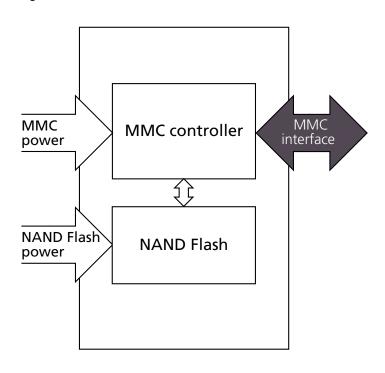


*Advanced information. Subject to change without notice.

MMC Controller and 64GB NAND Flash


Features

- Tin-lead ball metallurgy
- MultiMediaCard (MMC) controller and 64GB NAND Flash
- V_{CC}: 2.7–3.6V
- V_{CCQ} (dual voltage): 1.65–1.95V; 2.7–3.6V
- Typical current consumption
 - Standby current: 160µA
 - Active current (RMS): 80mA

MMC - Specific Features

- JEDEC/MMC standard version 4.41-compliant (JEDEC Standard No. 84-A441) SPI mode not supported (see www.jedec.org/sites/default/files/docs/JESD84-A441.pdf)
 - Advanced 11-signal interface
 - x1, x4, and x8 I/Os, selectable by host
 - MMC mode operation
 - Command classes: class 0 (basic); class 2 (block read); class 4 (block write); class 5 (erase); class 6 (write protection); class 7 (lock card)
 - MMCplus[™] and MMCmobile[™] protocols
 - Temporary write protection
 - 52 MHz clock speed (MAX)
 - Boot operation (high-speed boot)
 - Sleep mode
 - Replay-protected memory block (RPMB)
 - Secure erase and trim
 - Hardware reset signal
 - Multiple partitions with enhanced attribute
 - Permanent and power-on write protection
 - Double data rate (DDR) function
 - High-priority interrupt (HPI)
 - Enhanced reliable write
 - Configurable reliability settings
 - Background operation
 - Fully enhanced configurable
 - Backward-compatible with previous MMC modes
- ECC and block management implemented

Figure 1: e-MMC Device

Options

• Package (Sn63 Pb37 solder)

- 169-ball LFBGA BG (14mm x 18mm x 1.4mm)
- Operating Temperature
 - Industrial (-40°C \leq T_C \leq +85°C) IT

Marking

MMC Controller & NAND Flash MYXFC64JDDN*

*Advanced information. Subject to change without notice.

Contents

1	e∙MM	C Performance
2	Gener	al Description3
3	Signa	Descriptions4
4	100-B	all Signal Assignments
5	Packa	ge Dimensions6
6	Archit	ecture
	6.1	MMC Protocol Independent of NAND Flash Technology 7
	6.2	Defect and Error Management
7	CID Re	egister8
8	CSD R	egister
9	ECSD	Register
10	DC Ele	ectrical Specifications – Device Power15
11	Orderi	ng Information17

2

*Advanced information. Subject to change without notice.

1 e-MMC Performance

Table 1: MLC Partition Performance

Condition	MYXFC64GJDDN	Units
Sequential write	20	MB/s
Sequential read	44	MB/s
Random write	90	IOPs
Random read	1100	IOPs

Note:

2

1. Bus in x8 I/O mode. Sequential access of 1MB chunk; random access of 4KB chunk. Additional performance data, such as power consumption or timing for different device modes, will be provided in a separate document upon customer request.

General Description

e-MMC is a communication and mass data storage device that includes a Multi-MediaCard (MMC) interface, a NAND Flash component, and a controller on an advanced 11-signal bus, which is compliant with the MMC system specification. Its cost per bit, small package sizes, and high reliability make it an ideal choice for industrial applications like infrastructure and networking equipment, PC and servers, a variety of other industrial products.

The nonvolatile e-MMC draws no power to maintain stored data, delivers high performance across a wide range of operating temperatures, and resists shock and vibration disruption.

MMC Controller & NAND Flash MYXFC64JDDN*

*Advanced information. Subject to change without notice.

3 Signal Descriptions

Table 2: Signal Descriptions

Symbol	Туре	Description
CLK	Input	Clock: Each cycle of the clock directs a transfer on the command line and on the data line(s). The frequency can vary between the minimum and the maximum clock frequency.
RST_n	Input	Reset: The RST_n signal is used by the host for resetting the device, moving the device to the preidle state. By default, the RST_n signal is temporarily disabled in the device. The host must set ECSD register byte 162, bits[1:0] to 0x1 to enable this functionality before the host can use it.
CMD	1/0	Command: This signal is a bidirectional command channel used for command and response transfers. The CMD signal has two bus modes: open-drain mode and push-pull mode (see Operating Modes). Commands are sent from the MMC host to the device, and responses are sent from the device to the host.
DAT[7:0]	1/0	Data I/O: These are bidirectional data signals. The DAT signals operate in push-pull mode. By default, after power-on or assertion of the RST_n signal, only DAT0 is used for data transfer. The MMC controller can configure a wider data bus for data transfer either using DAT[3:0] (4-bit mode) or DAT[7:0] (8-bit mode). e·MMC includes internal pull-up resistors for data lines DAT[7:1]. Immediately after entering the 4-bit mode, the device disconnects the internal pull-up resistors on the DAT[3:1] lines. Upon entering the 8-bit mode, the device disconnects the internal pull-ups on the DAT[7:1] lines.
V _{CC}	Supply	V _{CC} : NAND interface (I/F) I/O and NAND Flash power supply.
V _{CCQ}	Supply	V _{CCQ} : e·MMC controller core and e·MMC I/F I/O power supply.
V _{SS1}	Supply	V _{SS} : NAND I/F I/O and NAND Flash ground connection.
V _{SSQ1}	Supply	V_{SSQ} : e-MMC controller core and e-MMC I/F ground connection.
V _{DDIM}		Internal voltage node: At least a 0.1μ F capacitor is required to connect VDDIM to ground. A 1μ F capacitor is recommended. Do not tie to supply voltage or ground.
NC	-	No connect: No internal connection is present.
RFU	_	Reserved for future use: No internal connection is present. Leave it floating externally.

Note:

1. V_{SS} and V_{SSQ} are connected internally.

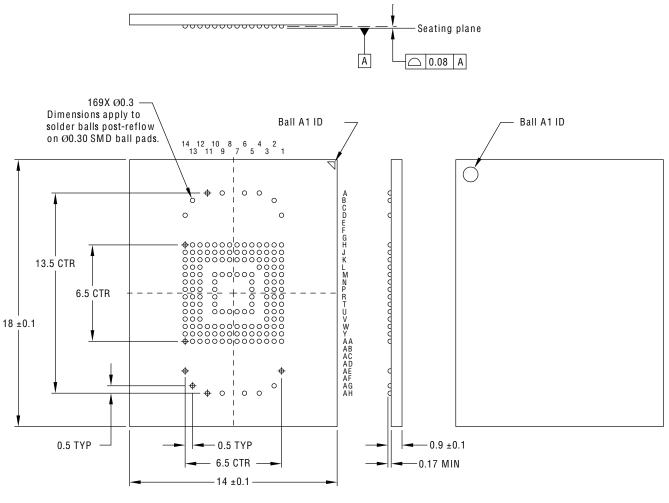
*Advanced information. Subject to change without notice.

4 169-Ball Signal Assignments

Figure 2: 169-Ball LFBGA (Top View, Ball Down)

	1	2	3	4	5	6	7	8	9	10	11	12	13	14
A				(NC)		(NC)			(NC)		(NC)			
В		(NC)		Ō		Ō			Ō		Ō		(NC)	
C		\bigcirc		\bigcirc		\bigcirc			\bigcirc		\bigcirc		\bigcirc	
D	(NC)	\bigcirc		\bigcirc		\bigcirc			\bigcirc		\bigcirc		\bigcirc	(NC)
E	()	\bigcirc		\bigcirc		\bigcirc			\bigcirc		\bigcirc		\bigcirc	\bigcirc
F	()	\bigcirc		\bigcirc		\bigcirc			\bigcirc		\bigcirc		\bigcirc	\bigcirc
G	()	\bigcirc		\bigcirc		\bigcirc			\bigcirc		\bigcirc		\bigcirc	\bigcirc
Н	(NC)	(\underline{NC})	(DATO)	(DAT1)	(DAT2)	(RFU)	(RFU)	(\underline{NC})	(NC)	(\underline{NC})	(\underline{NC})	(\underline{NC})	(NC)	(NC)
J	(NC)	DAT3	DAT4	DAT5	DAT6	DAT7	(NC)	(NC)	(NC),	(NC)	(NC)	(NC)	(NC)	(NC)
К	(NC)	VDDIM	(NC)	(V _{SSQ})	(RFU)	(V _{CCQ})	(NC)	(NC)	(NC)	(NC)	(NC)	(NC)	(NC)	(NC)
L	(NC)	(NC)	(NC)	(NC)								(NC)	(NC)	(NC)
М	(NC)	(NC)	(NC),		(RFU)	(V _{CC})	(V _{SS})	(RFU)	(RFU)	(RFU)		(NC)	(NC),	(NC),
Ν	(NC)	(NC)	(NC)		Vcc					(RFU)		(NC)	(NC)	(NC)
Ρ	(NC)	(NC)	(RFU)		(V _{SS})					(RFU)		(NC),	(NC)	(NC),
R	(NC)	(NC)	(NC)		(RFU)					(V _{SS})		(NC)	(NC)	(NC)
T	(NC),	(NC),	(NC),		(RFU),				_	(V _{CC})		(NC),	(NC),	(NC),
U	(NC)	(NC)	(NC)		(RST_n)	(RFU)	(RFU)	(V _{SS})	(V _{CC})	(RFU)		(NC)	(NC)	(NC)
V	(NC),	(NC),	(NC),									(NC),	(NC),	(NC),
W	(NC),	(NC),	(NC),	(V _{CCO})	СМД	CLK	(NC),	(NC),	(NC),	(NC),	(NC),	(NC),	(NC),	(NC),
Y		(V _{sso})	(NC)	(V _{CCQ})	(V _{SSO})		(NC),	(NC)	(NC),	(NC)	(NC)	(NC)	(NC)	
AA	(NC)	(NC)	(V _{CCQ})	(V _{SSO})	(V _{CCQ})	(V _{SSQ})	(RFU)	(NC)	(NC),	(RFU)	(NC)	(NC)	(NC)	
AB	$\left \bigcirc \right $	$(\underline{)}$		$(\underline{)}$		$(\underline{)}$			$(\bigcirc$		(Õ	$(\underline{)}$
AC	()	\bigcirc		($(\bigcirc$			(Õ		Õ	\bigcirc
AD	(\bigcirc)	$(\underline{)}$		Õ		\bigcirc			(Õ		Õ	\bigcirc
AE	(NC)	$(\underline{)}$		$(\underline{)}$		$(\underline{)}$			$(\underline{)}$		$(\underline{)}$		$(\underline{)}$	(NC)
AF		$(\underline{\hat{O}})$		\bigcirc		$(\underline{)}$			(Õ		Õ	
AG		(NC)		Õ		$(\underline{)}$			Õ		Õ		(NC)	
AH				(NC)		(NC)			(NC)		(NC)			

Notes:

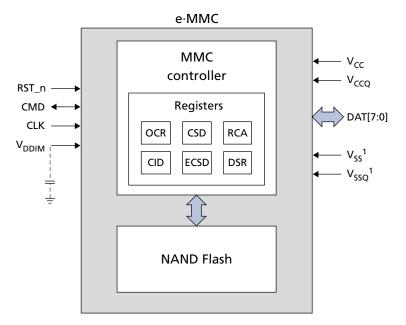

- 1. Empty balls do not denote actual solder balls; they are position indicators only.
- 2. Some previous versions of the JEDEC product or mechanical specification had defined reserved for future use (RFU) balls as no connect (NC) balls. NC balls assigned in the previous specifications could have been connected to ground on the system board. To enable new feature introduction, some of these balls are assigned as RFU in the v4.4 mechanical specification. Any new PCB footprint implementations should use the new ball assignments and leave the RFU balls floating on the system board.
- 3. $V_{CC},\,V_{CCQ},\,V_{SS},$ and V_{SSQ} balls must all be connected.

*Advanced information. Subject to change without notice.

5 Package Dimensions

Figure 3: 169-Ball VFBGA - 14.0mm x 18.00mm x 1.0mm (Package Code:ED)

Notes:


1. Dimensions are in millimeters.

*Advanced information. Subject to change without notice.

6 Architecture

Figure 4: e·MMC Functional Block Diagram

Note: 1

1. V_{SS} and V_{SSQ} are internally connected.

6.1 MMC Protocol Independent of NAND Flash Technology

The MMC specification defines the communication protocol between a host and a device. The protocol is independent of the NAND Flash features included in the device. The device has an intelligent on-board controller that manages the MMC communication protocol.

The controller also handles block management functions such as logical block allocation and wear leveling. These management functions require complex algorithms and depend entirely on NAND Flash technology (generation or memory cell type). The device handles these management functions internally, making them invisible to the host processor.

6.2 Defect and Error Management

e-MMC incorporates advanced technology for defect and error management. If a defective block is identified, the device completely replaces the defective block with one of the spare blocks. This process is invisible to the host and does not affect data space allocated for the user.

transforming specialty electronics

*Advanced information. Subject to change without notice.

The device also includes a built-in error correction code (ECC) algorithm to ensure that data integrity is maintained.

To make the best use of these advanced technologies and ensure proper data loading and storage over the life of the device, the host must exercise the following precautions:

- Check the status after WRITE, READ, and ERASE operations.
- Avoid power-down during WRITE and ERASE operations.

CID Register

7

The card identification (CID) register is 128 bits wide. It contains the device identification information used during the card identification phase as required by e-MMC protocol. Each device is created with a unique identification number.

Name	Field	Width	CID Bits	CID Value
Manufacturer ID	MID	8	[127:120]	FEh
Reserved	_	6	[119:114]	_
Card/BGA	CBX	2	[113:112]	01h
OEM/application ID	OID	8	[111:104]	_
Product name	PNM	48	[103:56]	MMC64G
Product revision	PRV	8	[55:48]	_
Product serial number	PSN	32	[47:16]	_
Manufacturing data	MDT	8	[15:8]	_
CRC7 checksum	CRC	7	[7:1]	_
Not used; always 1	_	1	0	_

Table 3: CID Register Field Parameters

transforming specialty electronics

*Advanced information. Subject to change without notice.

CSD Register

8

The card-specific data (CSD) register provides information about accessing the device contents. The CSD register defines the data format, error correction type, maximum data access time, and data transfer speed, as well as whether the DS register can be used. The programmable part of the register (entries marked with W or E in the following table) can be changed by the PROGRAM_CSD (CMD27) command.

Table 4: CSD Register Field Parameters

Name	Field	Width	Cell Type ¹	CSD Bits	CSD Value
CSD structure	CSD_STRUCTURE	2	R	[127:126]	03h
System specification version	SPEC_VERS	4	R	[125:122]	4h
Reserved ²	-	2	TBD	[121:120]	-
Data read access time 1	TAAC	8	R	[119:112]	4Fh
Data read access time 2 in CLK cycles (NSAC \times 100)	NSAC	8	R	[111:104]	01h
Maximum bus clock frequency	TRAN_SPEED	8	R	[103:96]	32h
Card command classes	CCC	12	R	[95:84]	0F5h
Maximum read data block length	READ_BL_LEN	4	R	[83:80]	9h
Partial blocks for reads supported	READ_BL_PARTIAL	1	R	79	Oh
Write block misalignment	WRITE_BLK_MISALIGN	1	R	78	Oh
Read block misalignment	READ_BLK_MISALIGN	77	R	77	Oh
DS register implemented	DSR_IMP	1	R	76	Oh
Reserved		2	R	[75:74]	1h
Device size	C_SIZE	12	R	[73:62]	-
Maximum read current at V _{DD,min}	VDD_R_CURR_MIN	3	R	[61:59]	FFFh
Maximum read current at V _{DD,max}	VDD_R_CURR_MAX	3	R	[58:56]	7h
Maximum write current at V _{DD,min}	VDD_W_CURR_MIN	3	R	[55:53]	7h
Maximum write current at $V_{\text{DD,max}}$	VDD_W_CURR_MAX	3	R	[52:50]	7h
Device size multiplier	C_SIZE_MULT	3	R	[49:47]	7h
Erase group size	ERASE_GRP_SIZE	5	R	[46:42]	1Fh
Erase group size multiplier	ERASE_GRP_MULT	5	R	[41:37]	1Fh
Write protect group size	WP_GRP_SIZE	5	R	[36:32]	1Fh
Write protect group enable	WP_GRP_ENABLE	1	R	31	1h

transforming specialty electronics

*Advanced information. Subject to change without notice.

Table 4: CSD Register Field Parameters (continued)

Name	Field	Width	Cell Type ¹	CSD Bits	CSD Value
Manufacturer default ECC	DEFAULT_ECC	2	R	[30:29]	Oh
Rite-speed factor	R2W_FACTOR	3	R	[28:26]	2h
Maximum write data block length	WRITE_BL_LEN	4	R	[25:22]	9h
Partial blocks for writes supported	WRITE_BL_PARTIAL	1	R	21	Oh
Reserved	-	4	R	[20:17]	-
Content protection application	CONTENT_PROT_APP	1	R	16	Oh
File-format group	FILE_FORMAT_GRP	1	R/W	15	Oh
Copy flag (OTP)	СОРҮ	1	R/W	14	Oh
Permanent write protection	PERM_WRITE_PROTECT	1	R/W	13	Oh
Temporary write protection	TMP_WRITE_PROTECT	1	R/W/E	12	Oh
File format	FILE_FORMAT	2	R/W	[11:10]	Oh
ECC	ECC	2	R/W/E	[9:8]	Oh
CRC	CRC	7	R/W/E	[7:1]	-
Not used; always 1	-	1	_	0	1h

Notes:

1. R = Read-only

R/W = One-time programmable and readable

R/W/E = Multiple writable with value kept after a power cycle, assertion of the RST_n signal, and any CMD0 reset, and readable

TBD = To be determined

- 2. Reserved bits should be read as 0.
- 3. The I_{PEAK, max} driving capability can be modified according to the actual capacitive load on the e·MMC interface signals in the user application board, using CMD4.

CMD4 Argument Driving	Capability (mA)
0x01000000	4
0x02000000	8
0x04000000	12 (default)
0x0800000	16
0x1000000	20
0x20000000	24
0x4000000	28
0x8000000	32

transforming specialty electronics

*Advanced information. Subject to change without notice.

9 ECSD Register

The 512-byte extended card-specific data (ECSD) register defines device properties and selected modes. The most significant 320 bytes are the properties segment. This segment defines device capabilities and cannot be modified by the host. The lower 192 bytes are the modes segment. The modes segment defines the configuration in which the device is working. The host can change the properties of modes segments using the SWITCH command.

Table 5: ECSD Register Field Parameters

Name	Field	Size (Bytes)	Cell Type ¹	ECSD Bits	ECSD Value
Properties Segment	I			1	
Reserved2	-	7	_	[511:505]	_
Supported command sets	S_CMD_SET	1	R	504	1h
HPI features	HPI_FEATURES	1	R	503	3h
Background operations support	BKOPS_SUPPORT	1	R	502	1h
Reserved	-	255	-	[501:247]	_
Background operations status	BKOPS_STATUS	1	R	246	Oh
Number of correctly programmed sectors	CORRECTLY_PRG_SECTORS_NUM	4	R	[245:242]	_
First initialization time after partitioning (first CMD1 to device ready)	INI_TIMEOUT_PA	1	R	241	FFh
Reserved	-	1	_	240	_
Power class for 52 MHz, DDR at 3.6V ³	PWR_CL_DDR_52_360	1	R	239	Oh
Power class for 52 MHz, DDR at 1.95V ³	PWR_CL_DDR_52_195	1	R	238	Oh
Reserved	-	2	-	[237:236]	-
Minimum write performance for 8-bit at 52 MHz in DDR mode	MIN_PERF_DDR_W_8_52	1	R	235	Oh
Minimum read performance for 8-bit at 52 MHz in DDR mode	MIN_PERF_DDR_R_8_52	1	R	234	Oh
Reserved	-	1	_	233	_
TRIM multiplier	TRIM_MULT	1	R	232	0Fh
Secure feature support	SEC_FEATURE_SUPPORT	1	R	231	15h
SECURE ERASE multiplier	SEC_ERASE_MULT	1	R	230	06h
SECURE TRIM multiplier	SEC_TRIM_MULT	1	R	229	09h
Boot information	BOOT_INFO	1	R	228	7h
Reserved	_	1	_	227	-
Boot partition size	BOOT_SIZE_MULT	1	R	226	80h

transforming specialty electronics

*Advanced information. Subject to change without notice.

Table 5: ECSD Register Field Parameters (continued)

Name	Field	Size (Bytes)	Cell Type ¹	ECSD Bits	ECSD Value
Access size	ACC_SIZE	1	R	225	07h
High-capacity erase unit size	HC_ERASE_GRP_SIZE	1	R	224	10h
High-capacity erase timeout	ERASE_TIMEOUT_MULT	1	R	223	01h
Reliable write-sector count	REL_WR_SEC_C	1	R	222	01h
High-capacity write protect group size	HC_WP_GRP_SIZE	1	R	221	08h
Sleep current (V _{CC})	S_C_VCC	1	R	220	08h
Sleep current (V _{CCQ})	S_C_VCCQ	1	R	219	08h
Reserved	-	1	-	218	_
Sleep/awake timeout	S_A_TIMEOUT	1	R	217	10h
Reserved	-	1	_	216	_
Sector count	SEC_COUNT	4	R	[215:212]	07700000h
Reserved	-	1	-	211	_
Minimum write performance for 8-bit at 52 MHz	MIN_PERF_W_8_52	1	R	210	08h
Minimum read performance for 8-bit at 52 MHz	MIN_PERF_R_8_52	1	R	209	08h
Minimum write performance for 8-bit at 26 MHz and 4-bit at 52 MHz	MIN_PERF_W_8_26_4_52	1	R	208	08h
Minimum read performance for 8-bit at 26 MHz and 4-bit at 52 MHz	MIN_PERF_R_8_26_4_52	1	R	207	08h
Minimum write performance for 4-bit at 26 MHz	MIN_PERF_W_4_26	1	R	206	08h
Minimum read performance for 4-bit at 26 MHz	MIN_PERF_R_4_26	1	R	205	08h
Reserved	-	1	_	204	_
Power class for 26 MHz at 3.6V ³	PWR_CL_26_360	1	R	203	00h
Power class for 52 MHz at 3.6V ³	PWR_CL_52_360	1	R	202	00h
Power class for 26 MHz at 1.95V ³	PWR_CL_26_195	1	R	201	00h
Power class for 52 MHz at 1.95V ³	PWR_CL_52_195	1	R	200	00h
Partition switching timing	PARTITION_SWITCH_TIME	1	R	199	1h
Out-of-interrupt busy timing	OUT_OF_INTERRUPT_TIME	1	R	198	02h
Reserved	-	1	-	197	_
Card type	CARD_TYPE	1	R	196	07h
Reserved	-	1	-	195	_
CSD structure version	CSD_STRUCTURE	1	R	194	2h
Reserved	-	1	-	193	_
Extended CSD revision	EXT_CSD_REV	1	R	192	5h

transforming specialty electronics

*Advanced information. Subject to change without notice.

Table 5: ECSD Register Field Parameters (continued)

Name	Field	Size (Bytes)	Cell Type ¹	ECSD Bits	ECSD Value
Modes Segment			I	1	
Command set	CMD_SET	1	R/W/E_P	191	Oh
Reserved	-	1	-	190	_
Command set revision	CMD_SET_REV	1	R	189	Oh
Reserved	-	1	_	188	_
Power class	POWER_CLASS	1	R/W/E_P	187	Oh
Reserved	-	1	_	186	_
High-speed interface timing	HS_TIMING	1	R/W/E_P	185	Oh
Reserved	-	1	_	184	_
Bus width mode	BUS_WIDTH	1	W/E_P	183	Oh
Reserved	-	1	_	182	_
Erased memory content	ERASED_MEM_CONT	1	R	181	Oh
Reserved	-	1	_	180	_
Partition configuration	PARTITION_CONFIG	1	R/W/E, R/W/E_P	179	Oh
Boot configuration protection	BOOT_CONFIG_PROT	1	R/W, R/W/C_P	178	Oh
Boot bus width	BOOT_BUS_WIDTH	1	R/W/E	177	Oh
Reserved	-	1	_	176	_
High-density erase group definition	ERASE_GROUP_DEF	1	R/W/E_P	175	00h
Reserved	-	1	_	174	_
Boot area write protection register	BOOT_WP	1	R/W, R/W/C_P	173	Oh
Reserved	-	1	-	172	_
User write protection register	USER_WP	1	R/W, R/W/C_P, R/W/E_P	171	Oh
Reserved	-	1	_	170	_
Firmware configuration	FW_CONFIG	1	R/W	169	Oh
RPMB size	RPMB_SIZE_MULT	1	R	168	1h
Write reliability setting register ³	WR_REL_SET	1	R/W	167	00h ⁴
Write reliability parameter register	WR_REL_PARAM	1	R	166	05h
Reserved	-	1	_	165	_
Manually start background operations	BKOPS_START	1	W/E_P	164	-
Enable background operations handshake	BKOPS_EN	1	R/W	163	Oh
Hardware reset function	RST_n_FUNCTION	1	R/W	162	Oh
HPI management	HPI_MGMT	1	R/W/E_P	161	Oh
Partitioning support	PARTITIONING_SUPPORT	1	R	160	3h

transforming specialty electronics

*Advanced information. Subject to change without notice.

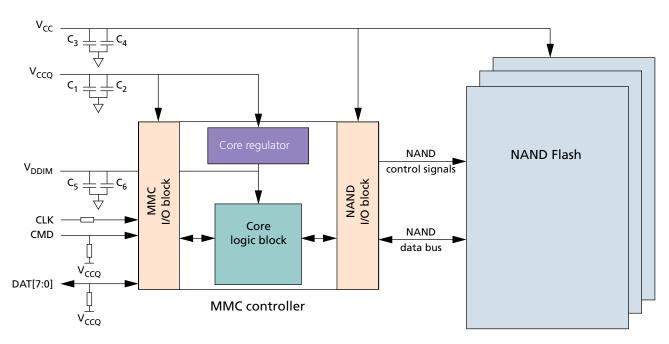
Table 5: ECSD Register Field Parameters (continued)

Name	Field	Size (Bytes)	Cell Type ¹	ECSD Bits	ECSD Value
Maximum enhanced area size	MAX_ENH_SIZE_MULT	1	R	[159:157]	0001DCh
Partitions attribute	PARTITIONS_ATTRIBUTE	1	R/W	156	Oh
Partitioning setting	PARTITION_SETTING_COMPLETED	1	R/W	155	Oh
General-purpose partition size	GP_SIZE_MULT	1	R/W	[154:143]	Oh
Enhanced user data area size	ENH_SIZE_MULT	1	R/W	[142:140]	Oh
Enhanced user data start address	ENH_START_ADDR	1	R/W	[139:136]	Oh
Reserved	-	1	-	135	_
Bad block management mode	SEC_BAD_BLK_MGMNT	1	R/W	134	Oh
Reserved	-	1	_	[133:0]	_

Notes:

1.	R	Read-only			
	R/W	One-time programmable and readable			
	R/W/E	Multiple writable with the value kept after a power cycle, assertion of the RST_n signal, and any			
		CMD0 reset, and readable			
	R/W/C_P	Writable after the value is cleared by a power cycle and assertion of the RST_n signal (the			
		value not cleared by CMD0 reset) and readable			
	R/W/E_P	Multiple writable with the value reset after a power cycle, assertion of the RST_n signal, and			
		any CMD0 reset, and readable			
	W/E_P	Multiple writable with the value reset after power cycle, assertion of the RST_n signal, and any			
		CMD0 reset, and not readable			
	TBD	To be determined			
2.	Reserved bits should be read as 0.				

- 3. The OCM has tested power failure under best application knowledge conditions with positive results.
- 4. Set at 00h when shipped for optimized write performance; can be set to 1Fh to enable protection on previously written data if power failure occurs during a WRITE operation. This byte is one-time programmable.
- 5. The first showing of 4GB refers to the 1-channel device, while the second showing of 4GB refers to the 2-channel device.



*Advanced information. Subject to change without notice.

10 DC Electrical Specifications – Device Power

The device current consumption for various device configurations is defined in the power class fields of the ECSD register.

 V_{CC} is used for the NAND Flash device and its interface voltage; V_{CCQ} is used for the controller and the e-MMC interface voltage.

Figure 5: Device Power Diagram

Table 6: Power Domains

Parameter	Symbol	Comments
Host interface	V _{CCQ}	High voltage range = 3.3V (nominal); Low voltage range = 1.8V (nominal)
Memory	V _{CC}	High voltage range $= 3.3V$ (nominal)
Internal	V _{DDIM}	The internal regulator connection to an external decoupling capacitor

transforming specialty electronics

*Advanced information. Subject to change without notice.

Table 7: Capacitor and Resistance Specifications

Parameter	Symbol	Min	Max	Тур	Units	Notes
Pull-up resistance: CMD	R_CMD	4.7	50	10	kΩ	1
Pull-up resistance: DAT[7:0]	R_DAT	10	50	50	kΩ	1
Pull-up resistance: RST_n	R_RST_n	4.7	50	50	kΩ	2
CLK/CMD/DAT[7:0] impedance		45	55	50	Ω	3
Serial resistance on CLK	SR_CLK	0	47	22	Ω	
V constitue	C1	2.2	4.7	2.2	μF	4
V _{CCQ} capacitor	C2	0.1	0.22	0.1		
)/	C3	2.2	4.7	2.2	μF	5
V_{CC} capacitor (\leq 8GB)	C4	0.1	0.22	0.1		
)/	C3	2.2	4.7	4.7		5
V_{CC} capacitor (>8GB)	C4	0.1	0.22	0.22	μF	
V consoiter (C)	C5	1	4.7	1	υE	6
V_{DDIM} capacitor (C_{reg})	C6	0.1	0.1	0.1	μF	U

Notes:

- 1. Used to prevent bus floating.
- If host does not use H/W RESET (RST_n), pull-up resistance is not needed on RST_n line (Extended_ CSD[162] = 00h).
- 3. Impedance match.
- 4. The coupling capacitor should be connected with V_{CCQ} and V_{SSQ} as closely as possible.
- 5. The coupling capacitor should be connected with V_{CC} and V_{SS} as closely as possible.
- 6. The coupling capacitor should be connected with V_{DDIM} and V_{SS} as closely as possible.

*Advanced information. Subject to change without notice.

11 Ordering Information

Table 8: Ordering Information

Part Number	Device Grade
MYXFC64GJDDNBG-ITRL	Industrial

transforming specialty electronics

*Advanced information. Subject to change without notice.

Document Title

MMC Controller and 64GB NAND Flash

Revision History

Revision #	History	Release Date	Status
1.0	Initial release	December 22, 2014	Preliminary