

PRODUCT SPECIFICATION

Doc. Number:

| Tentative Specification

Preliminary Specification

Approval Specification

# MODEL NO.: N133BGE SUFFIX: P41

| Customer:                                                |                        |
|----------------------------------------------------------|------------------------|
| APPROVED BY                                              | SIGNATURE              |
| <u>Name / Title</u><br>Note                              |                        |
| Please return 1 copy for your of signature and comments. | confirmation with your |

| Approved By  | Checked By   | Prepared By  |  |  |
|--------------|--------------|--------------|--|--|
| 楊竣傑          | 曹文彬          | 陳宇堂          |  |  |
| 2011-12-09   | 2011-11-21   | 2011-11-17   |  |  |
| 16:19:14 CST | 09:20:49 CST | 16:49:35 CST |  |  |

Version 0.0

13 December 2011

1/26





### CONTENTS

| 1. GENERAL DESCRIPTION                                    | 4  |
|-----------------------------------------------------------|----|
| 1.1 OVERVIEW                                              | 4  |
| 1.2 GENERAL SPECIFICATIONS                                | 4  |
| 2. MECHANICAL SPECIFICATIONS                              | 4  |
| 2.1 CONNECTOR TYPE                                        | 4  |
| 3. ABSOLUTE MAXIMUM RATINGS                               | 5  |
| 3.1 ABSOLUTE RATINGS OF ENVIRONMENT (BASEd on CMI Module) | 5  |
| 3.2 ABSOLUTE RATINGS OF ENVIRONMENT (OPEN CELL)           | 5  |
| 3.3 ELECTRICAL ABSOLUTE RATINGS (OPEN CELL)               | 6  |
| 4. ELECTRICAL SPECIFICATIONS                              | 7  |
| 4.1 TFT LCD OPEN CELL                                     |    |
| 4.2. INTERFACE CONNECTIONS                                | 7  |
| 4.3 ELECTRICAL CHARACTERISTICS                            | 9  |
| 4.4 LVDS INPUT SIGNAL TIMING SPECIFICATIONS               | 13 |
| 4.5 DISPLAY TIMING SPECIFICATIONS                         | 15 |
| 4.6 POWER ON/OFF SEQUENCE                                 | 16 |
| 5. OPTICAL CHARACTERISTICS                                | 17 |
| 5.1 TEST CONDITIONS                                       | 17 |
| 5.2 OPTICAL SPECIFICATIONS                                | 17 |
| 6. PACKING                                                | 20 |
| 6.1 CMI OPEN CELL LABEL                                   | 20 |
| 6.2 PACKAGE RELIABILITY                                   | 21 |
| 6.3 CARTON                                                | 21 |
| 6.4 PALLET                                                | 22 |
| 7. PRECAUTIONS                                            | 23 |
| 7.1 HANDLING PRECAUTIONS                                  | 23 |
| 7.2 STORAGE PRECAUTIONS                                   | 23 |
| 7.3 OPERATION PRECAUTIONS                                 | 23 |
| Appendix OUTLINE DRAWING                                  |    |

Version 0.0

### 13 December 2011

2/26

 $\oslash$ 



## PRODUCT SPECIFICATION

### **REVISION HISTORY**

| Version | Date         | Page | Description                              |
|---------|--------------|------|------------------------------------------|
| 0.0     | 29.Sep, 2011 | All  | Tentative spec Ver.0.0 was first issued. |
|         |              |      |                                          |
|         |              |      |                                          |
|         |              |      |                                          |
|         |              |      |                                          |
|         |              |      |                                          |
|         |              |      |                                          |

Version 0.0

13 December 2011

3 / 26



### **1. GENERAL DESCRIPTION**

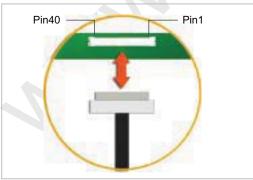
### **1.1 OVERVIEW**

N133BGE-P41 is a 13.3 TFT Liquid Crystal Display with 40-pins-and-1ch-LVDS circuit board. This product supports 1366 x 768 HD mode and can display 262,144 colors. The backlight unit is not built in.

### **1.2 GENERAL SPECIFICATIONS**

| Item              | Specification            | Specification           |       |   |
|-------------------|--------------------------|-------------------------|-------|---|
| Screen Size       | 13.3 diagonal            |                         | inch  |   |
| Driver Element    | a-si TFT active matrix   |                         | -     | - |
| Pixel Number      | 1366 x R.G.B. x 768      | 1366 x R.G.B. x 768     |       |   |
| Pixel Pitch       | 0.2148 (H) x 0.2148 (V)  | 0.2148 (H) x 0.2148 (V) |       | - |
| Pixel Arrangement | RGB vertical stripe      |                         |       | - |
| Display Colors    | 262,144                  |                         | color | - |
| Transmissive Mode | Normally white           |                         | -     | - |
| Surface Treatment | Hard coating (3H), Glare |                         | -     | - |

### 2. MECHANICAL SPECIFICATIONS


|       | item                                                                                                                               | Min. Typ. Max. |        | Unit   | Note |         |
|-------|------------------------------------------------------------------------------------------------------------------------------------|----------------|--------|--------|------|---------|
|       | Horizontal (H) with PCB                                                                                                            | 301.77         | 301.97 | 302.17 | mm   |         |
|       | Horizontal (H) w/o PCB                                                                                                             | 301.77         | 301.97 | 302.17 | mm   |         |
| Size  | Vertical (V) with PCB                                                                                                              | 186.87         | 187.87 | 188.87 | mm   |         |
| Size  | Vertical (V) w/o PCB                                                                                                               | 174.62         | 174.82 | 175.02 | mm   |         |
|       | Thickness (T) with PCB                                                                                                             | -              | 2.8    | 3.1    | mm   | (1) (2) |
|       | Thickness (T) w/o PCB                                                                                                              |                | 1.27   | -      | mm   |         |
|       | Weight                                                                                                                             | - 148 153      |        | g      |      |         |
| l/F c | I/F connector mounting position The mounting inclination of the connector makes the screen center within ±0.5mm as the horizontal. |                |        |        |      |         |

Note (1) Please refer to the attached drawings for more information of front and back outline dimensions.

(2) Connector mounting position

### **2.1 CONNECTOR TYPE**

#### 2.1.1 LVDS Connector



Please refer Appendix Outline Drawing for detail design. Connector Part No.: IPEX-20455-040E-12 or equivalent User's connector Part No: IPEX-20453-040T-01 or equivalent **2.1.2 LED Light-Bar Connector** 

STM-MSK24022P10A

### Version 0.0

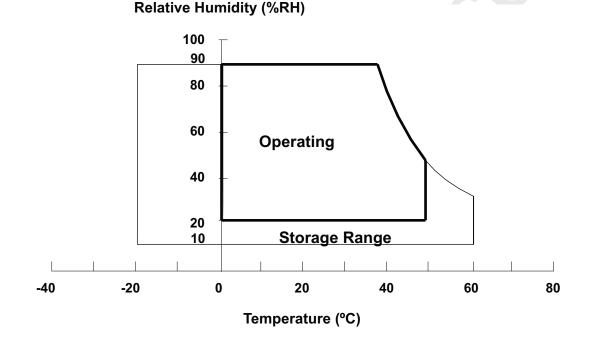
### 13 December 2011

4/26



### **3. ABSOLUTE MAXIMUM RATINGS**

### 3.1 ABSOLUTE RATINGS OF ENVIRONMENT (Based on CMI Module)


| ltem                          | Symbol          | Va   | Unit | Note |          |  |
|-------------------------------|-----------------|------|------|------|----------|--|
| liem                          | Symbol          | Min. | Max. | Unit | Note     |  |
| Storage Temperature           | T <sub>ST</sub> | -20  | +60  | °C   | (1)      |  |
| Operating Ambient Temperature | T <sub>OP</sub> | 0    | +50  | °C   | (1), (2) |  |

Note (1) (a) 90 %RH Max. (Ta <= 40 °C).

(b) Wet-bulb temperature should be 39 °C Max. (Ta > 40 °C).

(c) No condensation.

Note (2) The temperature of panel surface should be 0 °C min. and 60 °C max.



### 3.2 ABSOLUTE RATINGS OF ENVIRONMENT (OPEN CELL)

High temperature or humidity may reduce the performance of panel. Please store LCD panel within the specified storage conditions.

Storage Condition: With packing.

Storage temperature range: 25±5 °C.

Storage humidity range: 50±10%RH.

Shelf life: 30days

#### Version 0.0

#### 13 December 2011

5/26



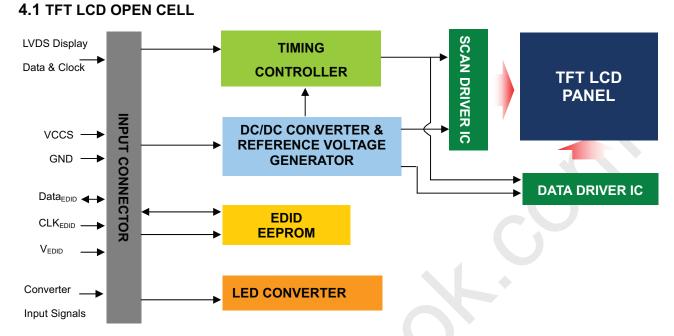
### **3.3 ELECTRICAL ABSOLUTE RATINGS (OPEN CELL)**

### 3.3.1 TFT LCD MODULE

| ltem                 | Symbol          | Va   | lue      | Unit | Note |  |
|----------------------|-----------------|------|----------|------|------|--|
|                      | Cymbol          | Min. | Max.     | onit |      |  |
| Power Supply Voltage | VCCS            | -0.3 | +4.0     | V    | (1)  |  |
| Logic Input Voltage  | V <sub>IN</sub> | -0.3 | VCCS+0.3 | V    | (1)  |  |

Note (1) Stresses beyond those listed in above "ELECTRICAL ABSOLUTE RATINGS" may cause permanent damage to the device. Normal operation should be restricted to the conditions described in "ELECTRICAL CHARACTERISTICS".

Version 0.0


13 December 2011

6 / 26



### PRODUCT SPECIFICATION

### 4. ELECTRICAL SPECIFICATIONS



### 4.2. INTERFACE CONNECTIONS

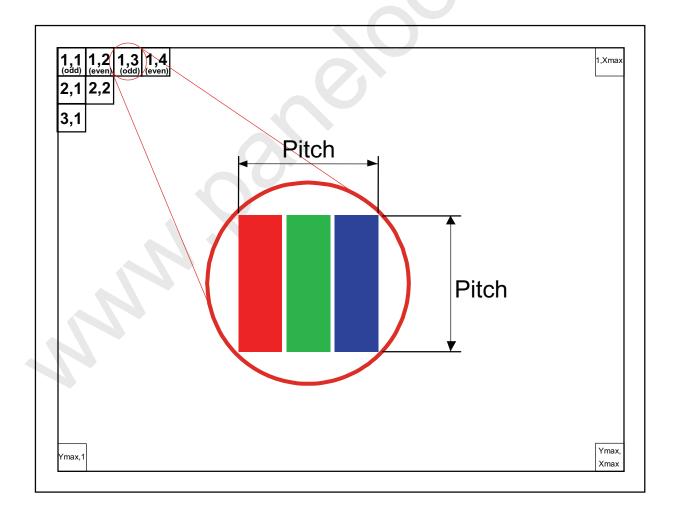
### **4.2.1 PIN ASSIGNMENT**

| Pin | Symbol   | Description                           | Remark          |
|-----|----------|---------------------------------------|-----------------|
| 1   | NC       | No Connection (Reserve)               |                 |
| 2   | VCCS     | Power Supply (3.3V typ.)              |                 |
| 3   | VCCS     | Power Supply (3.3V typ.)              |                 |
| 4   | VEDID    | DDC 3.3V power                        |                 |
| 5   | NC       | No Connection (Reserved for CMI test) |                 |
| 6   | CLKEDID  | DDC clock                             |                 |
| 7   | DATAEDID | DDC data                              |                 |
| 8   | Rxin0-   | LVDS differential data input          |                 |
| 9   | Rxin0+   | LVDS differential data input          | R0-R5, G0       |
| 10  | VSS      | Ground                                |                 |
| 11  | Rxin1-   | LVDS differential data input          | C1- C5 P0 P1    |
| 12  | Rxin1+   | LVDS differential data input          | G1~G5, B0, B1   |
| 13  | VSS      | Ground                                |                 |
| 14  | Rxin2-   | LVDS Differential Data Input          |                 |
| 15  | Rxin2+   | LVDS Differential Data Input          | B2-B5,HS,VS, DE |
| 16  | VSS      | Ground                                |                 |
| 17  | RxCLK-   | LVDS differential clock input         | LVDS CLK        |
| 18  | RxCLK+   | LVDS differential clock input         |                 |
| 19  | VSS      | Ground                                |                 |
| 20  | NC       | No Connection (Reserve)               |                 |
| 21  | NC       | No Connection (Reserve)               |                 |
| 22  | VSS      | Ground                                |                 |
| 23  | NC       | No Connection (Reserve)               |                 |
| 24  | NC       | No Connection (Reserve)               |                 |

Version 0.0

#### 13 December 2011

7 / 26


 $\oslash$ 



## PRODUCT SPECIFICATION

| 25 | VSS      | Ground                                 |  |
|----|----------|----------------------------------------|--|
| 26 | NC       | No Connection (Reserve)                |  |
| 27 | NC       | No Connection (Reserve)                |  |
| 28 | VSS      | Ground                                 |  |
| 29 | NC       | No Connection (Reserve)                |  |
| 30 | NC       | No Connection (Reserve)                |  |
| 31 | LED_GND  | LED Ground                             |  |
| 32 | LED_GND  | LED Ground                             |  |
| 33 | LED_GND  | LED Ground                             |  |
| 34 | NC       | No Connection (Reserve)                |  |
| 35 | LED_PWM  | PWM Control Signal of LED Converter    |  |
| 36 | LED_EN   | Enable Control Signal of LED Converter |  |
| 37 | NC       | No Connection (Reserve)                |  |
| 38 | LED_VCCS | LED Power Supply                       |  |
| 39 | LED_VCCS | LED Power Supply                       |  |
| 40 | LED_VCCS | LED Power Supply                       |  |

Note (1) The first pixel is odd as shown in the following figure.



### Version 0.0

#### 13 December 2011

8 / 26



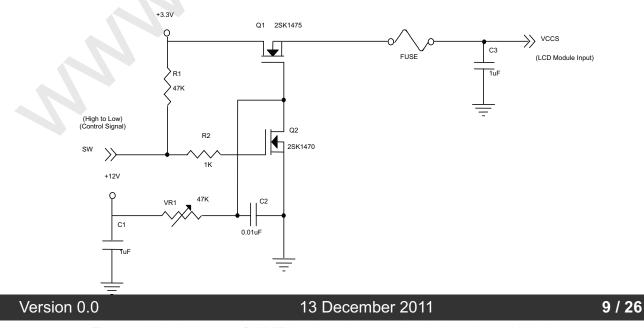
## PRODUCT SPECIFICATION

### **4.2.2 LED CONVERTER OUTPUT PIN ASSIGNMENT**

| Pin | Symbol | Description                      | Remark |
|-----|--------|----------------------------------|--------|
| 1   | LED+   | LED Light Bar Input Power Supply |        |
| 2   | LED+   | LED Light Bar Input Power Supply |        |
| 3   | NC     | No Connection (Reserve)          |        |
| 4   | LED1-  | LED Light Bar Feedback Channel   |        |
| 5   | LED2-  | LED Light Bar Feedback Channel   |        |
| 6   | LED3-  | LED Light Bar Feedback Channel   |        |
| 7   | LED4-  | LED Light Bar Feedback Channel   |        |
| 8   | NC     | No Connection (Reserve)          |        |
| 9   | NC     | No Connection (Reserve)          |        |
| 10  | NC     | No Connection (Reserve)          |        |

### 4.3 ELECTRICAL CHARACTERISTICS

### 4.3.1 TFT LCD OPEN CELL

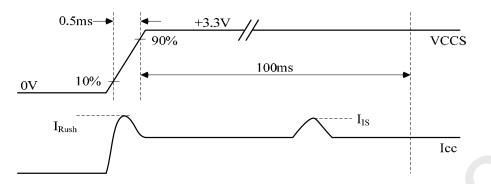

| Parameter            |       | Symbol            | Value |       |       | Unit | Note    |  |
|----------------------|-------|-------------------|-------|-------|-------|------|---------|--|
|                      |       | Symbol            | Min.  | Тур.  | Max.  | Onit | NOLE    |  |
| Power Supply Voltage |       | VCCS              | 3.0   | 3.3   | 3.6   | V    | (1)-    |  |
| Ripple Voltage       |       | V <sub>RP</sub>   |       | 50    | -     | mV   | (1)-    |  |
| Inrush Current       |       | I <sub>RUSH</sub> | -     | -     | 1.5   | А    | (1),(2) |  |
| Mosaic               |       |                   | -     | (170) | (190) | mA   | (3)a    |  |
| Power Supply Current | Black | lcc               | -     | (200) | (230) | mA   | (3)b    |  |

Note (1) The ambient temperature is  $Ta = 25 \pm 2 \text{ °C}$ .

Note (2)  $I_{RUSH}$ : the maximum current when VCCS is rising

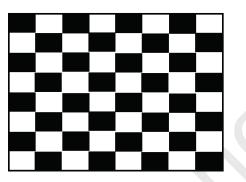
 $I_{\mbox{\tiny IS}}$  the maximum current of the first 100ms after power-on

Measurement Conditions: Shown as the following figure. Test pattern: black.




Ø




## PRODUCT SPECIFICATION

VCCS rising time is 0.5ms



Note (3) The specified power supply current is under the conditions at VCCS = 3.3 V, Ta =  $25 \pm 2$  °C, DC Current and  $f_v = 60$  Hz, whereas a power dissipation check pattern below is displayed.

a. Mosaic Pattern



Active Area

b. Black Pattern



Active Area

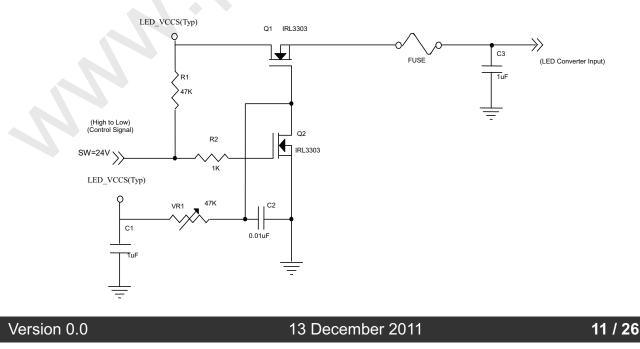
### Version 0.0

### 13 December 2011

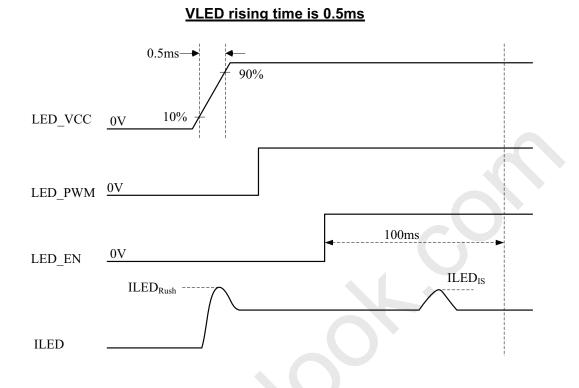
10 / 26



## PRODUCT SPECIFICATION


### **4.3.2 LED CONVERTER SPECIFICATION**

| Parameter                                |                   | Symbol               |       | Value  |        | Unit | Note |
|------------------------------------------|-------------------|----------------------|-------|--------|--------|------|------|
| Fala                                     | Symbol            | Min.                 | Тур.  | Max.   | Unit   | NOLE |      |
| Converter Input pow                      | er supply voltage | LED_Vccs             | (6.0) | (12.0) | (21.0) | V    |      |
| Converter Inrush Cu                      | rrent             | ILED <sub>RUSH</sub> | -     | -      | (1.5)  | А    | (1)  |
| EN Control Level                         | Backlight On      |                      | (2.3) | -      | (5.0)  | V    |      |
| EN Control Level                         | Backlight Off     |                      | (0)   | -      | (0.5)  | V    |      |
| PWM High Le                              |                   |                      | (2.3) | -      | (5.0)  | V    |      |
| PWM Control Level                        | PWM Low Level     |                      | (0)   | -      | (0.5)  | V    |      |
| DW/M Control Duty D                      | Patia             |                      | (10)  |        | (100)  | %    |      |
| PWM Control Duty Ratio                   |                   |                      | (5)   |        | (100)  | %    | (2)  |
| PWM Control Permissive Ripple<br>Voltage |                   | VPWM_pp              |       |        | (100)  | mV   |      |
| PWM Control Freque                       | f <sub>PWM</sub>  | (190)                | -     | (2K)   | Hz     | (3)  |      |
| LED Power Current                        | ILED              | -                    | (189) | -      | mA     | (4)  |      |


Note (1) ILED<sub>RUSH</sub>: the maximum current when LED\_VCCS is rising,

ILED<sub>IS</sub>: the maximum current of the first 100ms after power-on,

Measurement Conditions: Shown as the following figure. LED\_VCCS = Typ, Ta =  $25 \pm 2$  °C, f<sub>PWM</sub> = 200 Hz, Duty=100%.







- Note (2) If the PWM control duty ratio is less than 10%, there is some possibility that acoustic noise or backlight flash can be found. And it is also difficult to control the brightness linearity.
- Note (3) If PWM control frequency is applied in the range less than 1KHz, the "waterfall" phenomenon on the screen may be found. To avoid the issue, it's a suggestion that PWM control frequency should follow the criterion as below.

PWM control frequency  $f_{PWM}$  should be in the range  $(N + 0.33) * f \le f_{PWM} \le (N + 0.66) * f$  N: Integer  $(N \ge 3)$ f: Frame rate

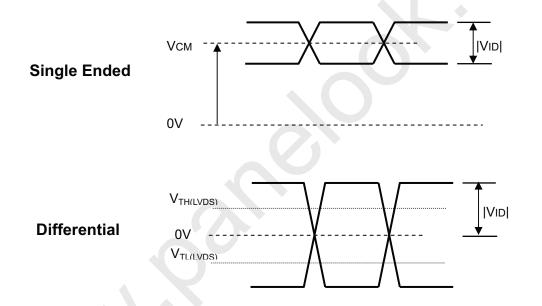
Note (4) The specified LED power supply current is under the conditions at "LED\_VCCS = Typ.", Ta = 25  $\pm$  2 °C, f<sub>PWM</sub> = 200 Hz, Duty=100%.

Version 0.0

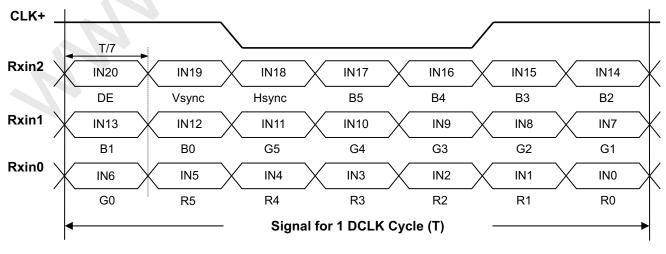
#### 13 December 2011

12/26




## PRODUCT SPECIFICATION

### 4.4 LVDS INPUT SIGNAL TIMING SPECIFICATIONS


### 4.4.1 LVDS DC SPECIFICATIONS

| Parameter                              | Symbol                |       | Value | Unit  | Note |                               |
|----------------------------------------|-----------------------|-------|-------|-------|------|-------------------------------|
|                                        | ,                     | Min.  | Тур.  | Max.  |      |                               |
| LVDS Differential Input High Threshold | $V_{TH(LVDS)}$        | -     | -     | +100  | mV   | (1),<br>V <sub>CM</sub> =1.2V |
| LVDS Differential Input Low Threshold  | $V_{\text{TL(LVDS)}}$ | -100  | -     | -     | mV   | (1)<br>V <sub>CM</sub> =1.2V  |
| LVDS Common Mode Voltage               | $V_{CM}$              | 1.125 | -     | 1.375 | V    | (1)                           |
| LVDS Differential Input Voltage        | V <sub>ID</sub>       | 100   | -     | 600   | mV   | (1)                           |
| LVDS Terminating Resistor              | R <sub>T</sub>        | -     | 100   | -     | Ohm  | -                             |

Note (1) The parameters of LVDS signals are defined as the following figures.



### 4.4.2 LVDS DATA FORMAT



Version 0.0

### 13 December 2011

13 / 26



### PRODUCT SPECIFICATION

### 4.4.3 COLOR DATA INPUT ASSIGNMENT

The brightness of each primary color (red, green and blue) is based on the 6-bit gray scale data input for the color. The higher the binary input the brighter the color. The table below provides the assignment of color versus data input.

|        |               |    |    |    |    |    |        |    | [  | Data | <u> </u> | al |    |    |    |    |    |    |    |
|--------|---------------|----|----|----|----|----|--------|----|----|------|----------|----|----|----|----|----|----|----|----|
|        | Color         |    |    | Re |    |    |        |    |    | Gre  |          |    |    |    |    | Bl |    |    |    |
|        |               | R5 | R4 | R3 | R2 | R1 | R0     | G5 | G4 | G3   | G2       | G1 | G0 | B5 | B4 | B3 | B2 | B1 | B0 |
|        | Black         | 0  | 0  | 0  | 0  | 0  | 0      | 0  | 0  | 0    | 0        | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  |
|        | Red           | 1  | 1  | 1  | 1  | 1  | 1      | 0  | 0  | 0    | 0        | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  |
|        | Green         | 0  | 0  | 0  | 0  | 0  | 0      | 1  | 1  | 1    | 1        | 1  | 1  | 0  | 0  | 0  | 0  | 0  | 0  |
| Basic  | Blue          | 0  | 0  | 0  | 0  | 0  | 0      | 0  | 0  | 0    | 0        | 0  | 0  | 1  | 1  | 1  | 1  | 1  | 1  |
| Colors | Cyan          | 0  | 0  | 0  | 0  | 0  | 0      | 1  | 1  | 1    | 1        | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  |
|        | Magenta       | 1  | 1  | 1  | 1  | 1  | 1      | 0  | 0  | 0    | 0        | 0  | 0  | 1  | 1  | 1  | 1  | 1  | 1  |
|        | Yellow        | 1  | 1  | 1  | 1  | 1  | 1      | 1  | 1  | 1    | 1        | 1  | 1  | 0  | 0  | 0  | 0  | 0  | 0  |
|        | White         | 1  | 1  | 1  | 1  | 1  | 1      | 1  | 1  | 1    | 1        | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  |
|        | Red(0)/Dark   | 0  | 0  | 0  | 0  | 0  | 0      | 0  | 0  | 0    | 0        | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  |
|        | Red(1)        | 0  | 0  | 0  | 0  | 0  | 1      | 0  | 0  | 0    | 0        | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  |
| Gray   | Red(2)        | 0  | 0  | 0  | 0  | 1  | 0      | 0  | 0  | 0    | 0        | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  |
| Scale  | :             | :  | :  | :  | :  | :  | :      | :  | :  | :    | :        |    |    | :  | :  | :  | :  | :  | :  |
| Of     | :             | :  | :  | :  | :  | :  | :      | :  | :  | :    | ··       |    | :  | :  | :  | :  | :  | :  | :  |
| Red    | Red(61)       | 1  | 1  | 1  | 1  | 0  | 1      | 0  | 0  | 0    | 0        | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  |
|        | Red(62)       | 1  | 1  | 1  | 1  | 1  | 0      | 0  | 0  | 0    | 0        | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  |
|        | Red(63)       | 1  | 1  | 1  | 1  | 1  | 1      | 0  | 0  | 0    | 0        | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  |
|        | Green(0)/Dark | 0  | 0  | 0  | 0  | 0  | 0      | 0  | 0  | 0    | 0        | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  |
|        | Green(1)      | 0  | 0  | 0  | 0  | 0  | 0      | 0  | 0  | 0    | 0        | 0  | 1  | 0  | 0  | 0  | 0  | 0  | 0  |
| Gray   | Green(2)      | 0  | 0  | 0  | 0  | 0  | 0      | 0  | 0  | 0    | 0        | 1  | 0  | 0  | 0  | 0  | 0  | 0  | 0  |
| Scale  | :             | :  | :  | :  | :  | :  | :      | :  |    | :    | :        | :  | :  | :  | :  | :  | :  | :  | :  |
| Of     | :             | :  | :  | :  | :  |    | $\sim$ |    | :  | :    | :        | :  | :  | :  | :  | :  | :  | :  | :  |
| Green  | Green(61)     | 0  | 0  | 0  | 0  | 0  | 0      | 1  | 1  | 1    | 1        | 0  | 1  | 0  | 0  | 0  | 0  | 0  | 0  |
|        | Green(62)     | 0  | 0  | 0  | 0  | 0  | 0      | 1  | 1  | 1    | 1        | 1  | 0  | 0  | 0  | 0  | 0  | 0  | 0  |
|        | Green(63)     | 0  | 0  | 0  | 0  | 0  | 0      | 1  | 1  | 1    | 1        | 1  | 1  | 0  | 0  | 0  | 0  | 0  | 0  |
|        | Blue(0)/Dark  | 0  | 0  | 0  | 0  | 0  | 0      | 0  | 0  | 0    | 0        | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  |
|        | Blue(1)       | 0  | 0  | 0  | 0  | 0  | 0      | 0  | 0  | 0    | 0        | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 1  |
| Gray   | Blue(2)       | 0  | 0  | 0  | 0  | 0  | 0      | 0  | 0  | 0    | 0        | 0  | 0  | 0  | 0  | 0  | 0  | 1  | 0  |
| Scale  | :             | :  | :  | :  | :  | :  | :      | :  | :  | :    | :        | :  | :  | :  | :  | :  | :  | :  | :  |
| Of     | :             | :  | :  | :  | :  | :  | :      | :  | :  | :    | :        | :  | :  | :  | :  | :  | :  | :  | :  |
| Blue   | Blue(61)      | 0  | 0  | 0  | 0  | 0  | 0      | 0  | 0  | 0    | 0        | 0  | 0  | 1  | 1  | 1  | 1  | 0  | 1  |
|        | Blue(62)      | 0  | 0  | 0  | 0  | 0  | 0      | 0  | 0  | 0    | 0        | 0  | 0  | 1  | 1  | 1  | 1  | 1  | 0  |
|        | Blue(63)      | 0  | 0  | 0  | 0  | 0  | 0      | 0  | 0  | 0    | 0        | 0  | 0  | 1  | 1  | 1  | 1  | 1  | 1  |

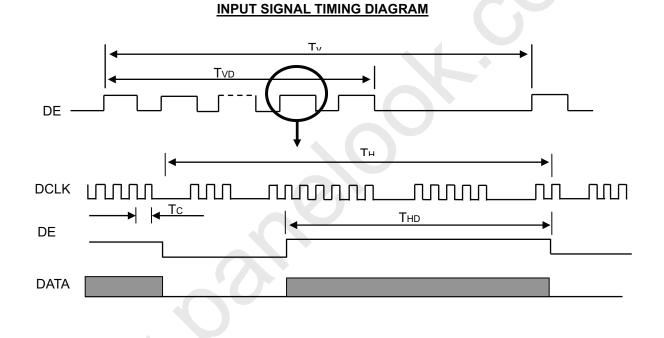
Note (1) 0: Low Level Voltage, 1: High Level Voltage

#### Version 0.0

#### 13 December 2011

14/26




## PRODUCT SPECIFICATION

### 4.5 DISPLAY TIMING SPECIFICATIONS

The input signal timing specifications are shown as the following table and timing diagram.

| Signal | Item                              | Symbol | Min.   | Тур.    | Max.   | Unit | Note |
|--------|-----------------------------------|--------|--------|---------|--------|------|------|
| DCLK   | Frequency                         | 1/Tc   | (50)   | (75.44) | (80)   | MHz  | -    |
|        | Vertical Total Time               | TV     | (771)  | (806)   | (1008) | TH   | -    |
|        | Vertical Active Display Period    | TVD    | (768)  | (768)   | (768)  | TH   | -    |
|        | Vertical Active Blanking Period   | TVB    | TV-TVD | (38)    | TV-TVD | TH   | -    |
| DE     | Horizontal Total Time             | TH     | (1448) | (1560)  | (1950) | Тс   | -    |
|        | Horizontal Active Display Period  | THD    | (1366) | (1366)  | (1366) | Тс   | -    |
|        | Horizontal Active Blanking Period | THB    | TH-THD | (194)   | TH-THD | Тс   | -    |

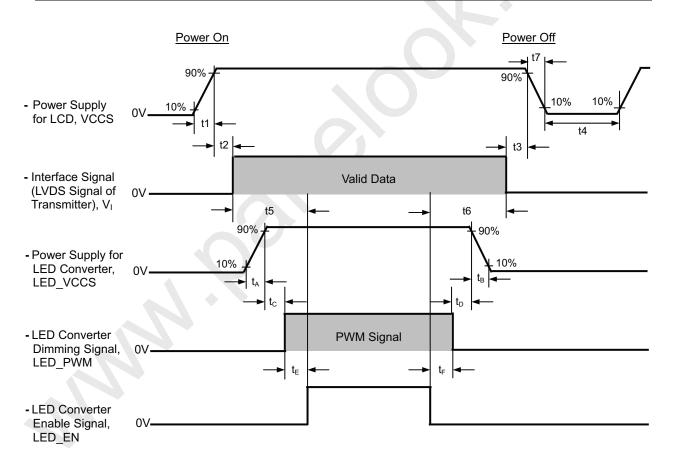
Note (1) Because this module is operated by DE only mode, Hsync and Vsync are ignored.



### Version 0.0

#### 13 December 2011

15/26




## PRODUCT SPECIFICATION

### 4.6 POWER ON/OFF SEQUENCE

The power sequence specifications are shown as the following table and diagram.

| Sumbol         | Symbol Value |      |      | Unit | Note |  |  |
|----------------|--------------|------|------|------|------|--|--|
| Symbol         | Min.         | Тур. | Max. | Unit | Note |  |  |
| t1             | (0.5)        | -    | (10) | Ms   |      |  |  |
| t2             | (0)          | -    | (50) | Ms   |      |  |  |
| t3             | (0)          | -    | (50) | Ms   |      |  |  |
| t4             | (500)        | -    | -    | Ms   |      |  |  |
| t5             | (200)        | -    | -    | Ms   |      |  |  |
| t6             | (200)        | -    | -    | Ms   |      |  |  |
| t7             | (0.5)        | -    | (10) | Ms   |      |  |  |
| t <sub>A</sub> | (0.5)        | -    | (10) | Ms   |      |  |  |
| t <sub>B</sub> | (0)          |      | (10) | Ms   |      |  |  |
| t <sub>c</sub> | (10)         | -    | -    | Ms   |      |  |  |
| t <sub>D</sub> | (10)         | -    | -    | Ms   |      |  |  |
| t <sub>E</sub> | (10)         | -    | -    | Ms   |      |  |  |
| t <sub>F</sub> | (10)         | -    | -    | Ms   |      |  |  |



Note (1) Please don't plug or unplug the interface cable when system is turned on.

Note (2) Please avoid floating state of the interface signal during signal invalid period.

Note (3) It is recommended that the backlight power must be turned on after the power supply for LCD and the interface signal is valid.

|         | $\sim$       | $\sim$ |
|---------|--------------|--------|
| Version | $\mathbf{n}$ | (1)    |
|         | U.           | .U     |
|         |              |        |

#### 13 December 2011

16/26



### 5. OPTICAL CHARACTERISTICS

#### **5.1 TEST CONDITIONS**

| Item                | Symbol                 | Value                                                         | Unit |  |  |  |  |  |
|---------------------|------------------------|---------------------------------------------------------------|------|--|--|--|--|--|
| Ambient Temperature | Та                     | 25±2                                                          | °C   |  |  |  |  |  |
| Ambient Humidity    | На                     | 50±10                                                         | %RH  |  |  |  |  |  |
| Supply Voltage      | V <sub>cc</sub>        | 3.3                                                           | V    |  |  |  |  |  |
| Input Signal        | According to typical v | According to typical value in "3. ELECTRICAL CHARACTERISTICS" |      |  |  |  |  |  |

The measurement methods of optical characteristics are shown in Section 5.2. The following items should be measured under the test conditions described in Section 5.1 and stable environment shown in Note (5).

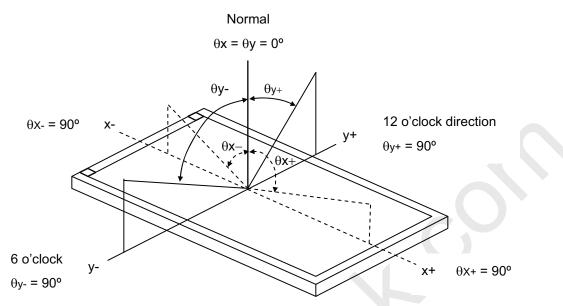
### **5.2 OPTICAL SPECIFICATIONS**

The relative measurement methods of optical characteristics are shown as below. The following items should be measured under the test conditions described in 5.1 and stable environment shown in Note (6).

| Iten                     | n                    | Symbol         | Condition                                          | Min.  | Тур.  | Max.  | Unit | Note                |
|--------------------------|----------------------|----------------|----------------------------------------------------|-------|-------|-------|------|---------------------|
|                          | Red                  | Rcx            |                                                    |       | 0.596 |       | -    |                     |
|                          | Reu                  | Rcy            |                                                    | Тур - | 0.325 |       | -    |                     |
|                          | Green                | Gcx            | 0 -00 0 -00                                        |       | 0.285 |       | -    |                     |
| Color                    |                      | Gcy            | θ <sub>x</sub> =0°, θ <sub>Y</sub> =0°<br>CS-2000T |       | 0.542 | Typ + | -    | (0),(2),            |
| Chromaticity             | Blue                 | Bcx            | Standard light source "C"                          | 0.03  | 0.145 | 0.03  | -    | (5),(8)             |
|                          | Diue                 | Всу            | Standard light Source C                            |       | 0.171 |       | -    |                     |
|                          | White                | Wcx            |                                                    |       | 0.301 |       | -    |                     |
|                          | VVIIILE              | Wcy            |                                                    |       | 0.336 |       | -    |                     |
| Center Transmit          | Center Transmittance |                | $\theta_x = 0^\circ, \theta_Y = 0^\circ$           | 5.9   | 6.5   | -     | -    | (1),(2),<br>(5),(7) |
| Contrast Ratio           |                      | CR             | CS-2000T, CMO BLU                                  | 300   | 500   | -     | -    | (2), (3)            |
| Response Time            |                      | T <sub>R</sub> | θ <sub>x</sub> =0°, θ <sub>Y</sub> =0°             | -     | 8     | 12    | ms   | (4)                 |
| Response nine            |                      | TF             | $\theta_x = 0$ , $\theta_Y = 0$                    |       | 8     | 13    | ms   | (4)                 |
| Transmittance uniformity |                      | δΤ%            | θ <sub>x</sub> =0°, θ <sub>Y</sub> =0°<br>BM-5A    | -     | -     | 1.40  | -    | (2),(6)             |
| Viewing Angle            | Horizontal           | $\theta_{x}$ + |                                                    | 40    | 45    | -     |      |                     |
|                          | Horizontai           | $\theta_x$ -   | CR≥10                                              | 40    | 45    |       |      | (2), (5)            |
|                          | Vertical             | θ <b></b> +    | BM-5A                                              | 15    | 20    |       | _    |                     |
|                          | vertical             | θγ-            |                                                    | 40    | 45    | -     |      |                     |

Note (0) Light source is the standard light source "C" which is defined by CIE and driving voltages are based on suitable gamma voltages. The calculating method is as following :

- 1. Measure Module's and BLU's spectrums. White is without signal input and R, G, B are with signal input. BLU is supplied by CMI.
- 2. Calculate cell's spectrum.
- 3. Calculate cell's chromaticity by using the spectrum of standard light source "C"
- Note (1) Light source is the BLU which is supplied by CMI and driving voltages are based on suitable gamma voltages. White is without signal input and R, G, B are with signal input. Spec is judged by CMI's golden sample.


| Version 0.0       | 13 December 2011                                            | 17 / 26 |
|-------------------|-------------------------------------------------------------|---------|
| The copyright bel | longs to CHIMEI InnoLux. Any unauthorized use is prohibited |         |

One step solution for LCD / PDP / OLED panel application: Datasheet, inventory and accessory! www.panelook.com



## PRODUCT SPECIFICATION

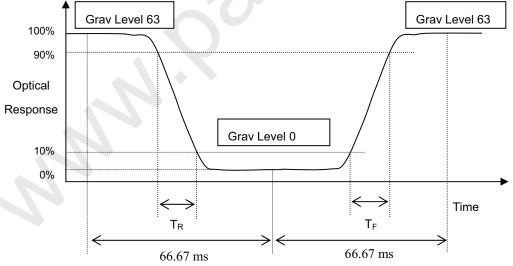
Note (2) Definition of Viewing Angle ( $\theta x, \theta y$ ):



Note (3) Definition of Contrast Ratio (CR):

The contrast ratio can be calculated by the following expression.

Contrast Ratio (CR) = L63 / L0


L63: Luminance of gray level 63

L 0: Luminance of gray level 0

CR = CR(1)

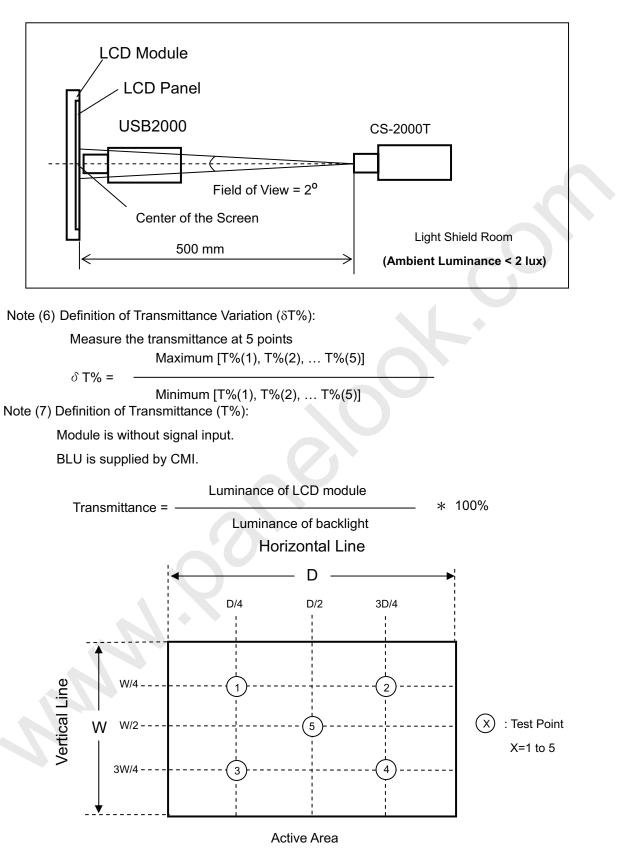
CR (X) is corresponding to the Contrast Ratio of the point X at Figure in Note (6).

Note (4) Definition of Response Time  $(T_R, T_F)$ :



Note (5) Measurement Setup:

The LCD module should be stabilized at given temperature for 20 minutes to avoid abrupt temperature change during measuring. In order to stabilize the luminance, the measurement should be executed after lighting Backlight for 20 minutes in a windless room.


| Version 0.0 | rsion 0.0 |
|-------------|-----------|
|-------------|-----------|

#### 13 December 2011

18/26



### PRODUCT SPECIFICATION



Note (8) The listed optical specifications refer to the initial value of manufacture, but the condition of the specifications after long-term operation will not be warranted.

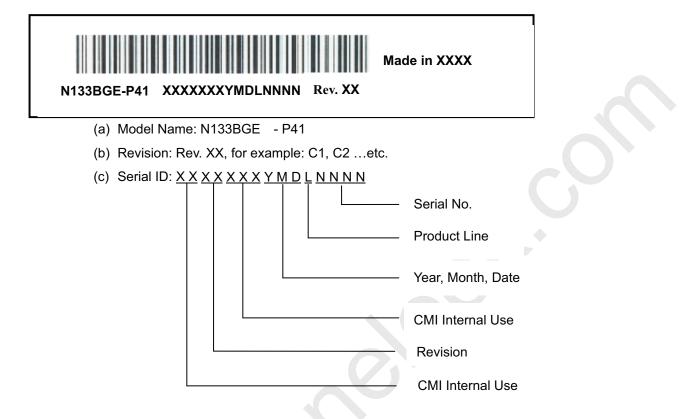
Version 0.0

### 13 December 2011

19/26

日手留

CHIMEI INNOLUX




## PRODUCT SPECIFICATION

### 6. PACKING

### 6.1 CMI OPEN CELL LABEL

The barcode nameplate is pasted on each OPEN CELL as illustration for CMI internal control.



Serial ID includes the information as below:

(a) Manufactured Date: Year: 0~9, for 2010~2019

Month: 1~9, A~C, for Jan. ~ Dec.

Day: 1~9, A~Y, for 1<sup>st</sup> to 31<sup>st</sup>, exclude I, O and U

- (b) Revision Code: cover all the change
- (c) Serial No.: Manufacturing sequence of product
- (d) Product Line: 1 -> Line1, 2 -> Line 2, ...etc.

#### Version 0.0

#### 13 December 2011

20 / 26

奇美電子

屏库:全球液晶屏交易中心



PRODUCT SPECIFICATION

### 6.2 PACKAGE RELIABILITY

(1) Carton Packing should have no failure in the following reliability test items

| Test Item            | Test Conditions                                                                                                                                                    | Note          |
|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| Packing<br>Vibration | ISTA STANDARD<br>Random, Frequency Range: 1 – 200 Hz<br>Top & Bottom: 30 minutes (+Z), 10 min (-Z),<br>Right & Left: 10 minutes (X)<br>Back & Forth 10 minutes (Y) | Non Operation |

### 6.3 CARTON

- (1) Carton Dimensions: 650(L)x495(W)x320(H)mm
- (2) 56 LCD Cells+PCB/Carton

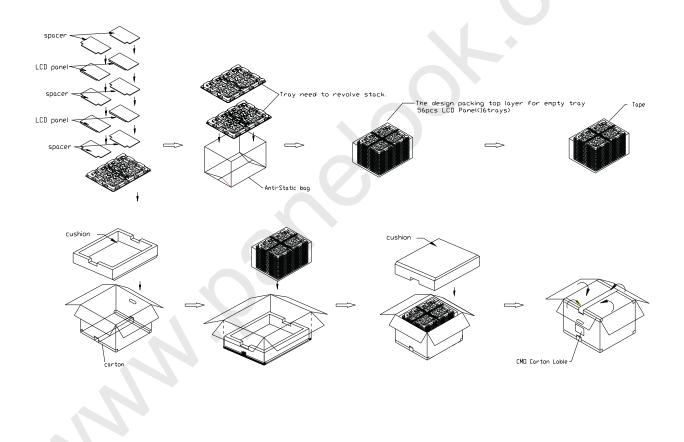
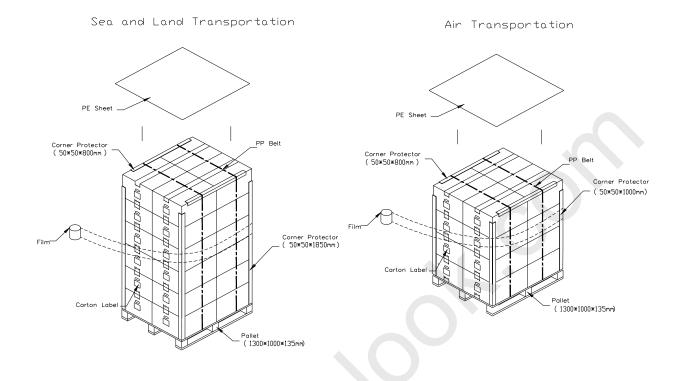



Figure. 6-3 Packing method

| $\lambda / a$ |      | $\sim 0$ | $\cap$ |
|---------------|------|----------|--------|
| vei           | rsio | 10       | .0     |


#### 13 December 2011

21/26



## PRODUCT SPECIFICATION

### 6.4 PALLET



### Figure. 6-4 Packing method

### Version 0.0

### 13 December 2011

22 / 26





### 7. PRECAUTIONS

### 7.1 HANDLING PRECAUTIONS

- (1) The open cell should be assembled into the system firmly by using every mounting hole. Be careful not to twist or bend the open cell.
- (2) While assembling or installing open cell, it can only be in the clean area. The dust and oil may cause electrical short or damage the polarizer.
- (3) Use fingerstalls or soft gloves in order to keep display clean during the incoming inspection and assembly process.
- (4) Do not press or scratch the surface harder than a HB pencil lead on the panel because the polarizer is very soft and easily scratched.
- (5) If the surface of the polarizer is dirty, please clean it by some absorbent cotton or soft cloth. Do not use Ketone type materials (ex. Acetone), Ethyl alcohol, Toluene, Ethyl acid or Methyl chloride. It might permanently damage the polarizer due to chemical reaction.
- (6) Wipe off water droplets or oil immediately. Staining and discoloration may occur if they left on panel for a long time.
- (7) If the liquid crystal material leaks from the panel, it should be kept away from the eyes or mouth. In case of contacting with hands, legs or clothes, it must be washed away thoroughly with soap.
- (8) Protect the open cell from static electricity, it may cause damage to the C-MOS Gate Array IC.
- (9) Do not disassemble the open cell.
- (10) Pins of I/F connector should not be touched directly with bare hands.

### 7.2 STORAGE PRECAUTIONS

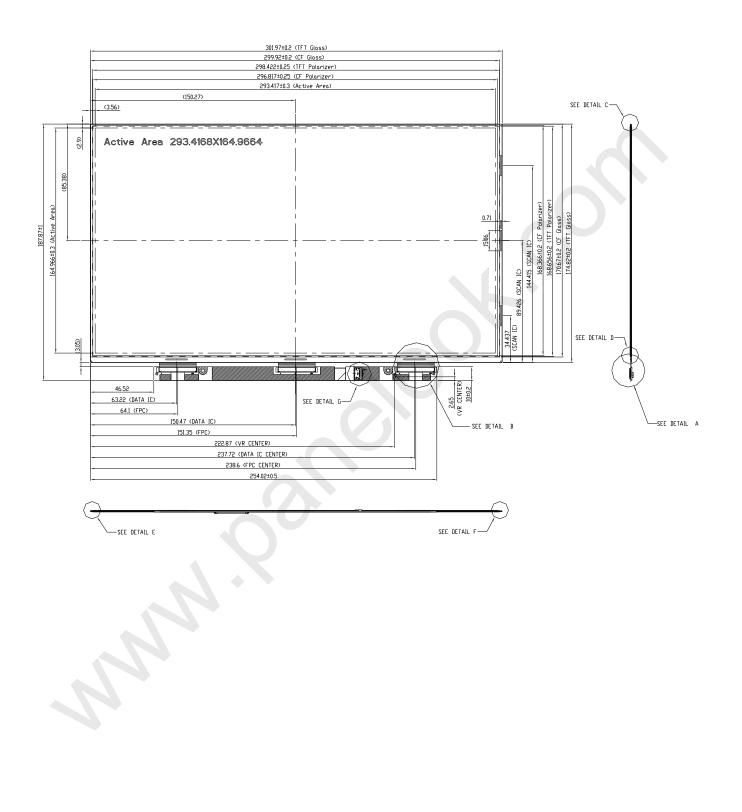
- (1) High temperature or humidity may reduce the performance of open cell. Please store open cell within the specified storage conditions.
- (2) It is dangerous that moisture come into or contacted the open cell, because the moisture may damage open cell when it is operating.
- (3) It may reduce the display quality if the ambient temperature is lower than 10 °C. For example, the response time will become slowly.

### **7.3 OPERATION PRECAUTIONS**

- (1) Do not pull the I/F connector in or out while the open cell is operating.
- (2) Always follow the correct power on/off sequence when open cell is connecting and operating. This can prevent the CMOS LSI chips from damage during latch-up.

#### Version 0.0

#### 13 December 2011


23 / 26

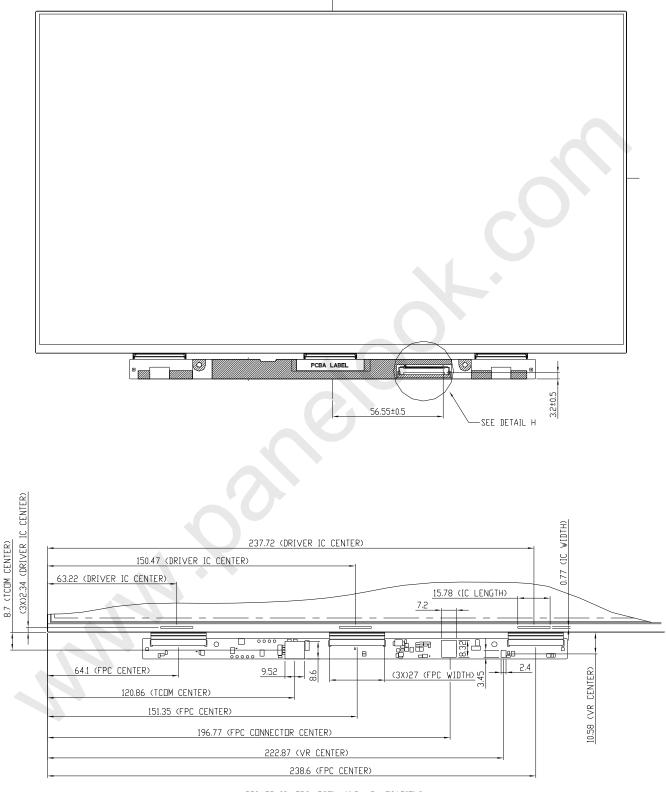
 $\oslash$ 





### Appendix. OUTLINE DRAWING




### Version 0.0


#### 13 December 2011

24 / 26

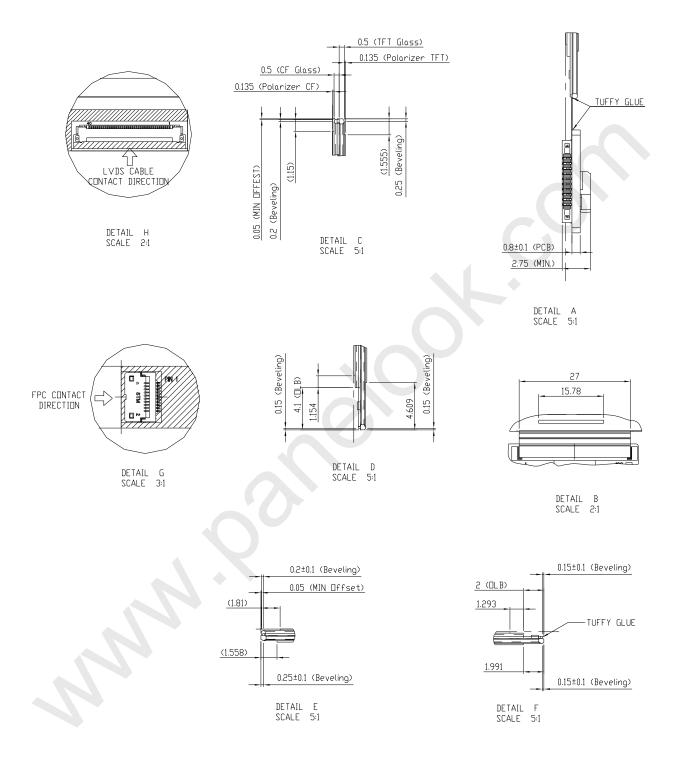








Version 0.0


### 13 December 2011

25 / 26

 $\oslash$ 



### PRODUCT SPECIFICATION



### Version 0.0

#### 13 December 2011

26 / 26