

MXD86C2

DP12T Switch with MIPI for LTE TRX Application

QC 11

This document contains information that is confidential and proprietary to Maxscend Microelectronics Company Limited (Maxscend) and may not be reproduced in any form without express written consent of Maxscend. No transfer or licensing of technology is implied by this document.

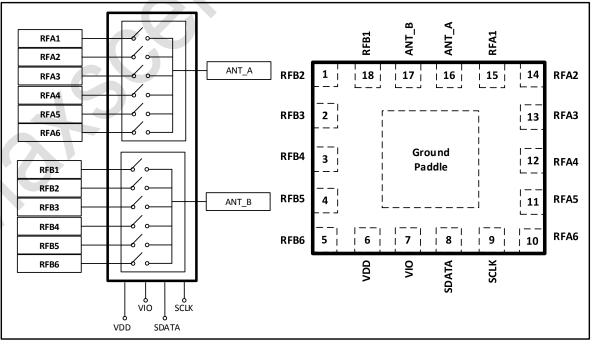
Page 1 of 11

General Description

The MXD86C2 is a low loss, high isolation DP12T switch for antenna TRX application.

The MXD86C2 is compatible with MIPI control, which is a key requirement for many cellular transceivers. This part is packaged in a compact 2.0mm x 2.4mm, 18-pin, LGA package which allows for a small solution size with no need for external DC blocking capacitors (when no external DC is applied to the device ports).

Features


•

- Excellent insertion loss
 - 0.50 dB Insertion Loss at 2.7GHz
- P0.1dB @ 35dBm
- Multi-Band operation 400MHz to 3800MHz
- RFFE serial control interface
- Compact 2.0mm x 2.4mm in LGA-18 package
- No DC blocking capacitors required (unless external DC is applied to the RF ports)

Applications

- 3G/4G multimode cellular handsets (UMTS and CDMA2000)
- Carrier aggregation diversity

Functional Block Diagram and Pin Function

Figure 1 Functional Block Diagram and Pinout (Top View)

Maxscend Microelectronics Company Limited. All rights reserved. Maxscend Confidential

Application Circuit

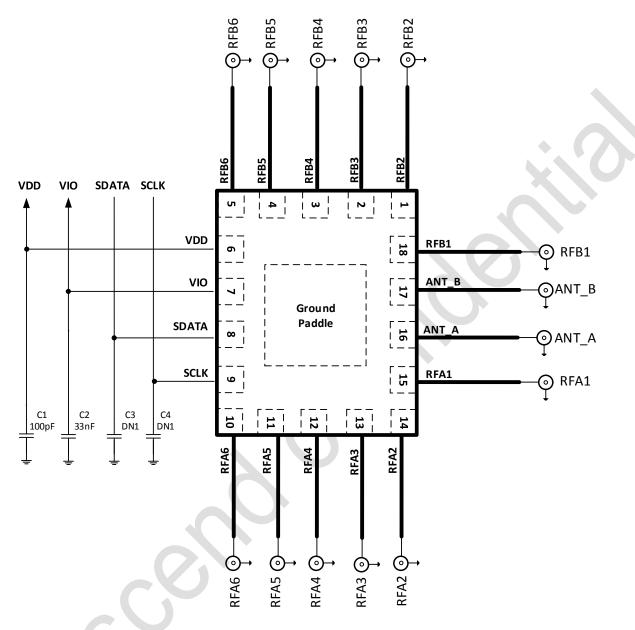


Figure 2 Evaluation Board Schematic

Table 1. Pin Description

ſ	Pin No.	Name	Description	Pin No.	Name	Description
	1	RFB2	RF port B2	10	RFA6	RF port A6
	2	RFB3	RF port B3	11	RFA5	RF port A5
	3	RFB4	RF port B4	12	RFA4	RF port A4
	4	RFB5	RF port B5	13	RFA3	RF port A3
	5	RFB6	RF port B6	14	RFA2	RF port A2
	6	VDD	Power supply	15	RFA1	RF port A1
	7	VIO	Supply voltage for MIPI	16	ANT_A	Antenna port A
	8	SDATA	MIPI data input/output	17	ANT_B	Antenna port B
	9	SCLK	MIPI clock	18	RFB1	RF port B1
	Ground Paddle	GND	Ground			

Note: Bottom ground paddles must be connected to ground.

Truth Table

Table 2. Register_0 Truth Table (ANT_B)

State	Mode	Register_0								
State	WIDde	D7	D6	D5	D4	D3	D2	D1	D0	
1	ISO	х	х	х	0	0	0	0	0	
2	RFB1	х	х	х	0	0	0	0	1	
3	RFB2	х	х	х	0	0	0	1	0	
4	RFB3	х	х	х	0	0	0	1	1	
5	RFB4	х	х	х	0	0	1	0	0	
6	RFB5	х	х	х	0	0	1	0	1	
7	RFB6	х	х	х	0	0	1	1	0	
8	RFB6+RFB5	х	х	х	0	0	1	1	1	
9	RFB6+RFB4	х	х	х	0	1	0	0	0	
10	RFB6+RFB3	х	х	х	0	1	0	0	1	
11	RFB6+RFB2	х	х	х	0	1	0	1	0	
12	RFB6+RFB1	х	х	х	0	1	0	1	1 I	
13	RFB5+RFB4	х	х	х	0	1	1	0	0	
14	RFB5+RFB3	х	х	х	0	1	1	0	1	
15	RFB5+RFB2	х	х	х	0	1	1	1	0	
16	RFB5+RFB1	х	х	х	0	1	1	1	1	
17	RFB4+RFB3	х	х	х	1	0	0	0	0	
18	RFB4+RFB2	х	х	х	1	0	0	0	1	
19	RFB4+RFB1	х	х	х	1	0	0	1	0	
20	RFB3+RFB2	х	х	х	1	0	0	1	1	
21	RFB3+RFB1	х	х	х	1	0	1	0	0	
22	RFB2+RFB1	х	х	х	1	0	1	0	1	
23	ISO	х	х	х	1	0	1	1	0	
24	ISO	х	х	х	1	0	1	1	1	
25	ISO	х	х	х	1	1	0	0	0	
26	ISO	х	х	х	1	1	0	0	1	
27	ISO	х	х	х	1	1	0	1	0	
28	ISO	х	х	x	1	1	0	1	1	
29	ISO	х	х	x	1	1	1	0	0	
30	ISO	х	х	x	1	1	1	0	1	
31	ISO	х	х	x	1	1	1	1	0	
32	ISO	х	x	x	1	1	1	1	1	

Table 3. Register_1 Truth Table (ANT_A)

State	Mode	Register_1							
Sidle	Woue	D7	D6	D5	D4	D3	D2	D1	D0
1	ISO	Х	x	х	0	0	0	0	0
2	RFA1	X	x	х	0	0	0	0	1
3	RFA2	x	х	х	0	0	0	1	0
4	RFA3	x	х	х	0	0	0	1	1
5	RFA4	x	х	х	0	0	1	0	0
6	RFA5	х	х	х	0	0	1	0	1
7	RFA6	x	х	х	0	0	1	1	0
8	RFA6+RFA5	х	х	х	0	0	1	1	1
9	RFA6+RFA4	х	х	х	0	1	0	0	0
10	RFA6+RFA3	х	х	х	0	1	0	0	1
11	RFA6+RFA2	х	х	х	0	1	0	1	0
12	RFA6+RFA1	х	х	х	0	1	0	1	1
13	RFA5+RFA4	х	х	х	0	1	1	0	0
14	RFA5+RFA3	х	х	х	0	1	1	0	1
15	RFA5+RFA2	х	х	х	0	1	1	1	0
16	RFA5+RFA1	х	х	х	0	1	1	1	1
17	RFA4+RFA3	х	х	х	1	0	0	0	0
18	RFA4+RFA2	х	х	х	1	0	0	0	1
19	RFA4+RFA1	х	х	х	1	0	0	1	0
20	RFA3+RFA2	х	х	х	1	0	0	1	1
21	RFA3+RFA1	х	х	х	1	0	1	0	0
22	RFA2+RFA1	х	х	х	1	0	1	0	1
23	ISO	х	х	х	1	0	1	1	0
24	ISO	Х	х	х	1	0	1	1	1
25	ISO	х	х	х	1	1	0	0	0
26	ISO	Х	х	х	1	1	0	0	1
27	ISO	Х	х	х	1	1	0	1	0
28	ISO	Х	х	х	1	1	0	1	1

Maxscend Microelectronics Company Limited. All rights reserved. Maxscend Confidential Page 4 of 11

MXD86C2 – DP12T Switch with MIPI for LTE TRX Application

29	ISO	х	х	х	1	1	1	0	0
30	ISO	х	х	х	1	1	1	0	1
31	ISO	х	х	х	1	1	1	1	0
32	ISO	х	х	х	1	1	1	1	1

Recommended Operation Range

Table 4. Recommended Operation Condition

able 4. Recommended Operation Condition						
Parameters	Symbol	Min	Тур	Max	Units	
Operation Frequency	f1	0.4	-	3.8	GHz	
Power supply	Vdd	2.5	2.8	3.0	V	
Power supply for MIPI	Vio	1.65	1.8	1.95	V	
MIPI Control Voltage High	VH	0.8*VIO	1.8	1.95	V	
MIPI Control Voltage Low	VL	0	0	0.3	V	

Specifications

Table 5. Electrical Specifications

Parameter	Symbol	Test Condition	Min	Typical	Max	Units
DC Specifications		•	•			
Supply voltage	Vdd	X	2.5	2.8	3.0	V
Supply current	ldd			55	90	uA
V _{IO} supply voltage	Vio		1.65	1.8	1.95	V
V _{IO} Supply current	lio			4	10	uA
SDATA, SCLK control voltage: High Low	Vctl_h Vctl_l		0.8* V _{IO} 0	V _{IO} 0	1.95 0.3	V V
Switching Speed, one RF to another		10% to 90% RF		1	2	uS
RF Specifications		·				
Insertion loss (ANT_A pin to RFA1/2/3/4/5/6 pins; ANT_B pin to RFB1/2/3/4/5/6 pins)	IL	0.1 to 1.0 GHz 1.0 to 2.0 GHz 2.0 to 2.7 GHz 3.4 to 3.8 GHz		0.40 0.45 0.50 0.70	0.50 0.60 0.65 0.90	dB dB dB dB
Isolation (ANT_A pin to RFA1/2/3/4/5/6 pins; ANT_B pin to RFB1/2/3/4/5/6 pins)	Iso	0.1 to 1.0 GHz 1.0 to 2.0 GHz 2.0 to 2.7 GHz 3.4 to 3.8 GHz	30 28 22 18	45 35 28 22		dB dB dB dB
Input return loss (ANT_A pin to RFA1/2/3/4/5/6 pins; ANT_B pin to RFB1/2/3/4/5/6 pins)	RL	0.1 to 1.0 GHz 1.0 to 2.0 GHz 2.0 to 2.7 GHz 3.4 to 3.8 GHz	20 15 12 10	25 20 15 13		dB dB dB dB
0.1 dB Compression Point (ANT_A pin to RFA1/2/3/4/5/6 pins; ANT_B pin to RFB1/2/3/4/5/6 pins)	$P_{0.1dB}$	0.4 GHz to 3.8 GHz	+34	+35		dBm

MIPI Read and Write Timing

MIPI supports the following Command Sequences:

- Register Write
- Register_0 Write
- Register Read

Figures 3 and 4 provide the timing diagrams for register write commands and read commands, respectively. Figure 5 shows the Register 0 Write Command Sequence. Refer to the MIPI Alliance Specification for RF Front-End Control Interface (RFFE), v1.10 (26 July 2011) for additional information on MIPI USID programming sequences and MIPI bus specifications.

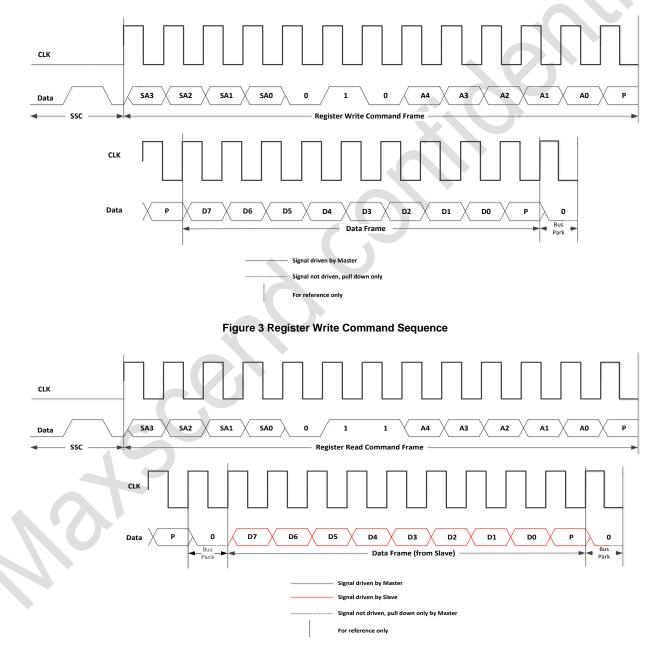


Figure 4 Register Read Command Sequence

In the timing figures, SA[3:0] is slave address. A[4:0] is register address. D[7:0] is data. "P" is odd parity bit.

Register 0 Write Command Sequence

Figure shows the Register 0 Write Command Sequence. The Command Sequence starts with an SSC, followed by the Register 0 Write Command Frame containing the Slave address, a logic one, and a seven bit word to be written to Register 0. The Command Sequence ends with a Bus Park Cycle.

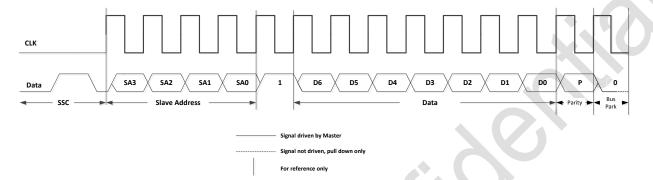


Figure 5 Register 0 Write Command Sequence

Register definition

Table 6. Register definition table

Yes Yes
No

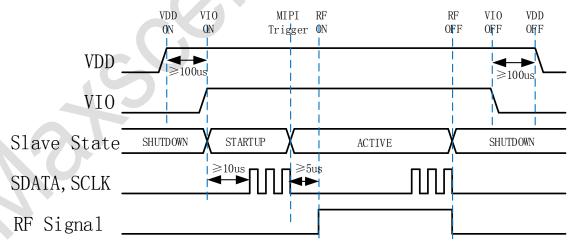
Absolute Maximum Ratings

Table 7. Maximum ratings

Parameters	Symbol	Minimum	Maximum	Units
Supply voltage	V _{DD}	+2.0	+3.3	V
Supply voltage for MIPI	V _{IO}	+1.0	+2.0	V
MIPI Control voltage (SDATA, SCLK)	V _{CTL}	0	+2.0	V
RF input power	Pin		+36	dBm
Operating temperature	TOP	-20	+85	°C
Storage temperature	T _{STG}	-40	+125	°C
Electrostatic Discharge Human body model (HBM), Class 1C	ESD_HBM		1500	0
Machine Model (MM),	ESD_MM		150	V
Class A Charged device model (CDM), Class III	ESD_CDM		500	

Note: Exposure to maximum rating conditions for extended periods may reduce device reliability. There is no damage to device with only one parameter set at the limit and all other parameters set at or below their nominal value. Exceeding any of the limits listed here may result in permanent damage to the device

Power ON and OFF sequence


Here is the recommendation about power-on/off sequence in order to avoid damaging the device.

Power ON

- 1) Apply voltage supply VDD
- 2) Apply logic supply V_{IO}
- 3) Wait 10µs or greater and then apply MIPI bus signals SCLK and SDATA
- 4) Wait 5µs or greater after MIPI bus goes idle and then apply the RF Signal

Power OFF

- 1) Remove the RF Signal
- 2) Remove MIPI bus SCLK and SDATA
- 3) Remove logic supply V_{IO}
- 4) Remove voltage supply VDD

Note: VIO can be applied to the device before VDD or removed after VDD.

It is important to wait 10µs after VIO & VDD are applied before sending SDATA to ensure correction data transmission.

The minimum time between a power up and power down sequence (and vice versa) is \geq 100us.

Package Outline Dimension

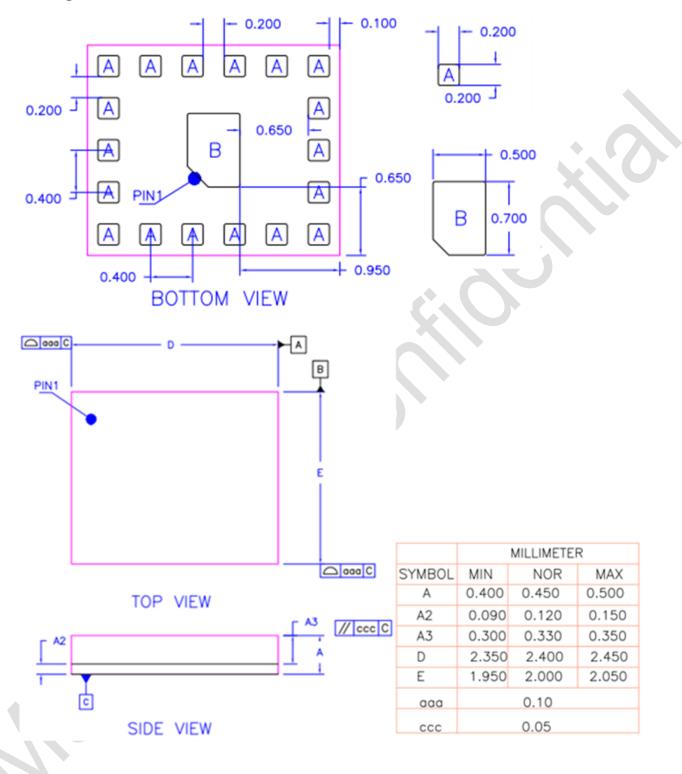


Figure 6 package outline dimension

Reflow Chart

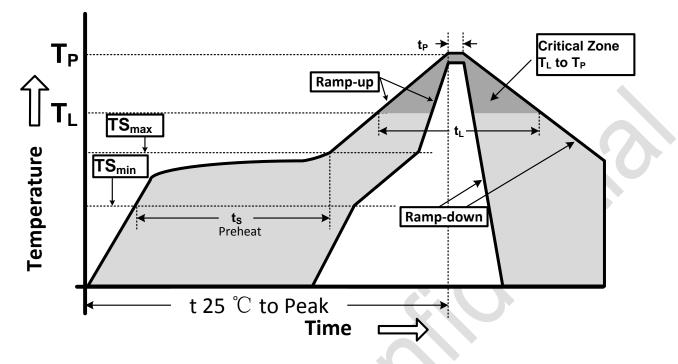


Figure 7 Recommended Lead-Free Reflow Profile

Table 7. Reflow condition

Profile Parameter	Lead-Free Assembly, Convection, IR/Convection
Ramp-up rate $(TS_{max} to T_p)$	3°C/second max.
Preheat temperature (TS _{min} to TS _{max})	150℃ to 200℃
Preheat time (t _s)	60 - 180 seconds
Time above TL , 217 $^{\circ}$ C (t_L)	60 - 150 seconds
Peak temperature (T _p)	260 ℃
Time within 5°C of peak temperature(t_p)	20 - 40 seconds
Ramp-down rate	6℃/second max.
Time 25 [°] C to peak temperature	8 minutes max.

ESD Sensitivity

Integrated circuits are ESD sensitive and can be damaged by static electric charge. Proper ESD protection techniques should be used when handling these devices.

RoHS Compliant

This product does not contain lead, mercury, cadmium, hexavalent chromium, polybrominated biphenyls (PBB) and polybrominated diphenyl ethers (PBDE), and are considered RoHS compliant.