

Doc. Number:

Tentative Specification

Preliminary Specification

Approval Specification

MODEL NO.: N133BGE SUFFIX: E31

Customer:	
APPROVED BY	SIGNATURE
<u>Name / Title</u> Note	
Please return 1 copy for your con signature and comments.	firmation with your

Approved By	Checked By	Prepared By
楊竣傑	曹文彬	楊甯之
2013-04-03	2013-03-25	2013-03-21
16:22:19 CST	14:29:09 CST	09:06:05 CST

Varaian	\cap	n
Version	υ.	U

CONTENTS

1. GENERAL DESCRIPTION	4
1.1 OVERVIEW	4
1.2 GENERAL SPECIFICATIONS	4
2. MECHANICAL SPECIFICATIONS	4
2.1 CONNECTOR TYPE	5
3. ABSOLUTE MAXIMUM RATINGS	5
3.1 ABSOLUTE RATINGS OF ENVIRONMENT	5
3.2 ELECTRICAL ABSOLUTE RATINGS	6
3.2.1 TFT LCD MODULE	6
4. ELECTRICAL SPECIFICATIONS	7
4.1 FUNCTION BLOCK DIAGRAM	7
4.2. INTERFACE CONNECTIONS	8
4.3.1 LCD ELETRONICS SPECIFICATION	10
4.3.2 LED CONVERTER SPECIFICATION	12
4.3.3 BACKLIGHT UNIT	14
4.4 LVDS INPUT SIGNAL TIMING SPECIFICATIONS	15
4.4.1 LVDS DC SPECIFICATIONS	15
4.4.2 COLOR DATA INPUT ASSIGNMENT	16
4.5 DISPLAY TIMING SPECIFICATIONS	17
4.6 POWER ON/OFF SEQUENCE	
5. OPTICAL CHARACTERISTICS	20
5.1 TEST CONDITIONS	20
5.2 OPTICAL SPECIFICATIONS	20
6. RELIABILITY TEST ITEM	23
7. PACKING	24
7.1 MODULE LABEL	24
7.2 CARTON	25
7.3 PALLET	26
8. PRECAUTIONS	27
8.1 HANDLING PRECAUTIONS	27
8.2 STORAGE PRECAUTIONS	
8.3 OPERATION PRECAUTIONS	27
Appendix. EDID DATA STRUCTURE	
Appendix. OUTLINE DRAWING	
Appendix. SYSTEM COVER DESIGN GUIDANCE	

18 April 2013

REVISION HISTORY

Version	Date	Page	Description
0.0	Mar.13, 2013	All	Tentative spec Ver. 0.0 was first issued.

1. GENERAL DESCRIPTION

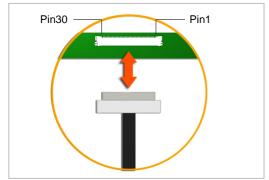
1.1 OVERVIEW

N133BGE-E31 is a 13.3" (13.3" diagonal) TFT Liquid Crystal Display module with LED Backlight unit and 30 pins eDP interface. This module supports 1366 x 768 HD mode and can display 262,144 colors. The optimum viewing angle is at 6 o'clock direction.

1.2 GENERAL SPECIFICATIONS

Item	Specification	Unit	Note	
Screen Size	13.3 diagonal			
Driver Element	a-si TFT active matrix	-	-	
Pixel Number	1366 x R.G.B. x 768	pixel	-	
Pixel Pitch	0.2148 (H) x 0.2148 (V)	mm	-	
Pixel Arrangement	RGB vertical stripe	-	-	
Display Colors	262,144	color	-	
Transmissive Mode	Normally white	-	-	
Surface Treatment	Hard coating (3H), Anti - Glare	-	-	
Luminance, White	200	Cd/m2		
Power Consumption	Total (2.95W) (Max.) @ cell (0.75W) (Max.), BL (2.2	2W) (Max.)	(1)	
Backlight Unit	LEDs X 9 strings X 3 pallel	LEDs X 9 strings X 3 pallel		
Power Consumption	3.0 typ./ 3.2 max @ Black Pattern	3.0 typ./ 3.2 max @ Black Pattern		
RoHs Compliance	yes			

Note (1) The specified power consumption is under the conditions at VCCS = 3.3 V, Ta = $25 \pm 2 \text{ °C}$, LED_VCCS = Typ, fPWM = 200 Hz, Duty=100% and fv = 60 Hz, whereas mosaic pattern is displayed.


2. MECHANICAL SPECIFICATIONS

ltem		Min.	Тур.	Max.	Unit	Note
	Horizontal (H)	306.8	306.3	305.8	mm	
Module Size	Vertical (V)	177.2	177.7	178.2	mm	(1)
	Thickness (T)	-	3.3	3.6	mm	
Bezel Area	Horizontal		296.816		mm	
Bezel Area	Vertical		168.366		mm	
Active Area	Horizontal	293.3168	293.4168	293.5168	mm	
Active Area	Vertical	164.8664	164.9664	165.764	mm	
V	Veight	-	265	280	g	

Note (1) Please refer to the attached drawings for more information of front and back outline dimensions.

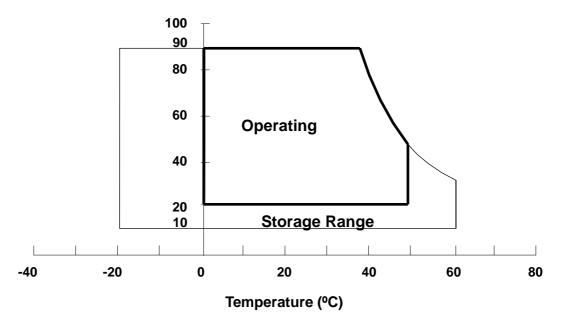
2.1 CONNECTOR TYPE

Connector Part No. : I-PEX 20455-030E-12 User's connector Part No. : IPEX-20453-030T-01

Please refer Appendix Outline Drawing for detail design.

3. ABSOLUTE MAXIMUM RATINGS

3.1 ABSOLUTE RATINGS OF ENVIRONMENT

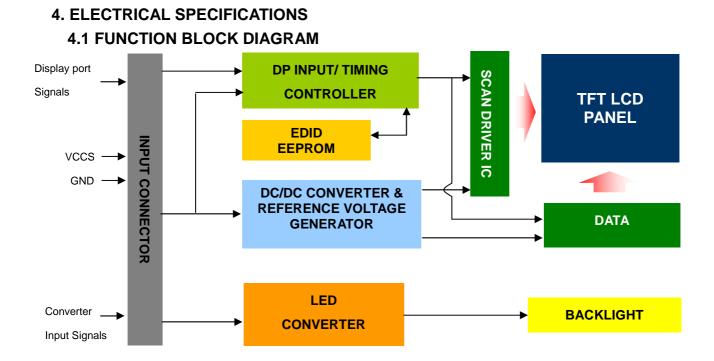

ltem	Symbol	Va	lue	Unit	Note	
nem	Symbol	Min.	Max.	Onit		
Storage Temperature	T _{ST}	-20	+60	٥C	(1)	
Operating Ambient Temperature	T _{OP}	0	+50	°C	(1), (2)	

Note (1) (a) 90 %RH Max. (Ta <= 40 °C).

(b) Wet-bulb temperature should be 39 °C Max. (Ta > 40 °C).

- (c) No condensation.
- Note (2) The temperature of panel surface should be 0 °C min. and 60 °C max.

Relative Humidity (%RH)

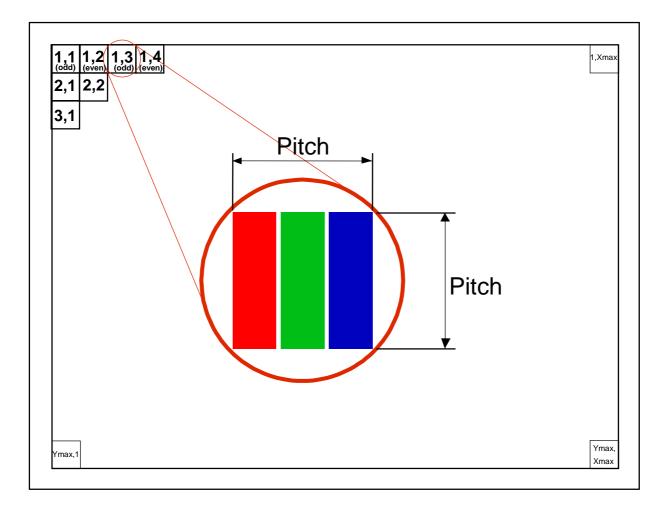

3.2 ELECTRICAL ABSOLUTE RATINGS

3.2.1 TFT LCD MODULE

Item	Symbol	Va	lue	Unit	Note	
	Cymbol	Min. Max.		Onit	Note	
Power Supply Voltage	VCCS	(-0.3)	(+4.0)	V	(1)	
Logic Input Voltage	V _{IN}	-0.3	VCCS+0.3	V	(1)	
Converter Input Voltage	LED_VCCS	(-0.3)	(26)	V		
Converter Control Signal Voltage	LED_PWM,	(-0.3)	(5)	V		
Converter Control Signal Voltage	LED_EN	(-0.3)	(5)	V		

Note (1) Stresses beyond those listed in above "ELECTRICAL ABSOLUTE RATINGS" may cause permanent damage to the device. Normal operation should be restricted to the conditions described in "ELECTRICAL CHARACTERISTICS".

PRODUCT SPECIFICATION



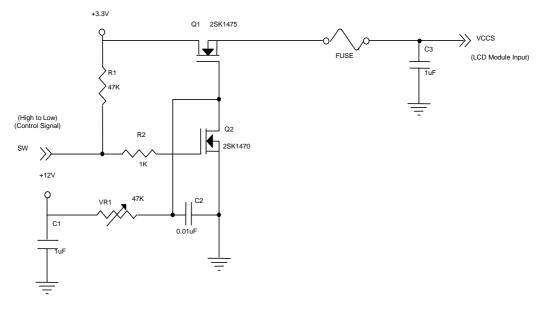
4.2. INTERFACE CONNECTIONS

Pin	Symbol	Description	Remark
1	NC	No Connection (Reserved)	
2	H_GND	High Speed Ground	
3	NC	No Connection (Reserved)	
4	NC	No Connection (Reserved)	
5	H_GND	High Speed Ground	
6	ML0-	Complement Signal-Lane 0	
7	ML0+	True Signal-Main Lane 0	
8	H_GND	High Speed Ground	
9	AUX+	True Signal-Auxiliary Channel	
10	AUX-	Complement Signal-Auxiliary Channel	
11	H_GND	High Speed Ground	
12	VCCS	Power Supply +3.3 V (typical)	
13	VCCS	Power Supply +3.3 V (typical)	
14	NC	No Connection (Reserved for CMI test)	
15	GND	Ground	
16	GND	Ground	
17	HPD	Hot Plug Detect	
18	BL_GND	BL Ground	
19	BL_GND	BL Ground	
20	BL_GND	BL Ground	
21	BL_GND	BL Ground	
22	LED_EN	BL_Enable Signal of LED Converter	
23	LED_PWM	PWM Dimming Control Signal of LED Converter	
24	NC	No Connection	
25	NC	No Connection	
26	LED_VCCS	BL Power	
27	LED_VCCS	BL Power	
28	LED_VCCS	BL Power	
29	LED_VCCS	BL Power	
30	NC	No Connection (Reserved)	

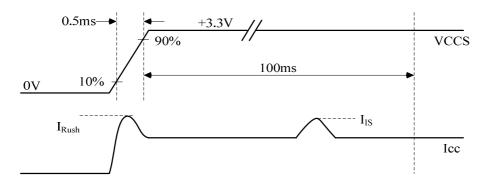
Note (1) The first pixel is odd as shown in the following figure.

18 April 2013

4.3.1 LCD ELETRONICS SPECIFICATION

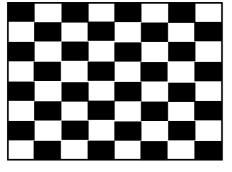

Parameter		Symbol	Value			Linit	Note
		Symbol	Min.	Тур.	Max.	Unit	Note
Power Supply Voltage		VCCS	3.0	3.3	3.6	V	(1)-
Ripple Voltage		V _{RP}	-	50	-	mV	(1)-
Inrush Current		I _{RUSH}	-	-	1.5	А	(1),(2)
Mosaic		lee		(190)	(227)	mA	(3)a
Power Supply Current	Black	lcc		(210)	(230)	mA	(3)

Note (1) The ambient temperature is $Ta = 25 \pm 2 \ ^{\circ}C$.


Note (2) I_{RUSH}: the maximum current when VCCS is rising

 I_{IS} : the maximum current of the first 100ms after power-on

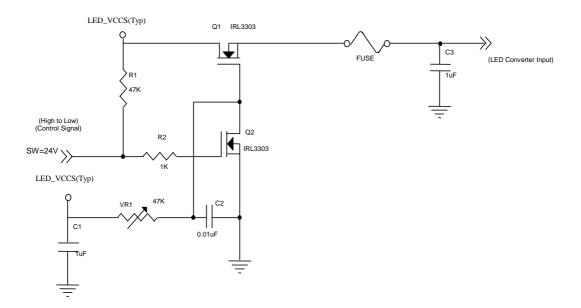
Measurement Conditions: Shown as the following figure. Test pattern: black.


VCCS rising time is 0.5ms

Note (3) The specified power supply current is under the conditions at VCCS = 3.3 V, Ta = 25 ± 2 °C, DC Current and $f_v = 60$ Hz, whereas a power dissipation check pattern below is displayed

a. Mosaic Pattern

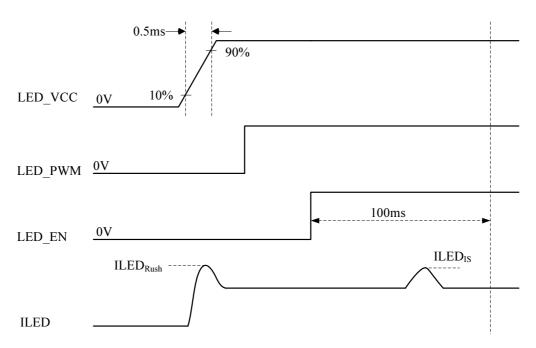
Active Area


4.3.2 LED CONVERTER SPECIFICATION

Doror	Parameter			Value	Unit	Note	
i aldifieter		Symbol	Min.	Тур.	Max.	Unit	NOLE
Converter Input pow	ver supply voltage	LED_Vccs	(5.0)	(12.0)	(21.0)	V	
Converter Inrush Cu	irrent	ILED _{RUSH}	-	-	(1.5)	А	(1)
EN Control Level	Backlight On		(2.2)	-	(5.0)	V	
EN COntrol Level	Backlight Off		0	-	(0.6)	V	
PWM Control Level	PWM High Level		(2.2)	-	(5.0)	V	
F WW Control Level	PWM Low Level		0	-	(0.6)	V	
PWM Control Duty Ratio			(5)	-	(100)	%	
PWM Control Permissive Ripple Voltage		VPWM_pp	-	-	100	mV	
PWM Control Frequency		f _{PWM}	190	-	2K	Hz	(2)
LED Power Current	LED_VCCS =Typ.	ILED	(145)	(174)	(184)	mA	(3)

Note (1) ILED_{RUSH}: the maximum current when LED_VCCS is rising,

ILED_{IS}: the maximum current of the first 100ms after power-on,


Measurement Conditions: Shown as the following figure. LED_VCCS = Typ, Ta = 25 \pm 2 °C, f_{PWM} = 200 Hz, Duty=100%.

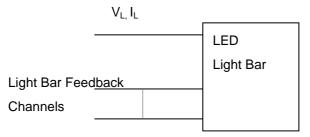
18 April 2013

VLED rising time is 0.5ms

Note (2) If PWM control frequency is applied in the range less than 1KHz, the "waterfall" phenomenon on the screen may be found. To avoid the issue, it's a suggestion that PWM control frequency should follow the criterion as below.

PWM control frequency
$$f_{PWM}$$
 should be in the range
 $(N + 0.33) * f \le f_{PWM} \le (N + 0.66) * f$
 N : Integer $(N \ge 3)$
 f : Frame rate

Note (3) The specified LED power supply current is under the conditions at "LED_VCCS = Typ.", Ta = $25 \pm 2 \text{ °C}$, f_{PWM} = 200 Hz, Duty=100%.



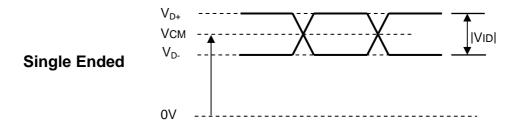
4.3.3 BACKLIGHT UNIT

Ta = 25 ± 2 °C

Devenuetor	Ourseland	Value				Nata
Parameter	Symbol	Min.	Тур.	Max.	Unit	Note
LED Light Bar Power Supply Voltage	VL	23.4	25.2	27	V	(1)(2)(Duty100%)
LED Light Bar Power Supply Current	١L		69			
Power Consumption	PL	-	1.7388	1.8630	W	(3)
LED Life Time	L _{BL}	15,000	-	-	Hrs	(4)

Note (1) LED current is measured by utilizing a high frequency current meter as shown below :

- Note (2) For better LED light bar driving quality, it is recommended to utilize the adaptive boost converter with current balancing function to drive LED light-bar.
- Note (3) $P_L = I_L \times V_L$, Converter efficiency 85%(typ).
- Note (4) The lifetime of LED is defined as the time when it continues to operate under the conditions at Ta = 25 ±2 $^{\circ}$ C and I_L = 23 mA(Per EA) until the brightness becomes \leq 50% of its original value.


4.4 LVDS INPUT SIGNAL TIMING SPECIFICATIONS 4.4.1 LVDS DC SPECIFICATIONS

Parameter	Symbol	Min.	Тур.	Max.	Unit	Notes
Differential Signal Common Mode Voltage(MainLink and AUX)	VCM	0		2	V	(1)(3)
AUX AC Coupling Capacitor	C _{AUX}	75		200	nF	(2)

Note (1) Display port interface related AC coupled signals should follow VESA DisplayPort Standard Version 1. Revision 1a and VESA Embedded DisplayPort[™] Standard Version 1.1.

(2) The AUX AC Coupling Capacitor should be placed on Source Devices.

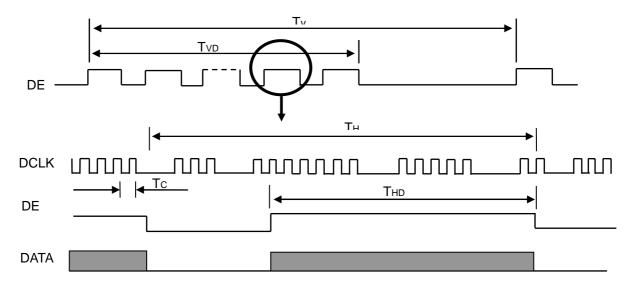
(3)The source device should pass the test criteria described in DisplayPortCompliance Test Specification (CTS) 1.1

4.4.2 COLOR DATA INPUT ASSIGNMENT

The brightness of each primary color (red, green and blue) is based on the 6-bit gray scale data input for the color. The higher the binary input the brighter the color. The table below provides the assignment of color versus data input.

									[Data	<u> </u>	al							
	Color	R5		Re						Gre						-	ue		
			R4	R3	R2	R1	R0	G5	G4	G3	G2	G1	G0	B5	B4	B3	B2	B1	B0
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0
	Green	0	0	0	0	0	0	1	1	1	1	1	1	0	0	0	0	0	0
Basic	Blue	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1
Colors	Cyan	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1
	Magenta	1	1	1	1	1	1	0	0	0	0	0	0	1	1	1	1	1	1
	Yellow	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0
	White	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Red(0)/Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red(1)	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0
Gray	Red(2)	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0
Scale	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Of	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Red	Red(61)	1	1	1	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0
	Red(62)	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red(63)	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0
	Green(0)/Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green(1)	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0
Gray	Green(2)	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0
Scale	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Of	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Green	Green(61)	0	0	0	0	0	0	1	1	1	1	0	1	0	0	0	0	0	0
	Green(62)	0	0	0	0	0	0	1	1	1	1	1	0	0	0	0	0	0	0
	Green(63)	0	0	0	0	0	0	1	1	1	1	1	1	0	0	0	0	0	0
	Blue(0)/Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Blue(1)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
Gray	Blue(2)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
Scale	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Of	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Blue	Blue(61)	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	0	1
	Blue(62)	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	0
	Blue(63)	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1

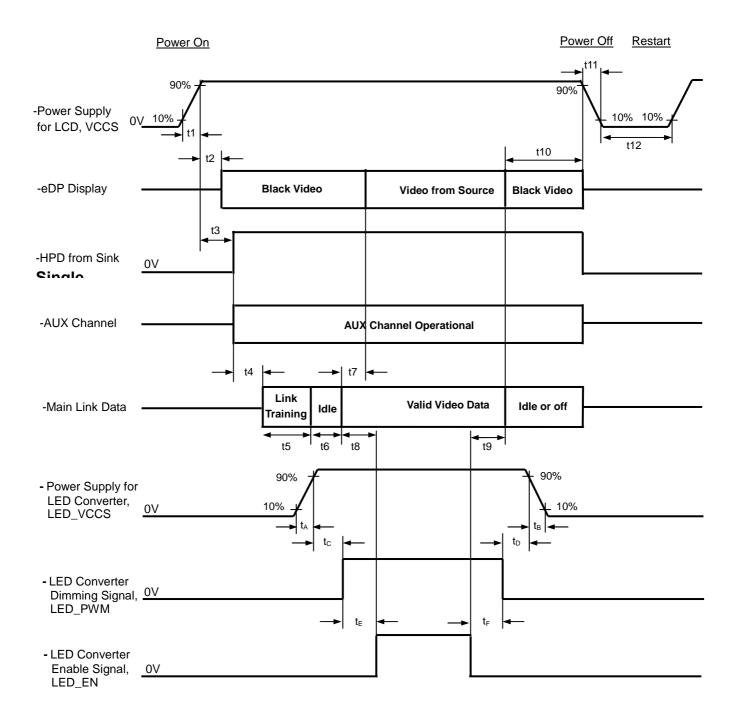
Note (1) 0: Low Level Voltage, 1: High Level Voltage


4.5 DISPLAY TIMING SPECIFICATIONS

The input signal timing specifications are shown as the following table and timing diagram.

Signal	Item	Symbol	Min.	Тур.	Max.	Unit	Note
DCLK	Frequency	1/Tc	TBD	(76.42)	TBD	MHz	-
	Vertical Total Time	ΤV	TBD	(800)	TBD	TH	-
	Vertical Active Display Period	TVD	768	(768)	TBD	тн	-
	Vertical Active Blanking Period	TVB	TV-TVD	(32)	TV-TVD	ТН	-
DE	Horizontal Total Time	ТН	TBD	(1592)	TBD	Тс	-
	Horizontal Active Display Period	THD	TBD	(1366)	TBD	Тс	-
	Horizontal Active Blanking Period	THB	TH-THD	(226)	TH-THD	Тс	-

Note (1) Because this module is operated by DE only mode, Hsync and Vsync are ignored.


INPUT SIGNAL TIMING DIAGRAM

4.6 POWER ON/OFF SEQUENCE

The power sequence specifications are shown as the following table and diagram.

Version 0.0

18 April 2013

Timing Specifications:

Parameter	Description	Reqd.	Va	lue	Unit	Notes
	·	Ву	Min	Max		NOLES
t1	Power rail rise time, 10% to 90%	Source	(0.5)	(10)	ms	-
t2	Delay from LCD,VCCS to black video generation	Sink	(0)	(200)	ms	Prevents display noise until valid video data is received from the Source
t3	Delay from LCD,VCCS to HPD high	Sink	(0)	(200)	ms	Sink Aux Channel must be operational upon HPD high
t4	Delay from HPD high to link training initialization	Source	-	-	ms	Allows for Source to read Link capability and initialize
t5	Link training duration	Source	-	-	ms	Dependant on Source link training protocol
t6	Link idle	Source	-	-	ms	Min accounts for required BS-Idle pattern. Max allows for Source frame synchronization
t7	Delay from valid video data from Source to video on display	Sink	(0)	(50)	ms	Max allows Sink validate video data and timing
t8	Delay from valid video data from Source to backlight on	Source	-	-	ms	Source must assure display video is stable
t9	Delay from backlight off to end of valid video data	Source	-	-	ms	Source must assure backlight is no longer illuminated
t10	Delay from end of valid video data from Source to power off	Source	(0)	(500)	ms	-
t11	VCCS power rail fall time, 90% to 10%	Source	(0.5)	(10)	ms	-
t12	VCCS Power off time	Source	(500)	-	ms	-
t _A	LED power rail rise time, 10% to 90%	Source	(0.5)	(10)	ms	-
t _B	LED power rail fall time, 90% to 10%	Source	(0)	(10)	ms	-
t _C	Delay from LED power rising to LED dimming signal	Source	(1)	-	ms	-
t _D	Delay from LED dimming signal to LED power falling	Source	(1)	-	ms	-
t _E	Delay from LED dimming signal to LED enable signal	Source	(1)	-	ms	-
t _F	Delay from LED enable signal to LED dimming signal	Source	(1)	-	ms	-

Note (1) Please don't plug or unplug the interface cable when system is turned on.

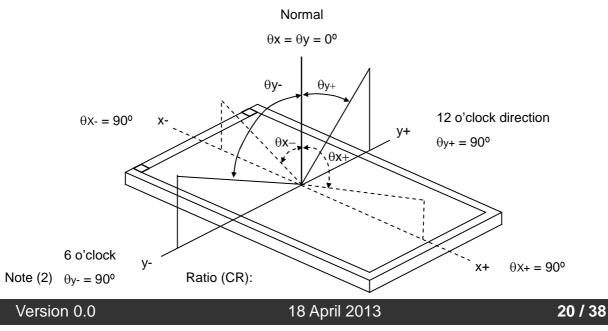
Note (2) Please avoid floating state of the interface signal during signal invalid period.

Note (3) It is recommended that the backlight power must be turned on after the power supply for LCD and the interface signal is valid.

5. OPTICAL CHARACTERISTICS

5.1 TEST CONDITIONS

Item	Symbol	Value	Unit				
Ambient Temperature	Та	25±2	°C				
Ambient Humidity	Ha	50±10	%RH				
Supply Voltage	V _{cc}	3.3	V				
Input Signal	According to typical va	According to typical value in "3. ELECTRICAL CHARACTERISTICS"					
LED Light Bar Input Current	l	69	mA				

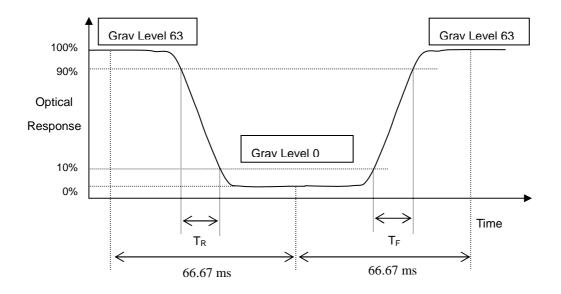

The measurement methods of optical characteristics are shown in Section 5.2. The following items should be measured under the test conditions described in Section 5.1 and stable environment shown in

Note (5).

5.2 OPTICAL SPECIFICATIONS

Iter	m	Symbol	Condition	Min.	Тур.	Max.	Unit	Note	
Contrast Ratio		CR		250	400	-	-	(2),(5),(7)	
Response Time		T _R	- 8		8	12	ms	(2) (7)	
		T _F		-	8	13	ms	(3),(7)	
Average Luminance of White		LAVE		170	200	-	cd/m ²	(4),(6),(7)	
Red		Rx			0.595		-		
	Reu	Ry	θ _x =0°, θ _Y =0°		0.345		-		
	Green	Gx	Viewing Normal Angle		0.320		-	(1),(7)	
		Gy		Тур –	0.565	Тур +	-		
Chromaticity	Blue	Bx	-	0.03	0.155	0.03	-		
	Diue	By			0.130		-		
		Wx			0.313		-		
	White	Wy			0.329		-		
	Harizantal	θ_x +		40	45				
Viewing Angle	Horizontal	θ _x -		40	45	-	Dea	(1),(5),(7)	
	Vartical	θ γ+	CR≥10	15	20	-	Deg.		
	Vertical	θ _Y -		40	45	-			
White Variation	of 5 Points	δW _{5p}	θ _x =0°, θ _Y =0°	70	-	-	%	(5),(6),(7)	

Note (1) Definition of Viewing Angle (_x, _y):



The contrast ratio can be calculated by the following expression.

Contrast Ratio (CR) = L63 / L0 L63: Luminance of gray level 63 L 0: Luminance of gray level 0 CR = CR (1) CR (X) is corresponding to the Contrast Ratio of the point X at Figure in Note (6).

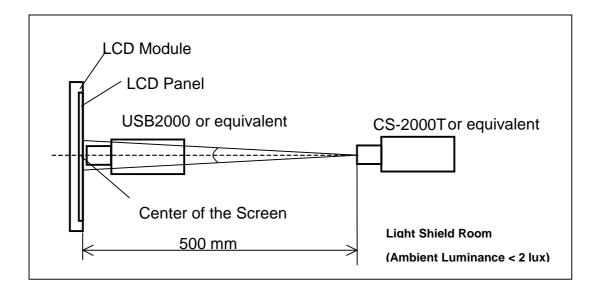
Note (3) Definition of Response Time (T_R, T_F) :

Note (4) Definition of Average Luminance of White (L_{AVE}):

Measure the luminance of gray level 63 at 5 points

$$L_{AVE} = [L (1) + L (2) + L (3) + L (4) + L (5)] / 5$$

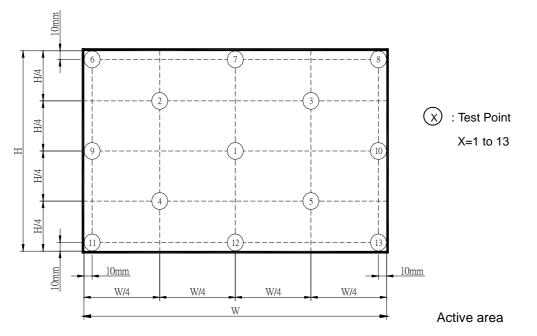
L (x) is corresponding to the luminance of the point X at Figure in Note (6)


Note (5) Measurement Setup:

The LCD module should be stabilized at given temperature for 20 minutes to avoid abrupt temperature change during measuring. In order to stabilize the luminance, the measurement should be executed after lighting Backlight for 20 minutes in a windless room.

Versior	۱O.	0
10101	10.	v

21 / 38



Note (6) Definition of White Variation (δW):

Measure the luminance of gray level 63 at 5 points

 $\delta W_{5p} = \{Minimum [L (1)~L (5)] / Maximum [L (1)~L (5)]\}*100\%$

Note (7) The listed optical specifications refer to the initial value of manufacture, but the condition of the specifications after long-term operation will not be warranted.

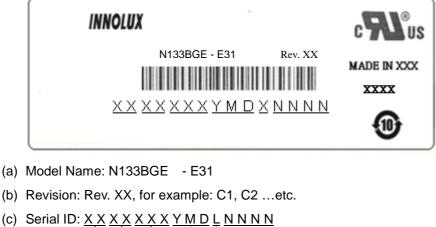
6. RELIABILITY TEST ITEM

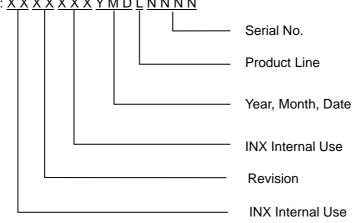
Test Item	Test Condition	Note
High Temperature Storage Test	60ºC, 240 hours	
Low Temperature Storage Test	-20ºC, 240 hours	
Thermal Shock Storage Test	-20°C, 0.5hour←→60°C, 0.5hour; 100cycles, 1hour/cycle	
High Temperature Operation Test	50ºC, 240 hours	(1) (2)
Low Temperature Operation Test	0ºC, 240 hours	() ()
High Temperature & High Humidity Operation Test	50ºC, RH 80%, 240hours	
ESD Test (Operation)	150pF, 330Ω, 1sec/cycle Condition 1 : Contact Discharge, ±8KV Condition 2 : Air Discharge, ±15KV	(1)
Shock (Non-Operating)	220G, 2ms, half sine wave,1 time for each direction of $\pm X, \pm Y, \pm Z$	(1)(3)
Vibration (Non-Operating)	1.5G / 10-500 Hz, Sine wave, 30 min/cycle, 1cycle for each X, Y, Z	(1)(3)

Note (1) criteria : Normal display image with no obvious non-uniformity and no line defect.

Note (2) Evaluation should be tested after storage at room temperature for more than two hour

Note (3) At testing Vibration and Shock, the fixture in holding the module has to be hard and rigid enough so that the module would not be twisted or bent by the fixture.


Note (4) According to IEC 61000-4-2



7. PACKING

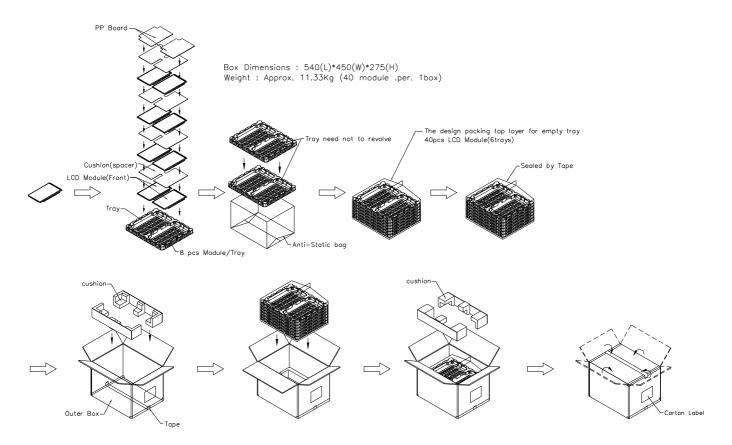
7.1 MODULE LABEL

The barcode nameplate is pasted on each module as illustration, and its definitions are as following explanation.

Serial ID includes the information as below:

(a) Manufactured Date: Year: 0~9, for 2010~2019

Month: 1~9, A~C, for Jan. ~ Dec.


Day: 1~9, A~Y, for 1st to 31st, exclude I , O and U

- (b) Revision Code: cover all the change
- (c) Serial No.: Manufacturing sequence of product
- (d) Product Line: 1 -> Line1, 2 -> Line 2, etc.

Version 0.0

7.2 CARTON

18 April 2013

25 / 38

PRODUCT SPECIFICATION

7.3 PALLET

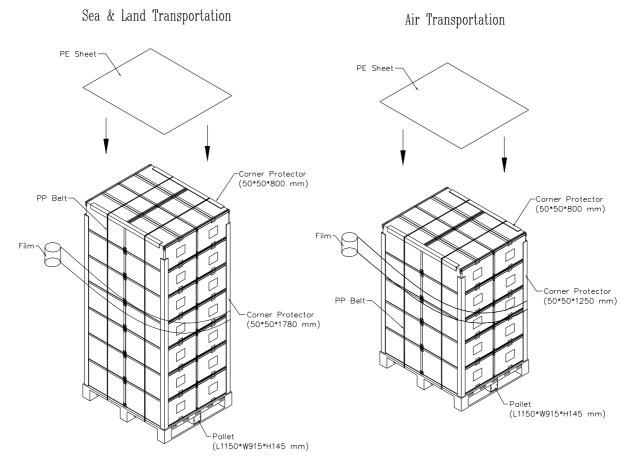


Figure. 7-3 Packing

18 April 2013

8. PRECAUTIONS

8.1 HANDLING PRECAUTIONS

- (1) The module should be assembled into the system firmly by using every mounting hole. Be careful not to twist or bend the module.
- (2) While assembling or installing modules, it can only be in the clean area. The dust and oil may cause electrical short or damage the polarizer.
- (3) Use fingerstalls or soft gloves in order to keep display clean during the incoming inspection and assembly process.
- (4) Do not press or scratch the surface harder than a HB pencil lead on the panel because the polarizer is very soft and easily scratched.
- (5) If the surface of the polarizer is dirty, please clean it by some absorbent cotton or soft cloth. Do not use Ketone type materials (ex. Acetone), Ethyl alcohol, Toluene, Ethyl acid or Methyl chloride. It might permanently damage the polarizer due to chemical reaction.
- (6) Wipe off water droplets or oil immediately. Staining and discoloration may occur if they left on panel for a long time.
- (7) If the liquid crystal material leaks from the panel, it should be kept away from the eyes or mouth. In case of contacting with hands, legs or clothes, it must be washed away thoroughly with soap.
- (8) Protect the module from static electricity, it may cause damage to the C-MOS Gate Array IC.
- (9) Do not disassemble the module.
- (10) Do not pull or fold the LED wire.
- (11) Pins of I/F connector should not be touched directly with bare hands.

8.2 STORAGE PRECAUTIONS

- (1) High temperature or humidity may reduce the performance of module. Please store LCD module within the specified storage conditions.
- (2) It is dangerous that moisture come into or contacted the LCD module, because the moisture may damage LCD module when it is operating.
- (3) It may reduce the display quality if the ambient temperature is lower than 10 °C. For example, the response time will become slowly, and the starting voltage of LED will be higher than the room temperature.

8.3 OPERATION PRECAUTIONS

- (1) Do not pull the I/F connector in or out while the module is operating.
- (2) Always follow the correct power on/off sequence when LCD module is connecting and operating. This can prevent the CMOS LSI chips from damage during latch-up.
- (3) The startup voltage of Backlight is approximately 1000 Volts. It may cause electrical shock while assembling with converter. Do not disassemble the module or insert anything into the Backlight unit.

18 April 2013

Appendix. EDID DATA STRUCTURE

The EDID (Extended Display Identification Data) data formats are to support displays as defined in the

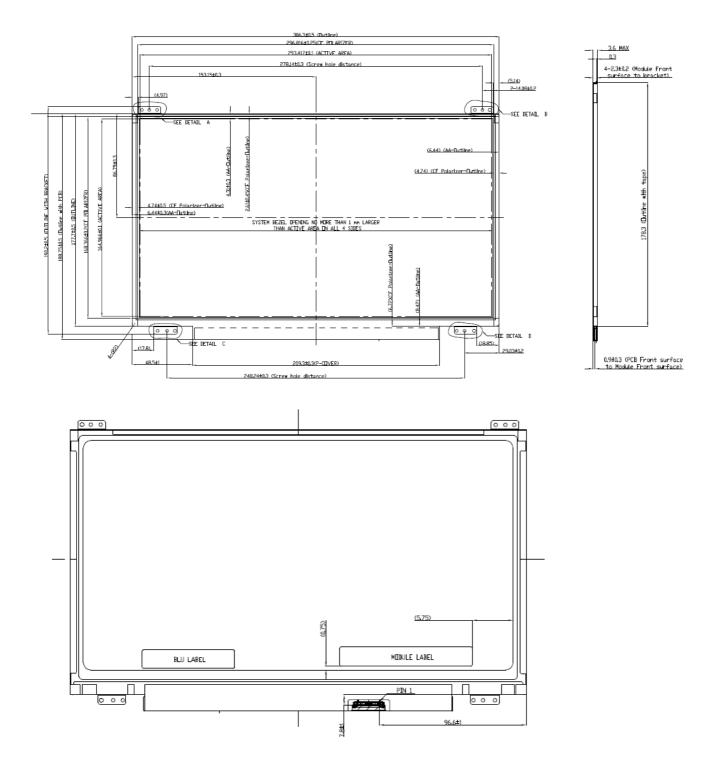
VESA Plug	& Displa	y and FPDI	standards.
-----------	----------	------------	------------

Byte # (decimal)	Byte # (hex)	Field Name and Comments	Value (hex)	Value (binary)
0	0	Header	00	00000000
1	1	Header	FF	11111111
2	2	Header	FF	11111111
3	3	Header	FF	11111111
4	4	Header	FF	11111111
5	5	Header	FF	11111111
6	6	Header	FF	11111111
7	7	Header	00	00000000
8	8	EISA ID manufacturer name ("CMN")	0D	00001101
9	9	EISA ID manufacturer name (Compressed ASCII)	AE	10101110
10	0A	ID product code (N133BGE-E31)	52	01010010
11	0B	ID product code (hex LSB first; N133BGE-E31)	13	00010011
12	0C	ID S/N (fixed "0")	00	0000000
13	0D	ID S/N (fixed "0")	00	00000000
14	0E	ID S/N (fixed "0")	00	00000000
15	0F	ID S/N (fixed "0")	00	00000000
16	10	Week of manufacture (fixed week code)	0D	00001101
17	11	Year of manufacture (fixed year code)	17	00010111
18	12	EDID structure version # ("1")	01	0000001
19	13	EDID revision # ("4")	04	00000100
20	14	Video I/P definition ("digital")	95	10010101
21	15	Max H image size ("29cm")	1D	00011101
22	16	Max V image size ("17cm")	11	00010001
23	17	Display Gamma (Gamma = "2.2")	78	01111000
24	18	Feature support ("Active off, RGB Color")	02	00000010
25	19	Rx1, Rx0, Ry1, Ry0, Gx1, Gx0, Gy1, Gy0	53	01010011
26	1A	Bx1, Bx0, By1, By0, Wx1, Wx0, Wy1, Wy0	D5	11010101
27	1B	Rx=0.595	98	10011000
28	1C	Ry=0.345	58	01011000
29	1D	Gx=0.32	52	01010010
30	1E	Gy=0.565	90	10010000
31	1F	Bx=0.155	27	00100111
32	20	By=0.13	21	00100001
33	21	Wx=0.313	50	01010000
34	22	Wy=0.329	54	01010100
35	23	Established timings 1	00	0000000
36	24	Established timings 2	00	00000000
37	25	Manufacturer's reserved timings	00	00000000
38	26	Standard timing ID # 1	01	00000001
39	27	Standard timing ID # 1	01	00000001
40	28	Standard timing ID # 2	01	00000001
Versi	on 0.0		28	3 / 38

		· · ·		
85	55	# 2 9th character of name ("E")	45	01000101
84	54	# 2 8th character of name ("-")	2D	00101101
83	53	# 2 7th character of name ("E")	45	01000101
82	52	# 2 6th character of name ("G")	47	01000111
81	51	# 2 5th character of name ("B")	42	01000010
80	50	# 2 4th character of name ("3")	33	00110011
79	4F	# 2 3rd character of name ("3")	33	00110011
78	4E	# 2 2nd character of name ("1")	31	00110001
77	4D	# 2 1st character of name ("N")	4E	01001110
76	4C	# 2 Flag	00	0000000
75	4B	# 2 FE (hex) defines ASCII string (Model Name "N133BGE-E31", ASCII)	FE	11111110
74	4A	# 2 Reserved	00	0000000
73	49	# 2 Flag	00	0000000
72	48	Detailed timing description # 2	00	0000000
71	47	# 1 Non-interlaced, Normal, no stereo, Separate sync, H/V pol Negatives	18	00011000
70	46	# 1 V boarder ("0")	00	0000000
69	45	# 1 H boarder ("0")	00	0000000
68	44	# 1 H image size : V image size ("293 : 165")	10	00010000
67	43	# 1 V image size ("165 mm")	A5	10100101
66	42	# 1 H image size ("293 mm")	25	00100101
65	41	# 1 H sync offset : H sync pulse width : V sync offset : V sync width ("68: 45 : 4 : 7")	00	00000000
64	40	# 1 V sync offset : V sync pulse width ("4 : 7")	47	01000111
63	3F	# 1 H sync pulse width ("45")	2D	00101101
62	3E	# 1 H sync offset ("68")	44	01000100
61	3D	# 1 V active : V blank ("768 :32")	30	00110000
60	3C	# 1 V blank ("32")	20	00100000
59	3B	# 1 V active ("768")	00	0000000
58	3A	# 1 H active : H blank ("1366 : 226")	50	01010000
57	39	# 1 H blank ("226")	E2	11100010
56	38	# 1 H active ("1366")	56	01010110
55	36 37	VESA CVT Rev1.1) # 1 Pixel clock (hex LSB first)	1D	00011101
53 54	35	Standard timing ID # 8 Detailed timing description # 1 Pixel clock ("76.42MHz", According to	DA	11011010
52 53	34	Standard timing ID # 8	01	00000001
51	33	Standard timing ID # 7	01	00000001
50	32	Standard timing ID # 7	01	00000001
49	31	Standard timing ID # 6	01	00000001
48	30	Standard timing ID # 6	01	0000000
47	2F	Standard timing ID # 5	01	00000001
46	2E	Standard timing ID # 5	01	00000001
45	2D	Standard timing ID # 4	01	0000001
44	2C	Standard timing ID # 4	01	00000001
43	2B	Standard timing ID # 3	01	00000001
42	2A	Standard timing ID # 3	01	0000000
41	29	Standard timing ID # 2	01	00000001

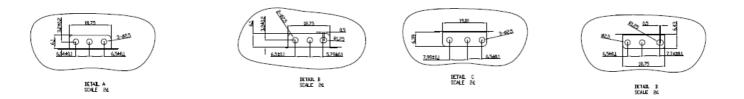
Version 0.0

18 April 2013



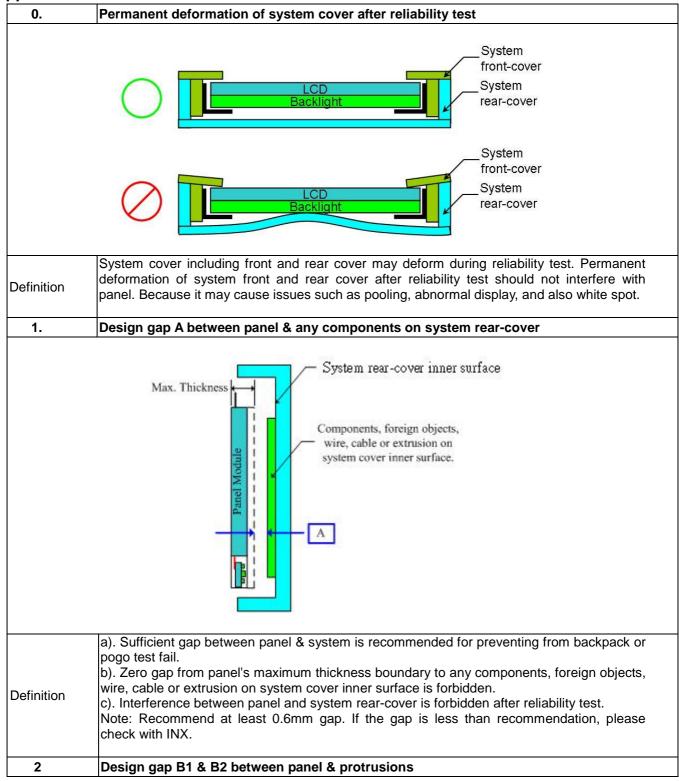
PRODUCT SPECIFICATION

86	56	# 2 10th character of name ("3")	33	00110011
87	57	# 2 11th character of name ("1")	31	00110001
88	58	# 2 New line character indicates end of ASCII string	0A	00001010
89	59	# 2 Padding with "Blank" character	20	00100000
90	5A	Detailed timing description # 3	00	00000000
91	5B	# 3 Flag	00	00000000
92	5C	# 3 Reserved	00	00000000
93	5D	# 3 FE (hex) defines ASCII string (Vendor "CMN", ASCII)	FE	11111110
94	5E	# 3 Flag	00	00000000
95	5F	# 3 1st character of string ("C")	43	01000011
96	60	# 3 2nd character of string ("M")	4D	01001101
97	61	# 3 3rd character of string ("N")	4E	01001110
98	62	# 3 New line character indicates end of ASCII string	0A	00001010
99	63	# 3 Padding with "Blank" character	20	00100000
100	64	# 3 Padding with "Blank" character	20	00100000
101	65	# 3 Padding with "Blank" character	20	00100000
102	66	# 3 Padding with "Blank" character	20	00100000
103	67	# 3 Padding with "Blank" character	20	00100000
104	68	# 3 Padding with "Blank" character	20	00100000
105	69	# 3 Padding with "Blank" character	20	00100000
106	6A	# 3 Padding with "Blank" character	20	00100000
107	6B	# 3 Padding with "Blank" character	20	00100000
108	6C	Detailed timing description # 4	00	0000000
109	6D	# 4 Flag	00	0000000
110	6E	# 4 Reserved	00	0000000
111	6F	# 4 FE (hex) defines ASCII string (Model Name"N133BGE-E31", ASCII)	FE	11111110
112	70	# 4 Flag	00	0000000
113	71	# 4 1st character of name ("N")	4E	01001110
114	72	# 4 2nd character of name ("1")	31	00110001
115	73	# 4 3rd character of name ("3")	33	00110011
116	74	# 4 4th character of name ("3")	33	00110011
117	75	# 4 5th character of name ("B")	42	01000010
118	76	# 4 6th character of name ("G")	47	01000111
119	77	# 4 7th character of name ("E")	45	01000101
120	78	# 4 8th character of name ("-")	2D	00101101
121	79	# 4 9th character of name ("E")	45	01000101
122	7A	# 4 10th character of name ("3")	33	00110011
123	7B	# 4 11th character of name ("1")	31	00110001
124	7C	# 4 New line character indicates end of ASCII string	0A	00001010
125	7D	# 4 Padding with "Blank" character	20	00100000
126	7E	Extension flag	00	00000000
127	7F	Checksum	A9	10101001



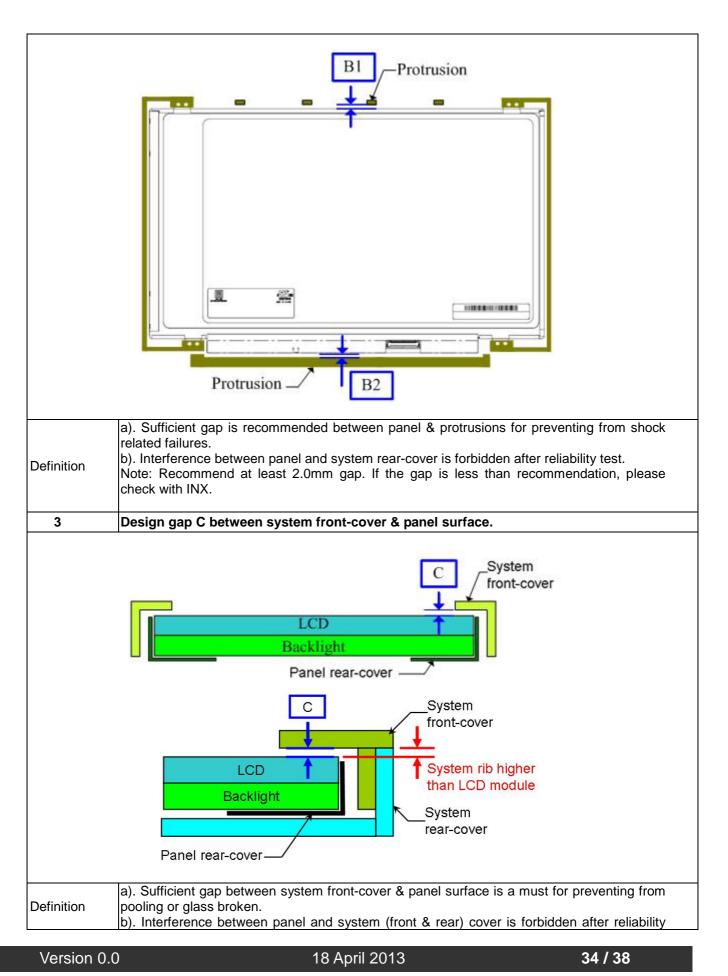
Appendix. OUTLINE DRAWING

PRODUCT SPECIFICATION



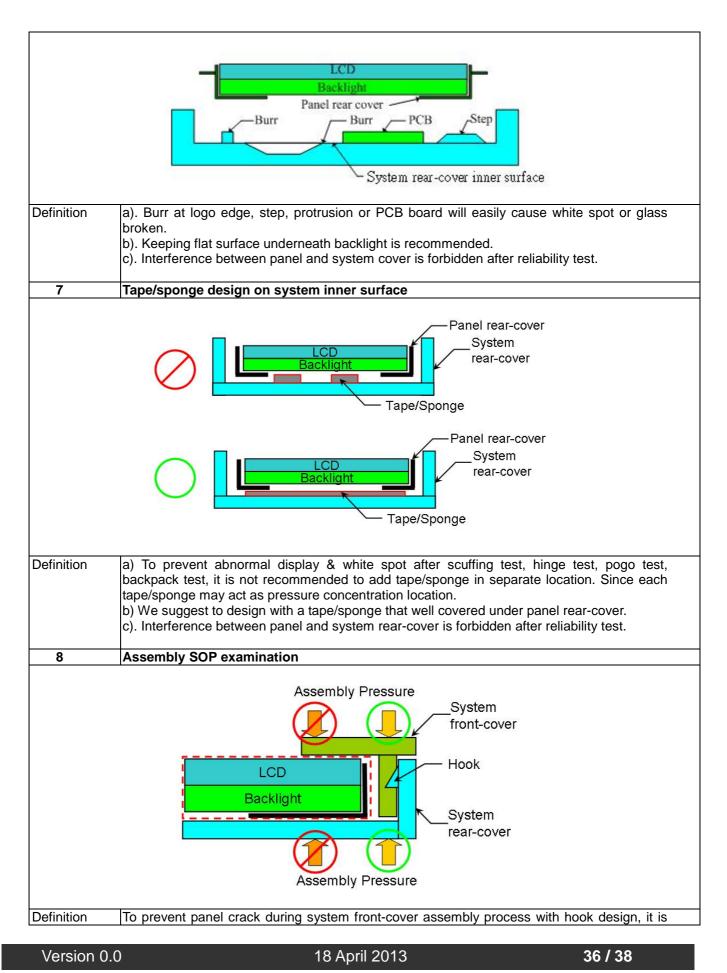
NDTES :

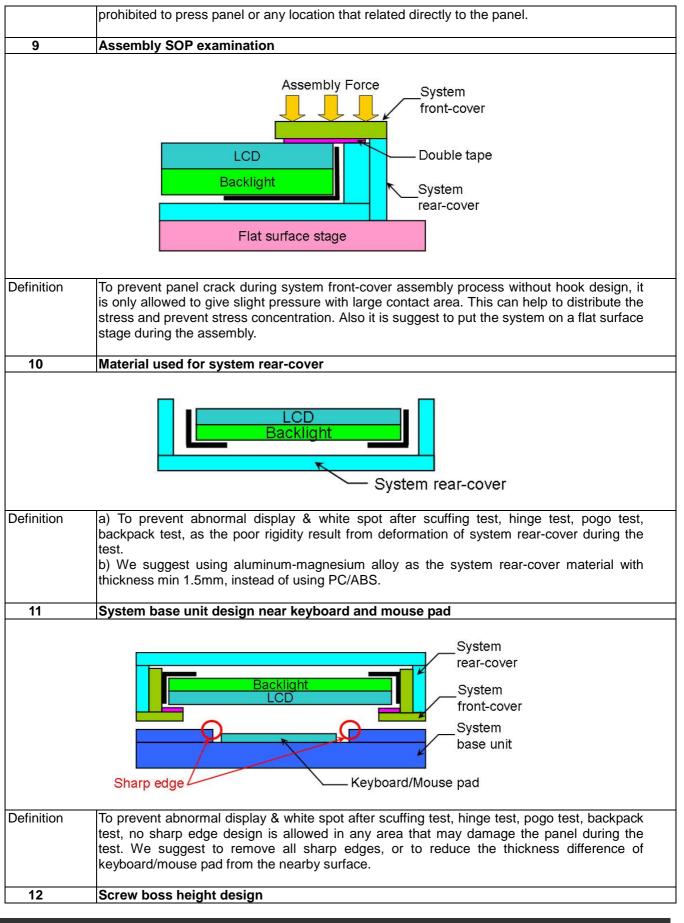
- 1. LCD MODULE INPUT CONNECTOR : I-PEX 20455-030E-12
- 2. IN ORDER TO AVOID ABNORMAL DISPLAY, POOLING AND WHITE SPOT, NO OVERLAPPING IS SUGGESTED AT CABLES, ANTENNAS, CAMERA, WLAN, WAN OR FOREIGN OBJECTS OVER FPC, T-CON AND VR LOCATIONS.
- 3. LVDS CONNECTOR IS MEASURED AT PIN1 AND ITS MATING LINE.
- 4. MODULE FLATNESS SPEC 2 mm MAX.
- 5. "()" MARKS THE REFERENCE DIMENSIONS.


Appendix. SYSTEM COVER DESIGN GUIDANCE

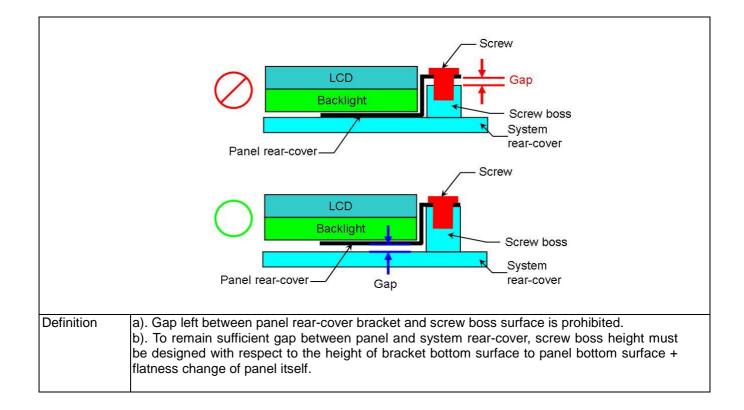
Version 0.0

18 April 2013




test. c). Interference is also forbidden in the act of system front-cover deformation during swing test, hinge test, knock test, or during pooling inspection procedure. d). To remain sufficient gap, design with system rib higher than maximum panel thickness is recommended. Note: Recommend at least 0.1mm gap. If the gap is less than recommendation, please check with INX. 4 Design gap D1 & D2 between system front-cover & PCB Assembly. D1 System front-cover LCD Backlight PCB with components D^2 a). Sufficient gap between system front-cover & PCB assembly is a must for preventing from abnormal display after backpack test, hinge test, twist test or pogo test. b). Interference between panel and system front-cover is forbidden after reliability test. c). Interference is also forbidden in the act of system front-cover deformation during swing test, hinge test, knock test, or during pooling inspection procedure. Definition d). To remain sufficient gap, design with system rib higher than maximum panel thickness is recommended. Note: Recommend for D1 at least 0.1mm gap, D2 at least 2.0mm gap. If the gap is less than recommendation, please check with INX. 5 Interference examination of antenna cable and WebCam wire WebCam Antenna WebCam Wire WebCam Wire ok ok NG a). Antenna cable or WebCam wire overlap with panel outline is forbidden for preventing from abnormal display & white spot after backpack test, hinge test, twist test or pogo test. Definition b). Antenna cable or WebCam wire bypass panel outline is recommended. c). Interference between panel and system rear-cover is forbidden after reliability test. 6 System rear-cover inner surface examination

18 April 2013



Version 0.0

18 April 2013

