Table and 12-1.
ABSOLUTE MAXIMUM RATINGS Table. | P14, 38 |
| | 2. Supplement Note 3 on Table 2. | P13 |

MACRONIX
INTERNATIONAL CO., LTD.

MX35UF1G14AC
MX35UF2G14AC

Except for customized products which have been expressly identified in the applicable agreement, Macronix's products are designed, developed, and/or manufactured for ordinary business, industrial, personal, and/or household applications only, and not for use in any applications which may, directly or indirectly, cause death, personal injury, or severe property damages. In the event Macronix products are used in contradicted to their target usage above, the buyer shall take any and all actions to ensure said Macronix's product qualified for its actual use in accordance with the applicable laws and regulations; and Macronix as well as it's suppliers and/or distributors shall be released from any and all liability arisen therefrom.

Copyright© Macronix International Co., Ltd. 2017-2020. All rights reserved, including the trademarks and tradename thereof, such as Macronix, MXIC, MXIC Logo, MX Logo, Integrated Solutions Provider, Nbit, Macronix NBit, Hybrid-NVM, HybridFlash, HybridXFlash, XtraROM, KH Logo, BE-SONOS, KSMC, Kingtech, MXSMIO, Macronix vEE, Rich-Book, Rich TV, OctaBus, FitCAM, ArmorFlash. The names and brands of third party referred thereto (if any) are for identification purposes only.

For the contact and order information, please visit Macronix's Web site at: <http://www.macronix.com>

MACRONIX INTERNATIONAL CO., LTD. <http://www.macronix.com>

MACRONIX INTERNATIONAL CO., LTD. reserves the right to change product and specifications without notice.