

16-Channel Constant Current LED Driver With Ghost Image Abatement

General Description

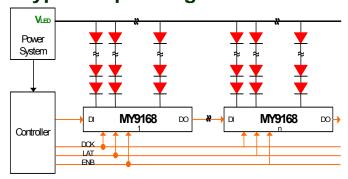
The MY9168 16-channel constant current LED driver with ghost image abatement is suitable for multiplexing display system. The device has wide supply voltage range (3.0V ~ 5.5V) and provides 16 open-drain constant current sinking outputs that are rated to 16V and delivers up to 55mA of high accuracy current to each string of LED. The current at each output is programmable by means of an external current-sensing resistor. The MY9168 features a fast 30MHz DCK input, allowing a wide LED dimming (on/off) range to be implemented. The MY9168 offers a 4-wire serial interface, a 16-bit shift register, and a 16-bit transparent latch. The serial interface microcontroller to configure the output channels using four inputs (DI, DCK, LAT, and ENB) and a data output (DO). DO allows multiple drivers to be cascaded and operated together.

The MY9168's on-board pass elements minimize the need for external components, while at the same time, providing $\pm 1\%$ (typ.) LED current accuracy. Additional features include a $\pm 0.1\%$ regulated output current capability and 30ns fast output transient response.

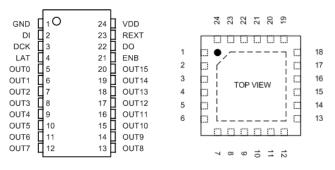
The MY9168 is available in a 24-pin SOP/SSOP/QFN package and specified over the -40°C to +85°C ambient temperature range.

Applications

- ☐ Indoor and Outdoor LED Video Displays
- □ Variable Message Sign (VMS)
- Dot Matrix Module
- □ Architectural and Decorative Lighting
- □ Industrial Lighting
- ☐ LCD Display Backlighting

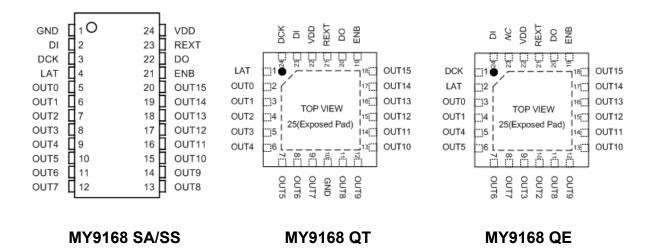

Features

- **♦** 3.0V ~ 5.5V Operating supply voltage
- ♦ 3~55mA/5V Constant current output range
- ♦ 3~35mA/3.3V Constant current output range
- ◆ 16V Rated output channels for long LED strings
- → ±1% (typ.) Current accuracy between channels
- ◆ ±0.1% Output current regulation capability
- **◆ 30MHz Clock frequency for data transfer**
- **♦** Current setting by one external resister
- **♦** Schmitt trigger input
- **♦** Power on reset
- ◆ Stagger output delay
- ◆ Fast current transient response
- **♦** Ghost image abatement
- ◆ Low knee voltage for constant current
- ♦ High level HBM ESD protection (lout pin > 8000V)
- → -40°C to +85°C Ambient temperature range

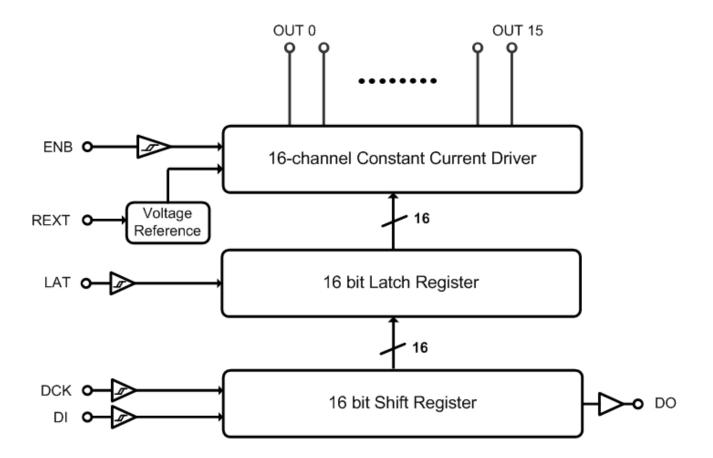

Order information

Part	Package Information						
MY9168SA	SOP24-236mil-1.0mm	2000 pcs/Reel					
MY9168SS	SSOP24-150mil-0.635mm	2500 pcs/Reel					
MY9168QT	QFN24-4mmx4mm-0.5mm	3000 pcs/Reel					
MY9168QE	QFN24-4mmx4mm-0.5mm	3000 pcs/Reel					

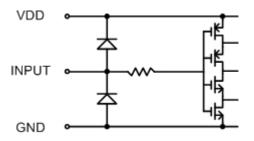
Typical Operating Circuits

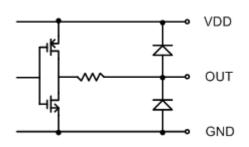

Pin Configuration

Nov. 2012 Ver. 0.2 MY-Semi Inc. _ 0


Pin Description

	PIN No.		PIN No.		DIN NAME	FUNCTION			
SA/SS	QT	QE	PIN NAME	FUNCTION					
1	10, 25	25	GND	Ground terminal.					
2	23	24	DI	Serial data input terminal.					
3	24	1	DCK	Synchronous clock input terminal for serial data transfer. Data is sampled at the rising edge of DCK.					
4	1	2	LAT	Input terminal of data strobe. Data on shift register is sampled at the rising edge of LAT.					
5~20	2~9, 11~18	3, 4, 10, 9, 5~8, 11~18	OUT0~15	Sink constant-current outputs (open-drain).					
21	19	19	ENB	Output enable terminal: 'H' for all outputs are turned off, 'L' for all outputs are active.					
22	20	20	DO	Serial data output terminal.					
23	21	21	REXT	External resistors connected between REXT and GND for output current value setting.					
24	22	22	VDD	Supply voltage terminal.					
_	_	23	NC	No connection.					


Block Diagram



Equivalent Circuit of Inputs and Output

1. DCK, DI, LAT, ENB terminals

2. DO terminal

Maximum Ratings (Ta=25°C, Tj(max) = 150°C)

maximam radings (1a-25 6, 1)(max) - 150 6)								
CHARACTERISTIC	SYMBOL	RATING	UNIT					
Supply Voltage	VDD	-0.3 ~ 7.0	V					
Input Voltage	VIN	-0.3 ~ VDD+0.3	V					
Output Current	IOUT	55	mA					
Output Voltage	VOUT	-0.3 ~ 16	V					
Input Clock Frequency	FDCK	30	MHz					
GND Terminal Current	IGND	900	mA					
		53.2 (SA:SOP-236mil-1.0mm)						
Thermal Resistance (On PCB)	Rth(j-a)	70.5 (SS:SSOP-150mil-0.635mm)	°C/W					
		36.9 (QT/QE:QFN24-4mmx4mm)						
Operating Supply Voltage	VDD	3.0 ~ 5.5	V					
Operating Ambient Temperature	Тор	-40 ~ 85	°C					
Storage Temperature	Tstg	-55 ~ 150	°C					

⁽¹⁾ Stresses above these ratings may cause permanent damage. Exposure to absolute maximum conditions for extended periods may degrade device reliability. These are stress ratings only and functional operation of the device at these or any other condition beyond those specified is not supported.

⁽²⁾ All voltage values are with respect to ground terminal.

Electrical Characteristics (VDD = 5.0 V, Ta = 25°C unless otherwise noted)

CHARACTERISTIC	SYMBOL	CONDITION	MIN.	TYP.	MAX.	UNIT
Input Voltage "H" Level	VIH	CMOS logic level	0.7VDD	_	VDD	
Input Voltage "L" Level	VIL	CMOS logic level	GND	_	0.3VDD	V
Output Leakage Current	ILK	VOUT = 16 V	_	_	0.1	uA
0.44\/-14 (D0)	VOL	IOL = 1 mA	_	_	0.4	
Output Voltage (DO)	VOH	IOH= 1 mA	VDD-0.4	_	_	V
Output Current Skew (Channel-to-Channel)*1	dIOUT1	VOUT = 1.0 V	_	±1.0	±3.0	%
Output Current Skew (Chip-to-Chip)*2	dIOUT2	Rrext = 960 Ω	_	±1.0	±3.0	%
Output Current Skew (Channel-to-Channel)*1	dIOUT3	VOUT = 1.0 V	_	±1.5	±3.0	%
Output Current Skew (Chip-to-Chip)*2	dIOUT4	Rrext = $6.4 \text{ K}\Omega$	_	±1.5	±3.0	%
Output Voltage Regulation*3	age Regulation*3 % / VOUT		_	±.0.1	_	0/ / / /
Supply Voltage Regulation*4	% / VDD	Rrext = 960 Ω VDD = 3 V ~ 5.5 V	_	±0.6	±1	- %/V
	I _{DD1(off)}	all pins are open unless VDD and GND	_	1.3	1.8	
	I _{DD2(off)}	input signal is static Rrext = $6.4 \text{ K}\Omega$ all outputs turn off	_	2.3	3.0	
Supply Current ^{*5}	I _{DD3(on)}	input signal is static Rrext = 6.4 K Ω all outputs turn on	_	2.6	3.4	mA
	I _{DD4(off)}	input signal is static Rrext = 960Ω all outputs turn off	_	4.7	6.1	
	I _{DD5(on)}	input signal is static Rrext = 960 Ω all outputs turn on		4.8	6.3	

$$\Delta(\%) = \left[\frac{Iout_n}{(Iout_0 + Iout_1 + ... + Iout_{15})} - 1 \right] * 100\%$$

Chip-to-Chip skew is defined by the formula below:
$$\Delta(\%) = \left[\begin{array}{c} \frac{(Iout_0 + Iout_1 + ... + Iout_{15})}{16} - (Ideal \ Output \ Current) \\ \hline (Ideal \ Output \ Current) \end{array} \right] *100\%$$

*1 Channel-to-channel skew is defined by the formula below: *3 Output voltage regulation is defined by the formula below:
$$\Delta(\%) = \left[\frac{Iout_n}{(Iout_0 + Iout_1 + ... + Iout_{15})} - 1 \right] *100\%$$

$$\Delta(\%/V) = \left[\frac{Iout_n(@Vout_n = 3V) - Iout_n(@Vout_n = 1V)}{Iout_n(@Vout_n = 3V)} \right] * \frac{100\%}{3V - 1V}$$

$$\Delta \big(\%/V\big) = \left[\begin{array}{c} Iout_n(@V_{DD} = 5.5V) - Iout_n(@V_{DD} = 3V) \\ Iout_n(@V_{DD} = 3V) \end{array}\right] * \frac{100\%}{5.5V - 3V}$$

^{*2} Chip-to-Chip skew is defined by the formula below:

^{*4} Supply voltage regulation is defined by the formula below:

^{*5} IO excluded.

MY9168

Electrical Characteristics (VDD = 3.3 V, Ta = 25°C unless otherwise noted)

CHARACTERISTIC	SYMBOL	SYMBOL CONDITION		TYP.	MAX.	UNIT	
Input Voltage "H" Level	VIH	CMOS logic level	0.7VDD		VDD		
Input Voltage "L" Level	VIL	CMOS logic level	GND		0.3VDD	V	
Output Leakage Current	ILK	VOUT = 16 V	_	_	0.1	uA	
0 4 434 % (DO)	VOL	IOL = 1 mA	_		0.4		
Output Voltage (DO)	VOH	IOH= 1 mA	VDD-0.4			V	
Output Current Skew (Channel-to-Channel)*1	dIOUT1	VOUT = 1.0 V	_	±1.0	±3.0	%	
Output Current Skew (Chip-to-Chip)*2	dIOUT2	Rrext = 960 Ω	_	±1.0	±3.0	%	
Output Current Skew (Channel-to-Channel)*1	dIOUT3	VOUT = 1.0 V		±1.5	±3.0	%	
Output Current Skew (Chip-to-Chip)*2	dIOUT4	Rrext = $6.4 \text{ K}\Omega$		±1.5	±3.0	%	
Output Voltage Regulation*3 % / VO		Rrext = 960 Ω VOUT = 1 V ~ 3 V		±0.1	_	- %/V	
Supply Voltage Regulation*4	% / VDD	Rrext = 960 Ω VDD = 3 V ~ 5.5 V		±0.7	±1	- 70 / V	
	I _{DD1(off)}	all pins are open unless VDD and GND	_	0.7	1.0		
	I _{DD2(off)}	input signal is static Rrext = $6.4 \text{ K}\Omega$ all outputs turn off	_	2.0	2.6		
Supply Current ^{*5}	I _{DD3(on)}	input signal is static Rrext = 6.4 KΩ all outputs turn on		2.3	3.0	mA	
	IDD4(off)	input signal is static Rrext = 960 Ω all outputs turn off	_	4.1	5.4		
	I _{DD5(on)}	input signal is static Rrext = 960 Ω all outputs turn on	_	4.2	5.5		

^{*1} Channel-to-channel skew is defined by the formula below:

 $\Delta(\%) = \left[\begin{array}{c} Iout_n \\ \hline (Iout_0 + Iout_1 + ... + Iout_{15}) \end{array} - 1\right] * 100\%$

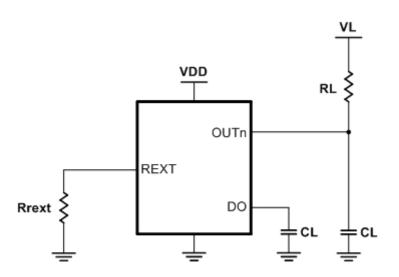
*3 Output voltage regulation is defined by the formula below:
$$\Delta \big(\% / V \big) = \Big[\frac{Iout_n(@Vout_n = 3V) - Iout_n(@Vout_n = 1V)}{Iout_n(@Vout_n = 3V)} \Big] * \frac{100\%}{3V - 1V}$$

$$\Delta(\%) = \left[\begin{array}{c} \frac{(Iout_0 + Iout_1 + ... + Iout_{15})}{16} - (Ideal \ Output \ Curren) \\ \hline (Ideal \ Output \ Curren) \end{array} \right] *100\%$$

$$\Delta(\%/V) = \left[\frac{Iout_n(@V_{DD} = 5.5V) - Iout_n(@V_{DD} = 3V)}{Iout_n(@V_{DD} = 3V)} \right] * \frac{100\%}{5.5V - 3V}$$

 $^{^{*2}}$ Chip-to-Chip skew is defined by the formula below:

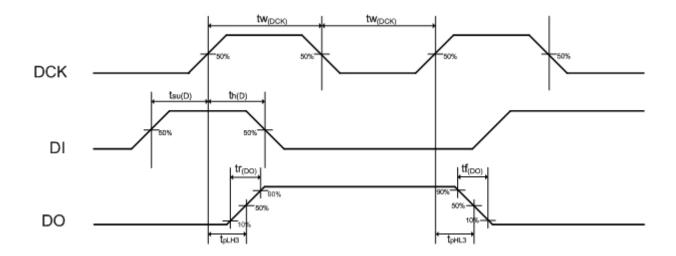
^{*5} IO excluded.


Switching Characteristics (VDD = 5.0V, Ta = 25°C unless otherwise noted)

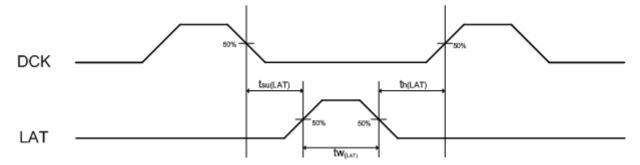
CHAR	ACTERISTIC	SYMBOL	CONDITION	MIN.	TYP.	MAX.	UNIT
	ENB-to-OUT0	tpLH1		_	26.9	_	
Propagation Delay	LAT-to-OUT0	tpLH2		_	25.1	_	
(LIOTI)	('L to 'H') DCK-DO tpLH3		_	22.8	_		
	ENB-to-OUT0	tpHL1		_	24.7	_	
Propagation Delay ('H' to 'L')	LAT-to-OUT0	tpHL2			21.8	_	
(11 to L)	DCK-DO	tpHL3	VIH = VDD	_	26.3	_	
	ENB	tw _(ENB)	VIL = GND	20		_	
Pulse Duration	LAT	tw _(LAT)	Rrext = 960 Ω	20			
Puise Duration	DCK	tw _(DCK)	VL =5.0 V	15			ns
Setup Time	LAT	tsu _(LAT)	RL = 150 Ω	5	_		
Setup Time	DI	tsu _(D)		3			
Hold Time	LAT	th _(LAT)	CL = 13 pF	20			
Hold Time	DI	th _(D)		4			
DO Rise Time		tr _(DO)			14.2	_	
DO Fall Time		tf _(DO)			15.1		
Output Current Rise Time		tor			10.0		
Output Current Fa	II Time	tof			20.0	_	
Output Delay Time	e (OUT _(2n) -to-OUT _(2n+1))	tod			0.5	_	

Switching Characteristics (VDD = 3.3V, Ta = 25°C unless otherwise noted)

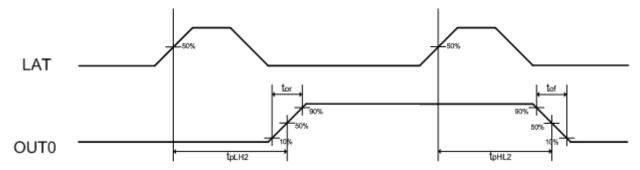
CHAR	ACTERISTIC	SYMBOL	CONDITION	MIN.	TYP.	MAX.	UNIT
	ENB-to-OUT0	tpLH1		_	43.2		
Propagation Delay	LAT-to-OUT0	tpLH2		_	35.9	_	
('L to 'H') DCK-to-DO tpLH3		_	28.4	_			
	ENB-to-OUT0	tpHL1		_	34.1	_	
Propagation Delay ('H' to 'L')	LAT-to-OUT0	tpHL2		_	30.1	_	
(H to L)	DCK-DO	tpHL3	VIH = VDD	_	29.9	_	
Pulse Duration	ENB	tw _(ENB)	VIL = GND Rrext = 960 Ω	20			
	LAT	tw _(LAT)		20			
	DCK	tw _(DCK)	VL =5.0 V	15			ns
Setup Time	LAT	tsu _(LAT)	RL = 150 Ω	5			
Setup Time	DI	tsu _(D)		3			
Hold Time	LAT	th _(LAT)	CL = 13 pF	20			
Hold Time	DI	th _(D)		4			
DO Rise Time		tr _(DO)			18.2		
DO Fall Time		tf _(DO)			19.9		
Output Current Rise Time		tor			15.0		
Output Current Fa	Output Current Fall Time				30.0		
Output Delay Time	e (OUT _(2n) -to-OUT _(2n+1))	tod		_	0.5		



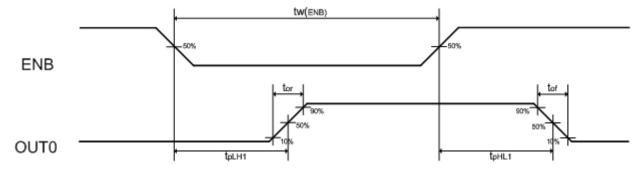
Switching Characteristics Test Circuit



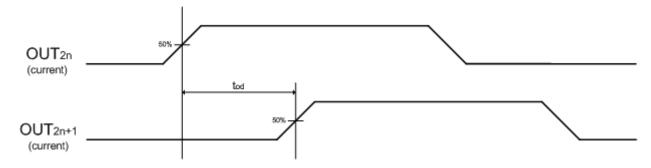
Timing Diagram


1. DCK-DI, DO

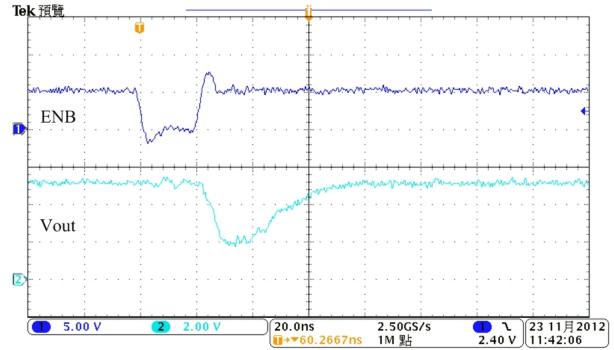
2. DCK-LAT



3. LAT-OUT0



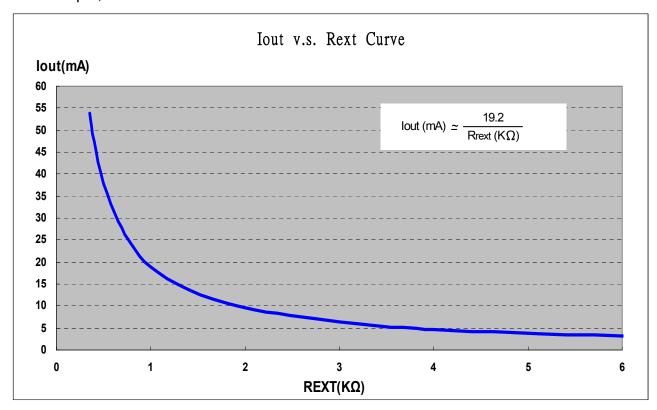
4. ENB-OUT0



5. OUT_{2n}-OUT_{2n+1}

Fast Transient Response

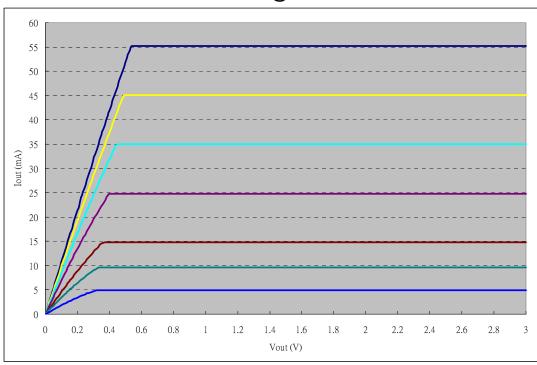
The MY9168 supports the fast transient response to make high image resolution possible. The ENB pulse width of 20ns is also good enough to get a complete Vout waveform. Following shows the waveform of VDD=5V, Rext=960 Ω , VLED=5V, RL=150 Ω


Reference Resistor

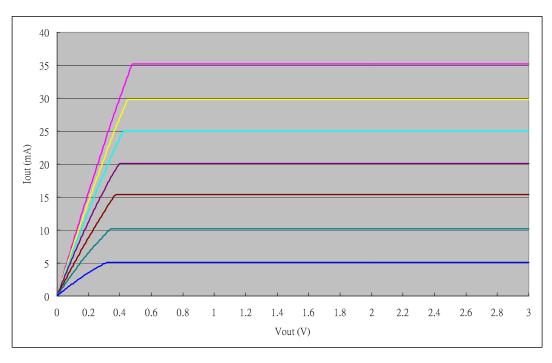
The constant current values are determined by an external resistor placed between REXT pin and GND pin. The following formula is utilized to calculate the current value:

$$Iout(mA) = \frac{19.2}{Rrext (K\Omega)}$$

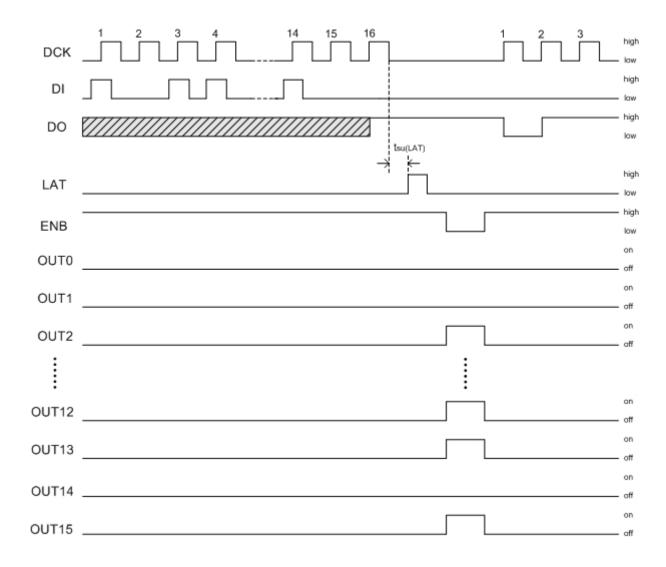
Where Rrext is a resistor placed between REXT and GND


For example, lout is 20mA when Rrext=960 Ω and lout is 3mA when Rrext=6.4K Ω




Constant-Current Output

The current characteristics could maintain invariable in the influence of loading voltage. Therefore, the MY9168 could minimize the interference of different LED forward voltages and produce the constant current. The following figures illustrate the suitable output voltage should be determined in order to keep an excellent performance.


lout v.s. Vout @ VDD=5.0V

Serial Data Interface

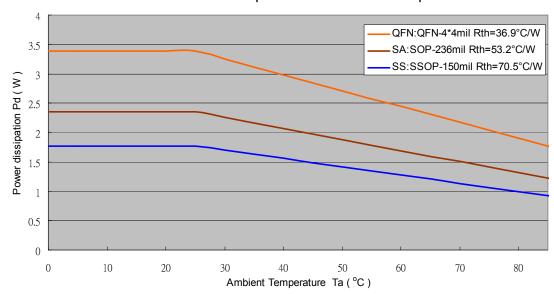
The MY9168 will shifts the data to the register from the DI pin on the rising edge of data clock (DCK). After whole given frame data are transferred into 16bits shift register, the frame data are loaded into the latch register by a strobe signal (LAT). The latch action is triggered at the rising edge of LAT signal. And the serial data will be shifted out from the DO pin on the synchronization of the rising edge of DCK. Furthermore, the enable signal (ENB) will turn on all outputs when it is set to the low level.

Stagger Outputs Delay

Large in-rush currents will be induced when the system activates all the outputs at once. To reduce this interference of EMI, the MY9168 is designed to have a constant length of delay time between two output groups. The two output groups individually are the first group OUT2n and the second group OUT2n+1.

Power Dissipation

When the 16 output channels are turned on, the practical power dissipation is determined by the following equation:

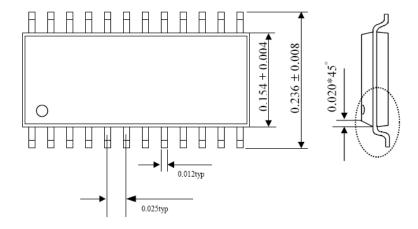

$$PD$$
 (practical) = $V_{DD} \times I_{DD} + V_{Out_{(0)}} \times I_{Out_{(0)}} \times Duty_{(0)} + \cdots + V_{Out_{(N)}} \times I_{Out_{(N)}} \times Duty_{(N)}$, where $N=1$ to 15

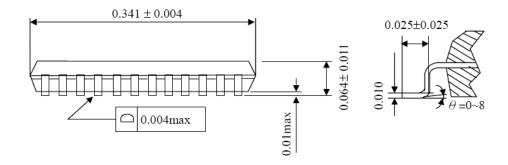
In secure operating conditions, the power consumption of an integrated chip should be less than the maximum permissible power dissipation which is determined by the package types and ambient temperature. The formula for maximum power dissipation is described as follows:

$$PD (max) = \frac{Tj(max)(\mathcal{C}) - Ta(\mathcal{C})}{Rth(j-a)(\mathcal{C}/Watt)}$$

The PD(max) declines as the ambient temperature raises. Therefore, suitable operating conditions should be designed with caution according to the chosen package and the ambient temperature. The following figure illustrates the relation between the maximum power dissipation and the ambient temperature in the four different packages.

Maximum Power Dissipation v.s. Ambient Temperature

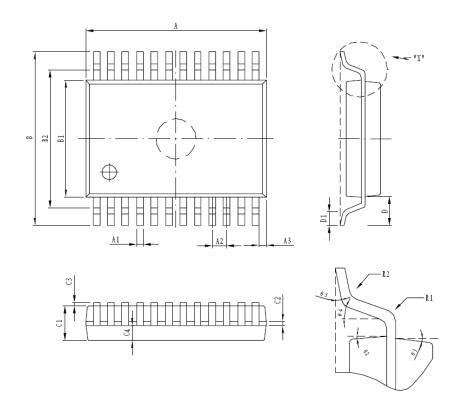




Package Outline Dimension

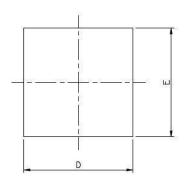
SSOP-150mil-0.635mm

Unit: inch

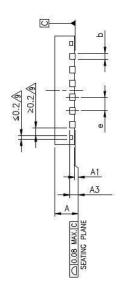


Package Outline Dimension

SOP-236mil-1.0mm



SYMBOL	DIMENS	ION(mm)	SYMBOL	DIMENSION(mm)			
SIMBOL	MIN.	MAX.	STMIDUL	MIN.	MAX.		
A	12.9	13.1	С3	0.05	0.2		
A1	0.30	0.50	C4	0.80TYP			
A2	1.00	TYP	D	0.95TYP			
A3	0.87	ГҮР	D1	0.33	0.73		
В	7.60	8.20	R1	0.2TYP			
B1	5.90	6.10	R2	0.2TYP			
B2			θ 1	8°TYP			
С		2.20	$\theta 2$	10°TYP			
C1	1.70	1.90	θ3	4°TYP			
C2	0.15	0.30	$\theta 4$	5°TYP			



Package Outline Dimension

QFN24-4mm x 4mm

JEDEC OUTLINE	MO-220						
PKG CODE	WQFN(X424)						
SYMBOLS	MIN.	MAX.					
Α	0.70	0.75	0.80				
A1	0.00	0.02	0.05				
A3	0.20 REF.						
b	0.18	0.25	0.30				
D	4	.00 BS	C				
Е	4.00 BSC						
e	0.50 BSC						
K	0.20	0.000	88-88				

- ALL DIMENSIONS ARE IN MILLIMETERS.
 DIMENSION & APPLIES TO METALLIZED TERMINAL AND IS MEASURED BETWEEN 0.15mm AND 0.30mm FROM THE TERMINAL TIP. IF THE TERMINAL HAS THE OPTIONAL RADIUS ON THE OTHER END OF THE TERMINAL, THE DIMENSION & SHOULD NOT BE MEASURED IN THAT RADIUS AREA.
- 3. BILATERAL COPLANARITY ZONE APPLIES TO THE EXPOSED HEAT SINK SLUG AS WELL AS THE TERMINALS.

	E2			D2		L		LEAD	FINISH	JEDEC CODE	
MIN.	NOM.	MAX.	MIN.	NOM.	MAX.	MIN.	NOM.	MAX.	Pure Tin	PPF	JEDEC CODE
2.40	2.50	2.55	2.40	2.50	2.55	0.35	0.40	0.45	٧	Х	W(V)GGD-8

The products listed herein are designed for ordinary electronic applications, such as electrical appliances, audio-visual equipment, communications devices and so on. Hence, it is advisable that the devices should not be used in medical instruments, surgical implants, aerospace machinery, nuclear power control systems, disaster/crime-prevention equipment and the like. Misusing those products may directly or indirectly endanger human life, or cause injury and property loss.

MY-Semi Inc. will not take any responsibilities regarding the misusage of the products mentioned above. Anyone who purchases any products described herein with the above-mentioned intention or with such misused applications should accept full responsibility and indemnify. MY-Semi Inc. and its distributors and all their officers and employees shall defend jointly and severally against any and all claims and litigation and all damages, cost and expenses associated with such intention and manipulation.