

## Product Overview

The NCA9544 is a 1-of-4 bidirectional translating multiplexer controlled via the I<sup>2</sup>C bus. The SCL/SDA upstream pair fans out to one of the four downstream pairs, or channels. Only one SCn/SDn channel is selected at a time, determined by the contents of the programmable control register. Four interrupt inputs (/INT3-/INT0), one for each of the downstream pairs, are provided. One interrupt (/INT) output acts as an AND of the four interrupt inputs.

A power-on reset function returns the registers to their default state and initializes the I<sup>2</sup>C state machine, with all channels deselected.

The pass gates of the multiplexer are constructed such that the VCC terminal can be used to limit the maximum high voltage, which will be passed by the NCA9544. This allows the use of different bus voltages on each pair, so that 1.8-V, 2.5-V, or 3.3-V parts can communicate with 5-V parts without any additional protection. External pull-up resistors pull the bus up to the desired voltage level for each channel. All I/O terminals are 5.5 V tolerant.

- 0 to 400-kHz Clock Frequency
- Latch-Up Performance Exceeds 100 mA per JESD 78
- RoHS & REACH compliant
- ESD Protection Exceeds JESD 22
  - 2000-V Human-Body Model (A114-A)
  - 1000-V Charged-Device Model (C101)

## Applications

- Servers
- Routers (Telecom Switching Equipment)
- Factory Automation
- Products With I<sup>2</sup>C Slave Address Conflicts (e.g. Multiple, Identical Temp Sensors)

## Device Information

| Part Number   | Package | Body Size   |
|---------------|---------|-------------|
| NCA9544-DQNTR | QFN20   | 5.0mm*5.0mm |

## Key Features

- 1-of-4 Bidirectional Translating multiplexer
- I<sup>2</sup>C Bus and SMBus Compatible
- Four Active-Low Interrupt Inputs
- Active-Low Interrupt Output
- Three Address Terminals, Allowing up to eight Devices on the I<sup>2</sup>C Bus
- Channel Selection via I<sup>2</sup>C Bus
- Power-Up with All Switch Channels Deselected
- Low RON Switches
- Allows Voltage-Level Translation Between 1.8-V, 2.5-V, 3.3-V, and 5-V Buses
- No Glitch on Power-Up
- Operating Power-Supply Voltage Range of 1.65 V to 5.5 V
- 5.5 V Tolerant Inputs

## Pin Configuration

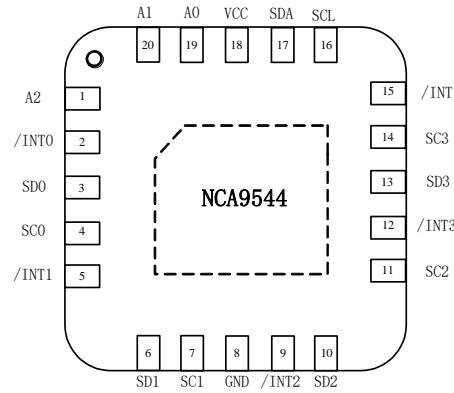



Figure 1. NCA9544 Pin Configuration

## INDEX

|                                                     |           |
|-----------------------------------------------------|-----------|
| <b>1. PIN CONFIGURATION AND FUNCTIONS.....</b>      | <b>3</b>  |
| <b>2. ABSOLUTE MAXIMUM RATINGS .....</b>            | <b>4</b>  |
| <b>3. ESD RATINGS .....</b>                         | <b>4</b>  |
| <b>4. RECOMMENDED OPERATING CONDITIONS.....</b>     | <b>4</b>  |
| <b>5. THERMAL INFORMATION.....</b>                  | <b>4</b>  |
| <b>6. SPECIFICATIONS.....</b>                       | <b>5</b>  |
| <b>6.1. ELECTRICAL CHARACTERISTICS.....</b>         | <b>5</b>  |
| <b>6.2. DYNAMIC CHARACTERISTICS .....</b>           | <b>6</b>  |
| <b>6.3. PARAMETER MEASUREMENT INFORMATION .....</b> | <b>7</b>  |
| <b>7. DETAILED DESCRIPTION.....</b>                 | <b>8</b>  |
| <b>7.1. OVERVIEW .....</b>                          | <b>8</b>  |
| <b>7.2. FUNCTIONAL BLOCK DIAGRAM .....</b>          | <b>8</b>  |
| <b>7.3. POWER-ON RESET .....</b>                    | <b>9</b>  |
| <b>7.4. I<sup>2</sup>C INTERFACE.....</b>           | <b>9</b>  |
| <b>7.5. DEVICE ADDRESS .....</b>                    | <b>11</b> |
| <b>7.6. CONTROL REGISTER DESCRIPTION.....</b>       | <b>11</b> |
| <b>7.7. CONTROL REGISTER DEFINITION .....</b>       | <b>11</b> |
| <b>7.8. INTERRUPT HANDLING.....</b>                 | <b>12</b> |
| <b>8. APPLICATION AND IMPLEMENTATION.....</b>       | <b>12</b> |
| <b>8.1. TYPICAL APPLICATION .....</b>               | <b>13</b> |
| <b>8.2. DESIGN REQUIREMENTS.....</b>                | <b>13</b> |
| <b>8.3. DETAILED DESIGN PROCEDURE .....</b>         | <b>14</b> |
| <b>8.4. NCA9544 APPLICATION CURVES .....</b>        | <b>14</b> |
| <b>9. LAYOUT .....</b>                              | <b>15</b> |
| <b>9.1. LAYOUT GUIDELINES .....</b>                 | <b>15</b> |
| <b>10. PACKAGE INFORMATION.....</b>                 | <b>17</b> |
| <b>11. ORDER INFORMATION .....</b>                  | <b>17</b> |
| <b>12. DOCUMENTATION SUPPORT .....</b>              | <b>17</b> |
| <b>13. TAPE AND REEL INFORMATION .....</b>          | <b>18</b> |
| <b>14. REVISION HISTORY .....</b>                   | <b>19</b> |

## 1. Pin Configuration and Functions

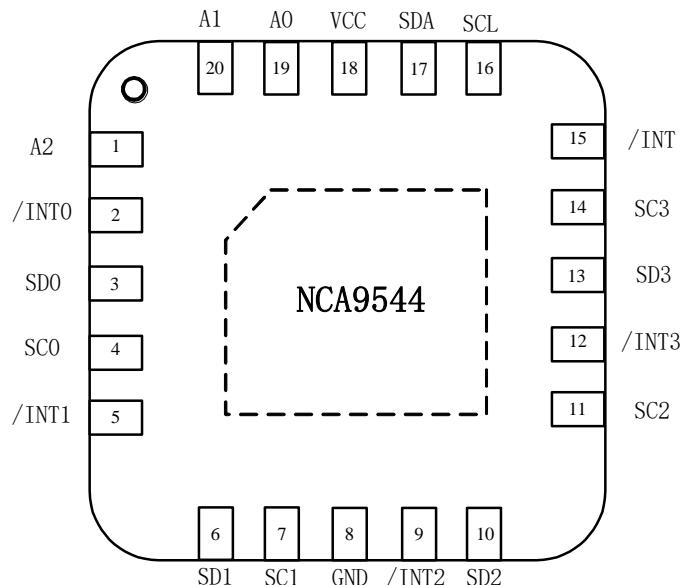



Figure 1.1 NCA9544 Package

Table 1.1 NCA9544 Pin Configuration and Description

| NCA9544 PIN NO. | SYMBOL | FUNCTION                                                                    |
|-----------------|--------|-----------------------------------------------------------------------------|
| 1               | A2     | Address input 2. Connect directly to VCC or ground.                         |
| 2               | /INT0  | Active-low interrupt input 0. Connect to VDPU01 through a pull-up resistor. |
| 3               | SD0    | Serial data 0. Connect to VDPU01 through a pull-up resistor.                |
| 4               | SC0    | Serial clock 0. Connect to VDPU01 through a pull-up resistor.               |
| 5               | /INT1  | Active-low interrupt input 1. Connect to VDPU11 through a pull-up resistor. |
| 6               | SD1    | Serial data 1. Connect to VDPU11 through a pull-up resistor.                |
| 7               | SC1    | Serial clock 1. Connect to VDPU11 through a pull-up resistor.               |
| 8               | GND    | Ground                                                                      |
| 9               | /INT2  | Active-low interrupt input 2. Connect to VDPU21 through a pull-up resistor. |
| 10              | SD2    | Serial data 2. Connect to VDPU21 through a pull-up resistor.                |
| 11              | SC2    | Serial clock 2. Connect to VDPU21 through a pull-up resistor.               |
| 12              | /INT3  | Active-low interrupt input 3. Connect to VDPU31 through a pull-up resistor. |
| 13              | SD3    | Serial data 3. Connect to VDPU31 through a pull-up resistor.                |
| 14              | SC3    | Serial clock 3. Connect to VDPU31 through a pull-up resistor.               |
| 15              | /INT   | Active-low interrupt output. Connect to VDPUM1 through a pull-up resistor.  |
| 16              | SCL    | Serial clock line. Connect to VDPUM1 through a pull-up resistor.            |

|    |     |                                                                 |
|----|-----|-----------------------------------------------------------------|
| 17 | SDA | Serial data line. Connect to VDPUM1 through a pull-up resistor. |
| 18 | VCC | Supply power                                                    |
| 19 | A0  | Address input 0. Connect directly to VCC or ground.             |
| 20 | A1  | Address input 1. Connect directly to VCC or ground.             |

<sup>1</sup>  $V_{DPUX}$  is the pull-up reference voltage for the associated data line.  $V_{DPUM}$  is the master I<sup>2</sup>C master reference voltage and  $V_{DPU0}$ – $V_{DPU3}$  are the slave channel reference voltages.

## 2. Absolute Maximum Ratings

| Parameters                            | Symbol    | Min  | Max       | Unit | Comments   |
|---------------------------------------|-----------|------|-----------|------|------------|
| Supply Voltage                        | $V_{CC}$  | -0.5 | 7         | V    |            |
| Input/output Voltage                  | $V_I/V_O$ | -0.5 | 7         | V    |            |
| Input current                         | $I_I$     |      | $\pm 25$  | mA   |            |
| Output current                        | $I_O$     |      | $\pm 25$  | mA   | $V_O < 0V$ |
| Continuous current through VCC or GND | $I_{CC}$  |      | $\pm 100$ | mA   |            |
| Storage Temperature                   | $T_{STG}$ | -65  | 150       | °C   |            |

## 3. ESD Ratings

|                         | Ratings                                                         | Value      | Unit |
|-------------------------|-----------------------------------------------------------------|------------|------|
| Electrostatic discharge | Human body model (HBM), per AEC-Q100-002-RevD<br>● All pins     | $\pm 2.0$  | kV   |
|                         | Charged device model (CDM), per AEC-Q100-011-RevB<br>● All pins | $\pm 1000$ | V    |

## 4. Recommended Operating Conditions

| Parameters               | Symbol   | Min          | Typ | Max          | Unit | Comments                           |
|--------------------------|----------|--------------|-----|--------------|------|------------------------------------|
| Power Supply Voltage     | $V_{CC}$ | 1.65         |     | 5.5          | V    |                                    |
| High-level Input Voltage | $V_{IH}$ | $0.7*V_{CC}$ |     | 6            | V    | SCL, SDA, A2, A1, A0, /INT3-/INT0  |
| Low-level Input Voltage  | $V_{IL}$ | -0.5         |     | $0.3*V_{CC}$ | V    | SCL, SDA, A2, A1, A0, /INT3-/INT0, |
| Ambient Temperature      | $T_a$    | -40          |     | 105          | °C   |                                    |

## 5. Thermal Information

| Parameters                               | Symbol                      | QFN20 | Unit |
|------------------------------------------|-----------------------------|-------|------|
| Junction-to-ambient thermal resistance   | $\theta_{JA}$               | 32    | °C/W |
| Junction-to-case(top) thermal resistance | $\theta_{JC \text{ (top)}}$ | 28.7  | °C/W |
| Junction-to-board thermal resistance     | $\theta_{JB}$               | 26.4  | °C/W |

## 6. Specifications

### 6.1. Electrical Characteristics

V<sub>CC</sub> = 1.65V to 5.5V; Tamb = -40°C to +105°C; unless otherwise noted. Typical specification are at TA=25°C, V<sub>CC</sub>=3.3V

| Parameters                                                  | Symbol            | Min                 | Typ  | Max                 | Unit | Conditions                                                                                                           |
|-------------------------------------------------------------|-------------------|---------------------|------|---------------------|------|----------------------------------------------------------------------------------------------------------------------|
| <i>Supply</i>                                               |                   |                     |      |                     |      |                                                                                                                      |
| Supply voltage Range                                        | V <sub>CC</sub>   | 1.65                | -    | 5.5                 | V    |                                                                                                                      |
| Power On Reset rising                                       | V <sub>PORR</sub> | -                   | 1.15 | 1.4                 | V    | no load; V <sub>I</sub> = V <sub>CC</sub> or GND                                                                     |
| Power On Reset falling                                      | V <sub>PORF</sub> | 0.9                 | 1.08 |                     | V    | no load; V <sub>I</sub> = V <sub>CC</sub> or GND                                                                     |
| Supply current                                              | I <sub>CC</sub>   | -                   | -    | 10                  | µA   | Operating mode; V <sub>CC</sub> = 5.5 V; V <sub>I</sub> =V <sub>CC</sub> or GND; no load; f <sub>SCL</sub> = 100 kHz |
| Standby current                                             | I <sub>stb</sub>  | -                   | 0.3  | 5                   | µA   | Standby mode; V <sub>CC</sub> = 5.5 V; V <sub>I</sub> =V <sub>CC</sub> or GND; no load                               |
| <i>Input SCL; Input/Output SDA</i>                          |                   |                     |      |                     |      |                                                                                                                      |
| LOW-level input voltage                                     | V <sub>IL</sub>   | -0.5                | -    | 0.3*V <sub>CC</sub> | V    |                                                                                                                      |
| HIGH-level input voltage                                    | V <sub>IH</sub>   | 0.7*V <sub>CC</sub> | -    | 6                   | V    |                                                                                                                      |
| LOW-level output current                                    | I <sub>OL</sub>   | 2.5                 | 15   | -                   | mA   | V <sub>OL</sub> = 0.4 V                                                                                              |
|                                                             |                   | 4                   | 20   |                     | mA   | V <sub>OL</sub> =0.6V                                                                                                |
| Input leakage current                                       | I <sub>L</sub>    | -1                  | -    | +1                  | µA   | V <sub>I</sub> = V <sub>CC</sub> or GND                                                                              |
| Input capacitance                                           | C <sub>i</sub>    | -                   | 15   |                     | pF   | V <sub>I</sub> = GND                                                                                                 |
| <i>Select inputs A0, A1, A2, /INT0, /INT1, /INT2, /INT3</i> |                   |                     |      |                     |      |                                                                                                                      |
| LOW-level input voltage                                     | V <sub>IL</sub>   | -0.5                | -    | 0.3*V <sub>CC</sub> | V    |                                                                                                                      |
| HIGH-level input voltage                                    | V <sub>IH</sub>   | 0.7*V <sub>CC</sub> | -    | 6                   | V    |                                                                                                                      |
| Leakage current                                             | I <sub>L</sub>    | -1                  | -    | 1                   | µA   | V <sub>I</sub> = V <sub>CC</sub> or GND                                                                              |
| Input capacitance                                           | C <sub>i</sub>    | -                   | 1.6  | 3                   | pF   | V <sub>I</sub> = GND                                                                                                 |
| <i>/INT output</i>                                          |                   |                     |      |                     |      |                                                                                                                      |
| HIGH-level output current                                   | I <sub>OH</sub>   | -                   | -    | ±1                  | µA   |                                                                                                                      |

|                          |                          |     |      |     |    |                                                                         |
|--------------------------|--------------------------|-----|------|-----|----|-------------------------------------------------------------------------|
| LOW-level output current | I <sub>OL</sub>          | 3   | 12   | -   | mA | V <sub>CC</sub> = 3.6V, V <sub>OL</sub> = 0.4V <sup>[2]</sup>           |
|                          |                          | 4   | 17   | -   | mA | V <sub>CC</sub> = 3.6V, V <sub>OL</sub> = 0.6 V <sup>[2]</sup>          |
| <b>Pass gate</b>         |                          |     |      |     |    |                                                                         |
| On-state resistance      | R <sub>on</sub>          | 4   | 14   | 20  | Ω  | V <sub>O</sub> = 0.4 V, I <sub>O</sub> = 15 mA, V <sub>CC</sub> = 4.5V  |
|                          |                          | 5   | 16   | 25  | Ω  | V <sub>O</sub> = 0.4 V, I <sub>O</sub> = 15 mA, V <sub>CC</sub> = 3V    |
|                          |                          | 6   | 19   | 30  |    | V <sub>O</sub> = 0.4 V, I <sub>O</sub> = 10 mA, V <sub>CC</sub> = 2.3V  |
|                          |                          | 10  | 28   | 40  |    | V <sub>O</sub> = 0.4 V, I <sub>O</sub> = 10 mA, V <sub>CC</sub> = 1.65V |
| Switch output voltage    | V <sub>O(SW)</sub>       |     | 3.64 |     | V  | V <sub>CC</sub> = 5 V, I <sub>O(SW)</sub> = -100μA                      |
|                          |                          | 2.6 |      | 4.5 |    | V <sub>CC</sub> = 4.5V to 5.5 V, I <sub>O(SW)</sub> = -100μA            |
|                          |                          |     | 2.15 |     |    | V <sub>CC</sub> = 3.3 V, I <sub>O(SW)</sub> = -100μA                    |
|                          |                          | 1.6 |      | 2.8 | V  | V <sub>CC</sub> = 3 V to 3.6 V, I <sub>O(SW)</sub> = -100μA             |
|                          |                          |     | 1.46 |     |    | V <sub>CC</sub> = 2.5 V, I <sub>O(SW)</sub> = -100μA                    |
|                          |                          | 1   |      | 1.9 |    | V <sub>CC</sub> = 2.3 V to 2.7 V, I <sub>O(SW)</sub> = -100μA           |
|                          |                          |     | 0.99 |     | V  | V <sub>CC</sub> = 1.8 V, I <sub>O(SW)</sub> = -100μA                    |
|                          |                          | 0.5 |      | 1.2 |    | V <sub>CC</sub> = 1.65 V to 1.95 V, I <sub>O(SW)</sub> = -100μA         |
| Leakage current          | I <sub>L</sub>           | -1  | -    | +1  | μA | V <sub>I</sub> = V <sub>CC</sub> or GND                                 |
| C <sub>io</sub>          | Input/output capacitance | -   | -    | 6   | pF | V <sub>I</sub> = GND                                                    |

## 6.2. Dynamic Characteristics

| Parameters                                       | Symbol                           | Standard-mode I <sup>2</sup> C-bus |      | Fast-mode I <sup>2</sup> C-bus |     | Unit   |
|--------------------------------------------------|----------------------------------|------------------------------------|------|--------------------------------|-----|--------|
|                                                  |                                  | Min                                | Max  | Min                            | Max |        |
| propagation delay                                | t <sub>PD</sub> <sup>1</sup>     |                                    |      | 0.3                            |     | 0.3 ns |
| SCL clock frequency                              | f <sub>SCL</sub>                 | 0                                  | 100  | 0                              | 400 | kHz    |
| bus free time between a STOP and START condition | t <sub>BUF</sub>                 | 4.7                                | -    | 1.3                            | -   | μs     |
| hold time (repeated) START condition             | t <sub>HD;STA</sub> <sup>2</sup> | 4.0                                | -    | 0.6                            | -   | μs     |
| set-up time for a repeated START condition       | t <sub>SU;STA</sub>              | 4.7                                | -    | 0.6                            | -   | μs     |
| set-up time for STOP condition                   | t <sub>SU;STO</sub>              | 4.0                                | -    | 0.6                            | -   | μs     |
| data valid acknowledge time                      | t <sub>VD;ACK</sub>              |                                    | 1    |                                | 1   | μs     |
| data hold time                                   | t <sub>HD;DAT</sub> <sup>3</sup> | 0                                  | 3.45 | 0                              | 0.9 | μs     |
| data valid time(high to low)                     | t <sub>VD;DAT</sub> <sup>4</sup> |                                    | 1    |                                | 1   | μs     |
| data valid time(low to high)                     |                                  |                                    | 0.6  |                                | 0.6 | μs     |
| data set-up time                                 | t <sub>SU;DAT</sub>              | 250                                | -    | 100                            | -   | ns     |

|                                                                   |                     |     |      |                 |     |    |
|-------------------------------------------------------------------|---------------------|-----|------|-----------------|-----|----|
| LOW period of the SCL clock                                       | $t_{LOW}$           | 4.7 | -    | 1.3             | -   | μs |
| HIGH period of the SCL clock                                      | $t_{HIGH}$          | 4.0 | -    | 0.6             | -   | μs |
| fall time of both SDA and SCL signals                             | $t_f$               | -   | 300  | $20 + 0.1C_b^5$ | 300 | ns |
| rise time of both SDA and SCL signals                             | $t_r$               | -   | 1000 | $20 + 0.1C_b^5$ | 300 | ns |
| pulse width of spikes that must be suppressed by the input filter | $t_{SP}$            | -   | 50   | -               | 50  | ns |
| /INT                                                              |                     |     |      |                 |     |    |
| Valid time from /INTn to /INT singal                              | $t_{IV(INTnN-INT)}$ | -   | 4    | -               | 4   | μs |
| Delay time from /INTn to /INT inactive                            | $t_{ir(INTnN-INT)}$ | -   | 2    | -               | 2   | μs |
| Low-level rejection time                                          | $T_{w(rej)L}$       | 1   | -    | 1               | -   | μs |
| High-level rejection time                                         | $T_{w(rej)H}$       | 0.5 | -    | 0.5             | -   | μs |

<sup>1</sup>Pass gate propagation delay is calculated from the 20 Ω typical Ron and the 15 pF load capacitance.

<sup>2</sup>After this period, the first clock pulse is generated.

<sup>3</sup>A device must internally provide a hold time of at least 300 ns for the SDA signal (referred to the  $V_{IH(min)}$  of the SCL signal) in order to bridge the undefined region of the falling edge of SCL.

<sup>4</sup>Measurements taken with 1 kΩ pull-up resistor and 50 pF load.

<sup>5</sup> $C_b$  = total capacitance of one bus line in pF.

### 6.3. Parameter Measurement Information

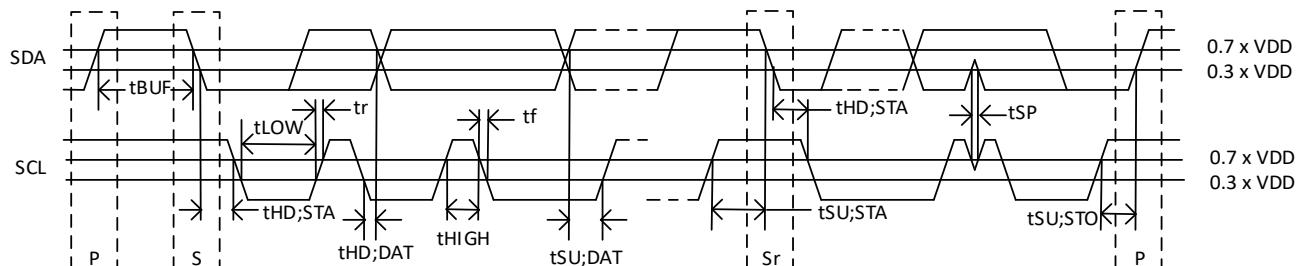



Figure 6.1 Definition of timing on I<sup>2</sup>C-bus

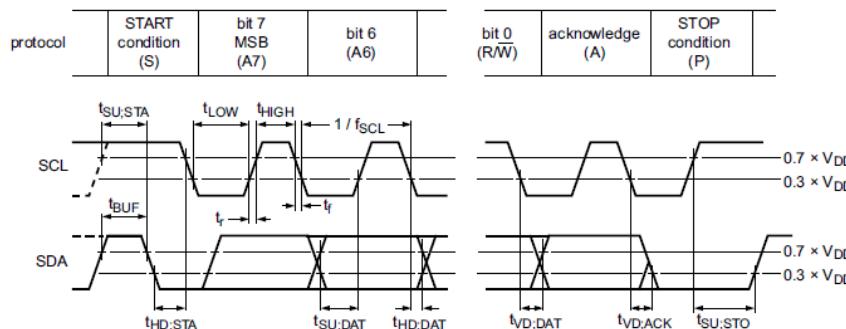



Figure 6.2 I<sup>2</sup>C-bus timing diagram

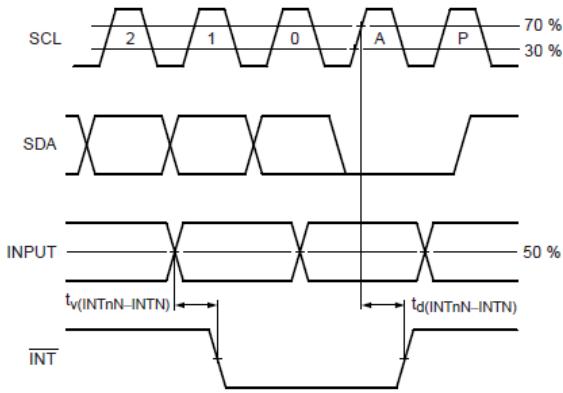
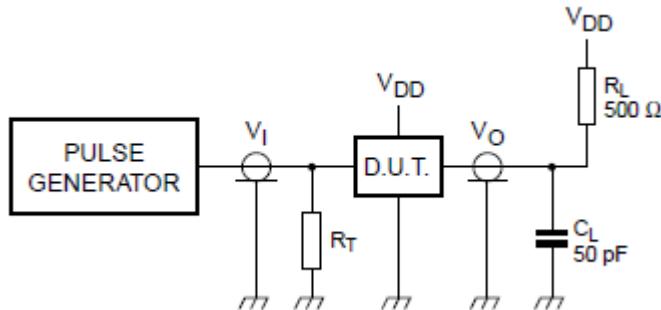




Figure 6.3 Expanded view of read input port register



Definitions test circuit:

$R_L$  = Load resistance.

$C_L$  = Load capacitance including jig and probe capacitance.

$R_T$  = Termination resistance should be equal to the output impedance  $Z_0$  of the pulse generator.

Figure 6.4 Test circuitry for switching times

## 7. Detailed Description

### 7.1. Overview

The NCA9544 is a 4-channel, bidirectional translating I<sup>2</sup>C multiplexer. The master SCL/SDA signal pair is directed to one of four channels of slave devices, SC0&SD0-SC3&SD3. Only one individual downstream channel can be selected of the four channels at a time. The NCA9544 also supports interrupt signals in order for the master to detect an interrupt on the /INT output terminal that can result from any of the slave devices connected to the /INT3-/INT0 input terminals.

The device can be reset by cycling the power supply, VCC, also known as a power-on reset (POR), which resets the state machine and allows the NCA9544 to recover should one of the downstream I<sup>2</sup>C buses get stuck in a low state. A POR event causes all channels to be deselected.

The connections of the I<sup>2</sup>C data path are controlled by the same I<sup>2</sup>C master device that is switched to communicate with I<sup>2</sup>C slave. After the successful acknowledgment of the slave address (hardware selectable by A0 and A1 terminals), a single 8-bit control register is written to or read from to determine the selected channel and state of the interrupts.

The NCA9544 may also be used for voltage translation, allowing the use of different bus voltages on each SCn/SDn pair such that 1.8-V, 2.5-V, or 3.3-V parts can communicate with 5-V parts. This is achieved by using external pull-up resistors to pull the bus up to the desired voltage for the master and each slave channel.

### 7.2. Functional Block Diagram

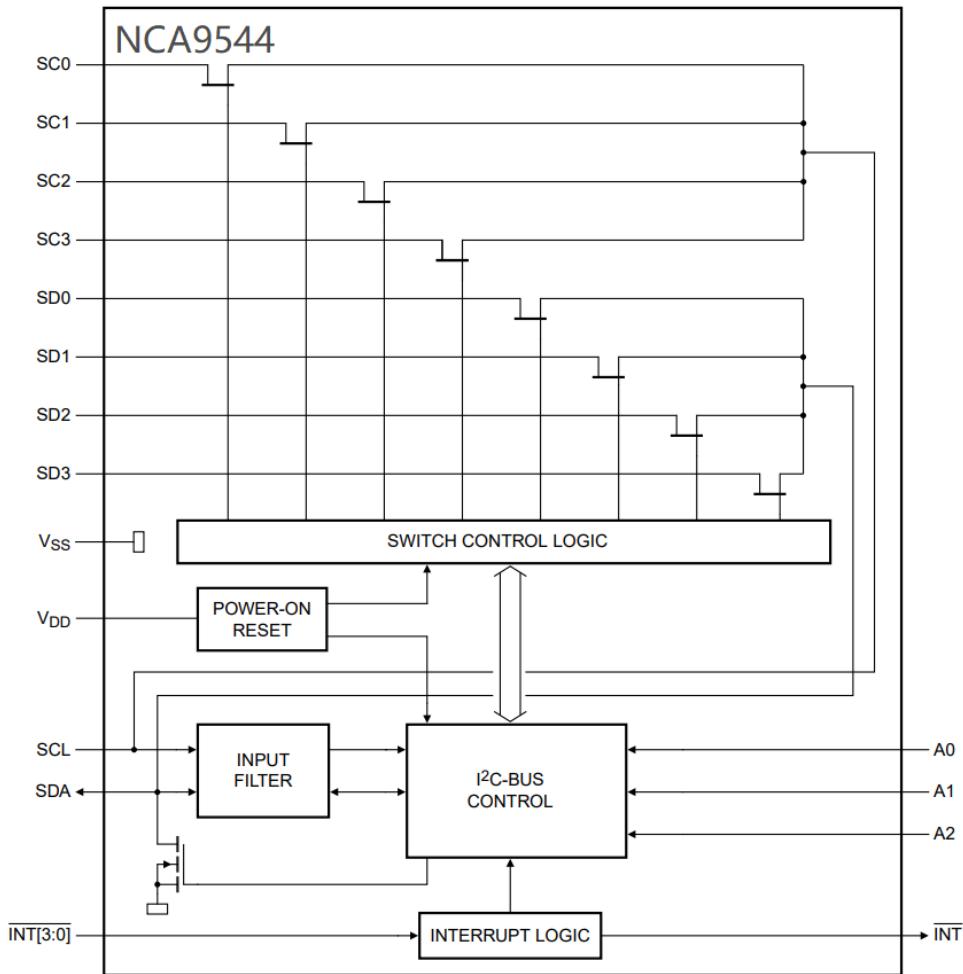



Figure 7.1 NCA9544 Functional block

### 7.3. Power-On Reset

When power is applied to  $V_{CC}$ , an internal power-on reset holds the NCA9544 in a reset condition until  $V_{CC}$  has reached  $V_{PORR}$ . At this point, the reset condition is released and the NCA9544 registers and I<sup>2</sup>C state machine are initialized to their default states, all zeroes, causing all the channels to be deselected. Thereafter,  $V_{CC}$  must be lowered below at least  $V_{PORF}$  to reset the device.

### 7.4. I<sup>2</sup>C Interface

The I<sup>2</sup>C bus is for two-way two-line communication between different ICs or modules. The two lines are a serial data line (SDA) and a serial clock line (SCL). Both lines must be connected to a positive supply via a pull-up resistor when connected to the output stages of a device. Data transfer can be initiated only when the bus is not busy.

One data bit is transferred during each clock pulse. The data on the SDA line must remain stable during the high period of the clock pulse, as changes in the data line at this time are interpreted as control signals (see Figure 7.2)

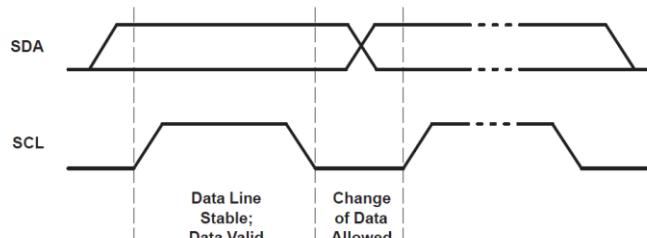



Figure 7.2 Bit Transfer

Both data and clock lines remain high when the bus is not busy. A high-to-low transition of the data line while the clock is high is defined as the start condition (S). A low-to-high transition of the data line while the clock is high is defined as the stop condition (P) (see Figure 7.3).

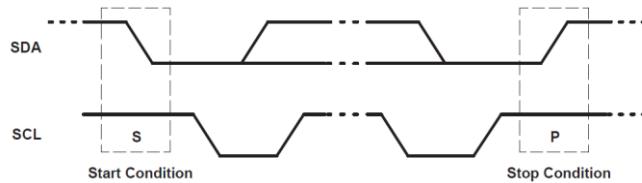



Figure 7.3 Definition of Start and Stop Conditions

A device generating a message is a transmitter; a device receiving a message is the receiver. The device that controls the message is the master, and the devices that are controlled by the master are the slaves (see Figure 7.4).

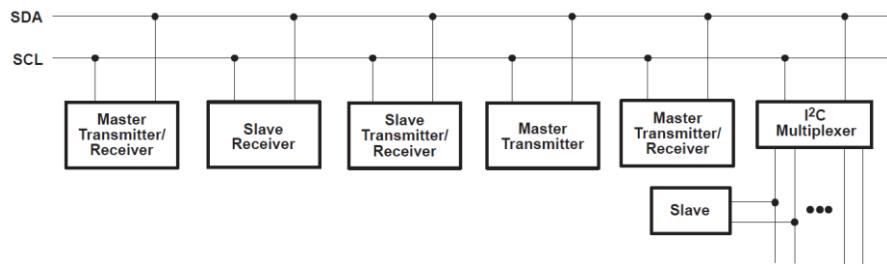



Figure 7.4 System Configuration

The number of data bytes transferred between the start and the stop conditions from transmitter to receiver is not limited. Each byte of eight bits is followed by one acknowledge (ACK) bit. The transmitter must release the SDA line before the receiver can send an ACK bit.

When a slave receiver is addressed, it must generate an ACK after the reception of each byte. Also, a master must generate an ACK after the reception of each byte that has been clocked out of the slave transmitter. The device that acknowledges must pull down the SDA line during the ACK clock pulse so that the SDA line is stable low during the high pulse of the ACK-related clock period (see Figure 7.5). Setup and hold times must be taken into account.

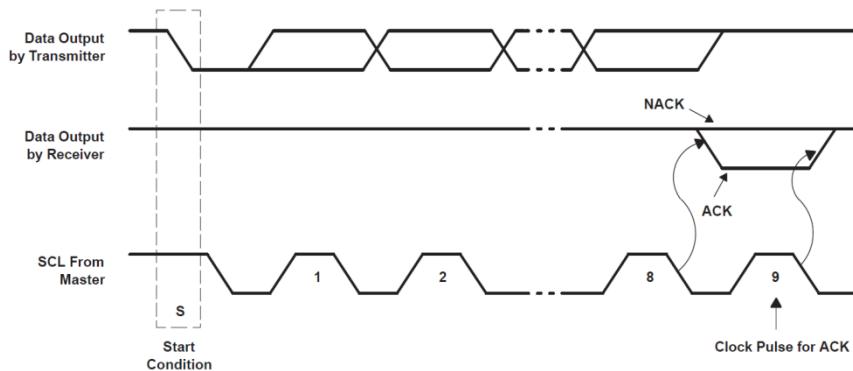



Figure 7.5 Acknowledgment on the I<sup>2</sup>C Bus

A master receiver must signal an end of data to the transmitter by not generating an acknowledge (NACK) after the last byte has been clocked out of the slave. This is done by the master receiver by holding the SDA line high. In this event, the transmitter must release the data line to enable the master to generate a stop condition. Data is transmitted to the NCA9544 control register using the write mode shown in Figure 7.6.

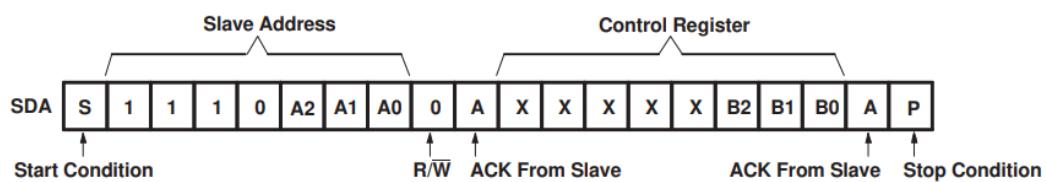



Figure 7.6 Write Control Register

Data is read from the NCA9544 control register using the read mode shown in Figure 7.7.

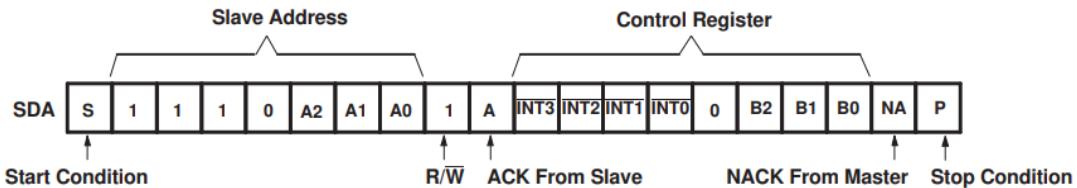



Figure 7.7 Read Control Register

## 7.5. Device Address

Following a start condition, the bus master must output the address of the slave it is accessing. The address of the NCA9544 is shown in Figure 7.8. To conserve power, no internal pull-up resistors are incorporated on the hardware-selectable address terminals, and they must be pulled high or low.

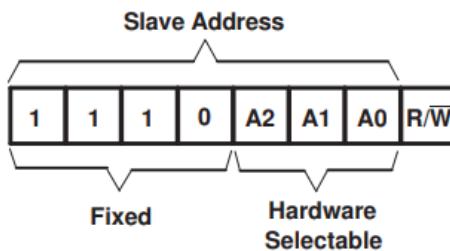



Figure 7.8 NCA9544 Address

The last bit of the slave address defines the operation to be performed. When set to a logic 1, a read is selected, while a logic 0 selects a write operation.

## 7.6. Control Register Description

Following the successful acknowledgment of the slave address, the bus master sends a byte to the NCA9544, which is stored in the control register (see Figure 7.9). If multiple bytes are received by the NCA9544, it saves the last byte received. This register can be written and read via the I<sup>2</sup>C bus.

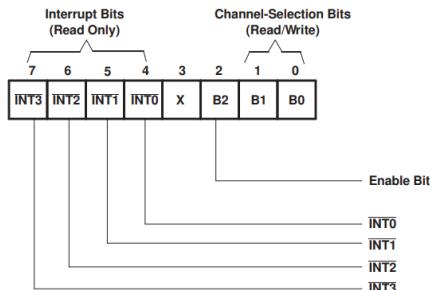



Figure 7.9 Control Register

## 7.7. Control Register Definition

Only one SCn/SDn downstream pair, or channel, can be selected by the contents of the control register (see Table 7.1). After the NCA9544 has been addressed, the control register is written. The three LSBs of the control byte are used to determine which channel is to be selected. When a channel is selected, the channel becomes active after a stop condition has been placed on the I<sup>2</sup>C bus. This ensures that all SCn/SDn lines are in a high state when the channel is made active, so that no false conditions are generated at the time of connection. A stop condition must occur always right after the acknowledge cycle.

Table 7.1. Control Register Write (Channel Selection), Control Register Read (Channel Status)

| /INT3 | /INT2 | /INT1 | /INT0 | D3 | B2 | B1 | B0 | COMMAND |
|-------|-------|-------|-------|----|----|----|----|---------|
|-------|-------|-------|-------|----|----|----|----|---------|

|   |   |   |   |   |   |   |   |                                                      |
|---|---|---|---|---|---|---|---|------------------------------------------------------|
| X | X | X | X | X | 0 | X | X | No channel selected                                  |
| X | X | X | X | X | 1 | 0 | 0 | Channel 0 enabled                                    |
| X | X | X | X | X | 1 | 0 | 1 | Channel 1 enabled                                    |
| X | X | X | X | X | 1 | 1 | 0 | Channel 2 enabled                                    |
| X | X | X | X | X | 1 | 1 | 1 | Channel 3 enabled                                    |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | No channel selected,<br>power up/reset default state |

<sup>1</sup> Only one channel can be enabled at the same time.

## 7.8. Interrupt Handling

The NCA9544 provides four interrupt inputs (one for each channel) and one open-drain interrupt output (see Table 7.2). When an interrupt is generated by any device, it is detected by the NCA9544 and the interrupt output is driven low. The channel does not need to be active for detection of the interrupt. A bit also is set in the control register. Bits 4–7 of the control register correspond to channels 0–3 of the NCA9544, respectively. Therefore, if an interrupt is generated by any device connected to channel 1, the state of the interrupt inputs is loaded into the control register when a read is accomplished. Likewise, an interrupt on any device connected to channel 0 would cause bit 4 of the control register to be set on the read. The master then can address the NCA9544 and read the contents of the control register to determine which channel contains the device generating the interrupt. The master then can reconfigure the NCA9544 to select this channel and locate the device generating the interrupt and clear it.

It should be noted that more than one device can provide an interrupt on a channel, so it is up to the master to ensure that all devices on a channel are interrogated for an interrupt.

The interrupt inputs can be used as general-purpose inputs if the interrupt function is not required.

If unused, interrupt input(s) must be connected to VCC.

Table 7.2. Control Register Read (Interrupt)<sup>(1)</sup>

| /INT3 | /INT2 | /INT1 | /INT0 | D3 | B2 | B1 | B0 | COMMAND                   |
|-------|-------|-------|-------|----|----|----|----|---------------------------|
| X     | X     | X     | 0     | X  | X  | X  | X  | No interrupt on channel 0 |
|       |       |       | 1     |    |    |    |    | Interrupt on channel 0    |
| X     | X     | 0     | X     | X  | X  | X  | X  | No interrupt on channel 1 |
|       |       | 1     |       |    |    |    |    | Interrupt on channel 1    |
| X     | 0     | X     | X     | X  | X  | X  | X  | No interrupt on channel 2 |
|       | 1     |       |       |    |    |    |    | Interrupt on channel 2    |
| 0     | X     | X     | X     | X  | X  | X  | X  | No interrupt on channel 3 |
| 1     |       |       |       |    |    |    |    | Interrupt on channel 3    |

<sup>1</sup> Several interrupts can be active at the same time. For example, /INT3 = 0, /INT2 = 1, /INT1 = 1, /INT0 = 0 means that there is no interrupt on channels 0 and 3, and there is interrupt on channels 1 and 2.

## 8. Application and Implementation

Applications of the NCA9544 will contain an I<sup>2</sup>C (or SMBus) master device and up to eight I<sup>2</sup>C slave devices. The downstream channels are ideally used to resolve I<sup>2</sup>C slave address conflicts. For example, if four identical digital temperature sensors are needed in the

application, one sensor can be connected at each channel: 0, 1, 2, and 3. When the temperature at a specific location needs to be read, the appropriate channel can be enabled and all other channels switched off, the data can be retrieved, and the I<sup>2</sup>C master can move on and read the next channel.

In an application where the I<sup>2</sup>C bus will contain many additional slave devices that do not result in I<sup>2</sup>C slave address conflicts, these slave devices can be connected to any desired channel to distribute the total bus capacitance across multiple channels.

### 8.1. Typical Application

A typical application of the NCA9544 will contain anywhere from 1 to 5 separate data pull-up voltages,  $V_{DPUX}$ , one for the master device ( $V_{DPM}$ ) and one for each of the selectable slave channels ( $V_{DPU0} - V_{DPU3}$ ). In the event where the master device and all slave devices operate at the same voltage, then the pass voltage,  $V_{pass} = V_{DPUX}$ . Once the maximum  $V_{pass}$  is known,  $V_{CC}$  can be selected easily using Figure 8.2. In an application where voltage translation is necessary, additional design requirements must be considered (See Design Requirements).

Figure 8.1 shows an application in which the NCA9544 can be used.

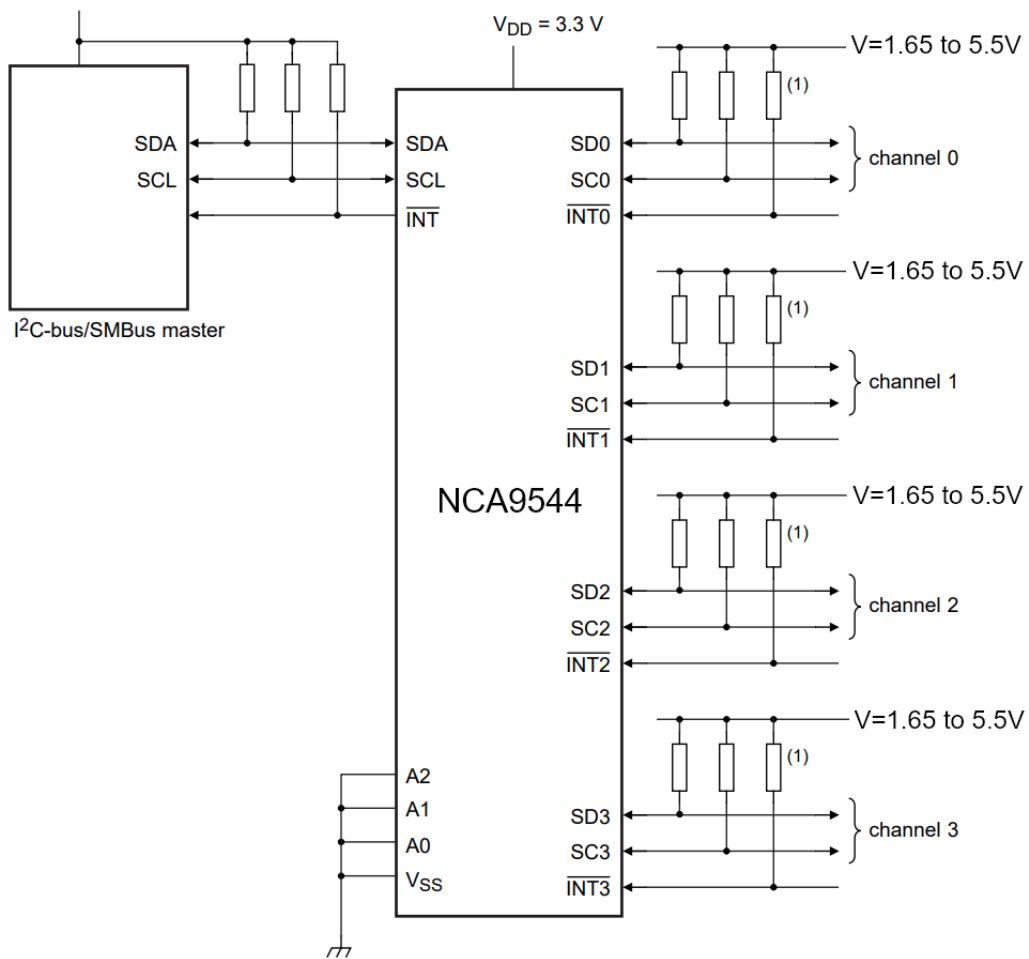



Figure 8.1 Typical Application Schematic

### 8.2. Design Requirements

The pull-up resistors on the /INT3-/INT0 terminals in the application schematic are not required in all applications. If the device generating the interrupt has an open-drain output structure or can be tri-stated, a pull-up resistor is required. If the device generating the interrupt has a push-pull output structure and cannot be tri-stated, a pull-up resistor is not required. The interrupt inputs should not be left floating in the application.

The A0,A1and A2 terminals are hardware selectable to control the slave address of the NCA9544. These terminals may be tied directly to GND or VCC in the application.

The pass-gate transistors of the NCA9544 are constructed such that the VCC voltage can be used to limit the maximum voltage that is passed from one I<sup>2</sup>C bus to another.

Figure 8.2 shows the voltage characteristics of the pass-gate transistors (note that the graph was generated using data specified in the Electrical Characteristics section of this data sheet). In order for the NCA9544 to act as a voltage translator, the V<sub>pass</sub> voltage must be equal to or lower than the lowest bus voltage. For example, if the main bus is running at 5 V and the downstream buses are 3.3 V and 2.7 V, V<sub>pass</sub> must be equal to or below 2.7 V to effectively clamp the downstream bus voltages. As shown in Figure 8.2, V<sub>pass(max)</sub> is 2.7 V when the NCA9544 supply voltage is 4 V or lower, so the NCA9544 supply voltage could be set to 3.3 V. Pull-up resistors then can be used to bring the bus voltages to their appropriate levels (see Figure 8.1).

### 8.3. Detailed Design Procedure

Once all the slaves are assigned to the appropriate slave channels and bus voltages are identified, the pull-up resistors, R<sub>p</sub>, for each of the buses need to be selected appropriately. The minimum pull-up resistance is a function of V<sub>DPUX</sub>, V<sub>OL(max)</sub>, and I<sub>OL</sub>:

$$R_{p(min)} = \frac{V_{DPUX} - V_{OL(max)}}{I_{OL}} \quad (1)$$

The maximum pull-up resistance is a function of the maximum rise time, t<sub>r</sub> (300 ns for fast-mode operation, f<sub>SCL</sub> = 400 kHz) and bus capacitance, C<sub>b</sub>:

$$R_{p(max)} = \frac{t_r}{0.8473 \times C_b} \quad (2)$$

The maximum bus capacitance for an I<sup>2</sup>C bus must not exceed 400 pF for fast-mode operation. The bus capacitance can be approximated by adding the capacitance of the NCA9544, C<sub>io(OFF)</sub>, the capacitance of wires/connections/traces, and the capacitance of each individual slave on a given channel. If multiple channels will be activated simultaneously, each of the slaves on all channels will contribute to total bus capacitance.

### 8.4. NCA9544 Application Curves

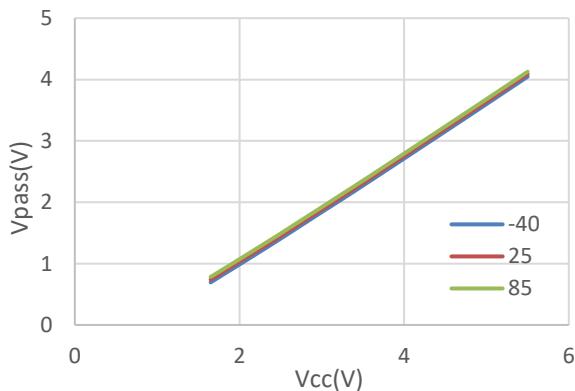
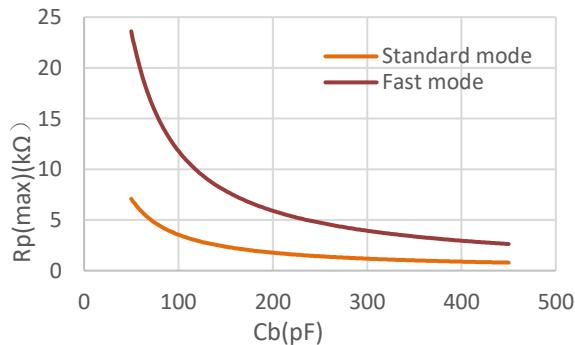
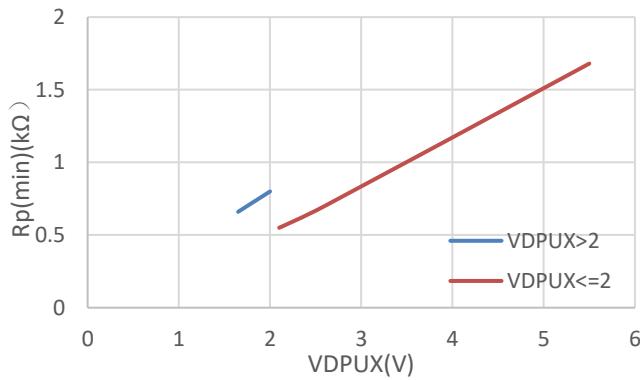





Figure 8.2 Pass-Gate Voltage (V<sub>pass</sub>) vs Supply Voltage(V<sub>cc</sub>) at Three Temperature Points



Standard mode(f<sub>SCL</sub>=100kHz, t<sub>r</sub>=1us);Fast mode: (f<sub>SCL</sub>=400kHz, t<sub>r</sub>=300ns)

Figure 8.3 Maximum Pull-Up resistance(R<sub>p(max)</sub>) vs Bus Capacitance(C<sub>b</sub>)



$V_{OL}=0.2 \times V_{DPUX}$ ,  $I_{OL}=2 \text{mA}$  when  $V_{DPUX} \leq 2 \text{V}$ ;  $V_{OL}=0.4 \text{V}$ ,  $I_{OL}=3 \text{mA}$  when  $V_{DPUX} > 2 \text{V}$

Figure 8.4 Minimum Pull-Up resistance( $R_{p(\min)}$ ) vs Pull-up reference voltage( $V_{DPUX}$ )

## 9. Layout

### 9.1. Layout Guidelines

For PCB layout of the NCA9544, common PCB layout practices should be followed but additional concerns related to high-speed data transfer such as matched impedance and differential pairs are not a concern for I<sup>2</sup>C signal speeds. It is common to have a dedicated ground plane on an inner layer of the board and terminals that are connected to ground should have a low-impedance path to the ground plane in the form of wide polygon pours and multiple vias. By-pass and de-coupling capacitors are commonly used to control the voltage on the VCC terminal, using a larger capacitor to provide additional power in the event of a short power supply glitch and a smaller capacitor to filter out high-frequency ripple.

In an application where voltage translation is not required, all VDPUX voltages and VCC could be at the same potential and a single copper plane could connect all of pull-up resistors to the appropriate reference voltage. In an application where voltage translation is required,  $V_{DPUM}$ ,  $V_{DPU0}$ ,  $V_{DPUI}$ ,  $V_{DPU2}$ , and  $V_{DPU3}$  may all be on the same layer of the board with split planes to isolate different voltage potentials.

To reduce the total I<sup>2</sup>C bus capacitance added by PCB parasitics, data lines (SCn, SDn and INTn) should be as short as possible and the widths of the traces should also be minimized (e.g. 5-10 mils depending on copper weight).

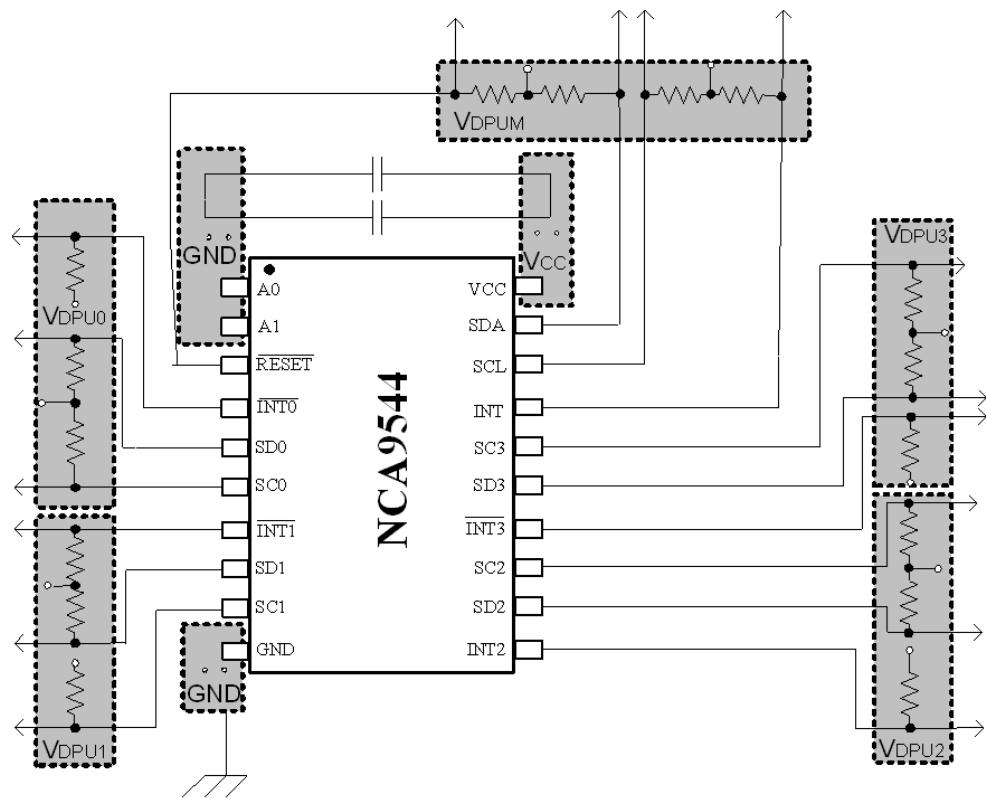



Figure 9.1 Typical Application PCB

## 10. Package Information

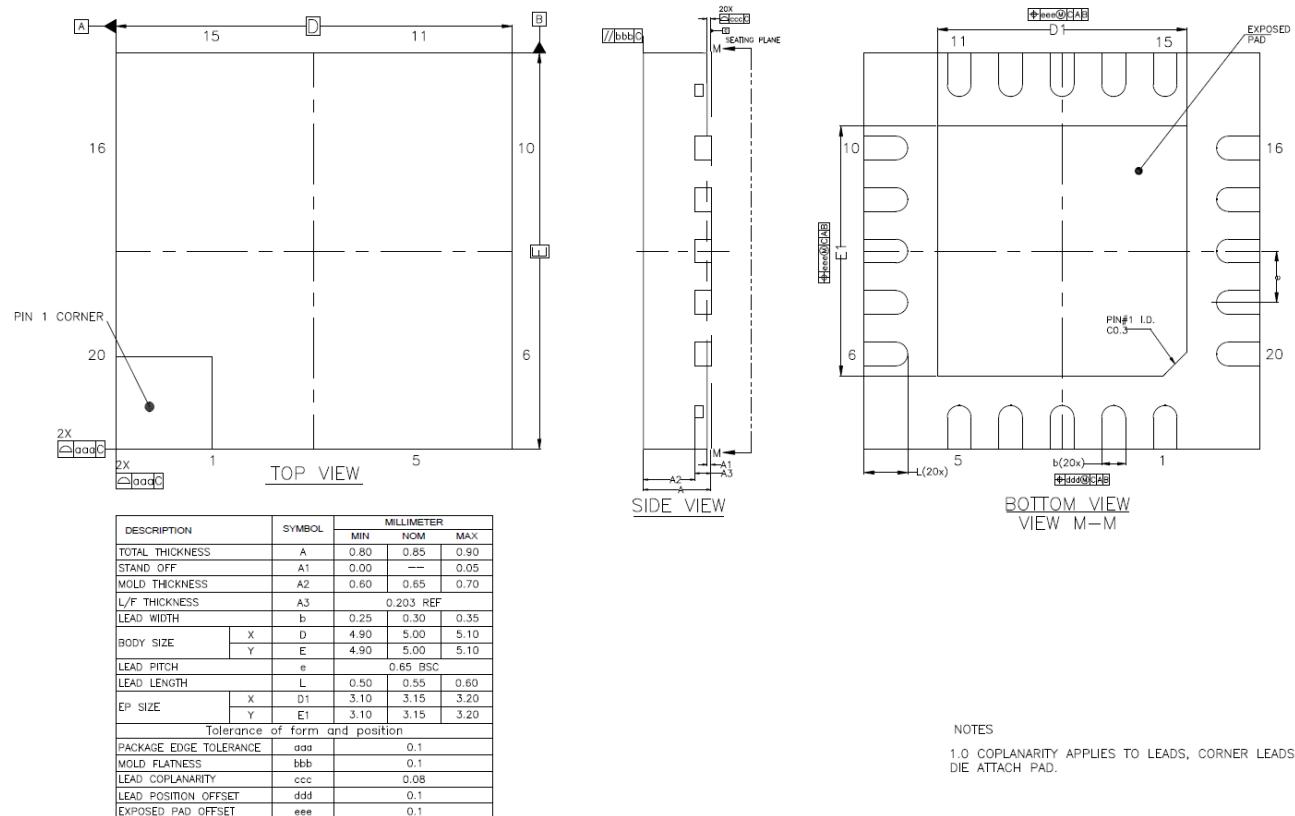
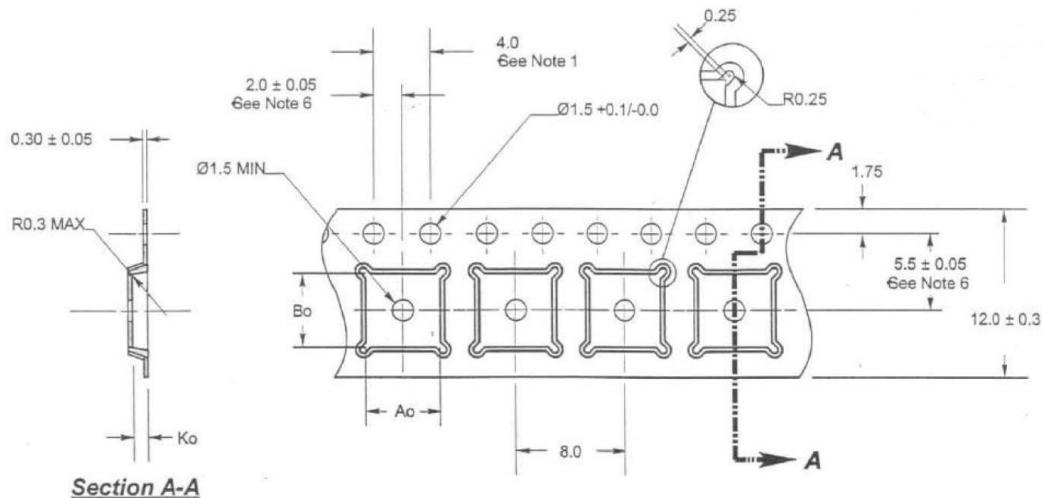



Figure 10.1 Package outline for QFN20


## 11. Order information

| Part Number   | Temperature  | MSL | Package Type | Package Drawing | Package Qty |
|---------------|--------------|-----|--------------|-----------------|-------------|
| NCA9544-DQNTR | -40 to 105°C | 3   | QFN20        | QFN20           | 3000        |

## 12. Documentation Support

| Part Number | Product Folder             | Datasheet                  | Technical Documents        | selection guide            |
|-------------|----------------------------|----------------------------|----------------------------|----------------------------|
| NCA9544     | <a href="#">Click here</a> | <a href="#">Click here</a> | <a href="#">Click here</a> | <a href="#">Click here</a> |

### 13. Tape and Reel Information



Notes:

1. 10 sprocket hole pitch cumulative tolerance  $\pm 0.02$ .
2. Camber not to exceed 1mm in 100mm.
3. Material: PS + C.
4. Ao and Bo measured as indicated.
5. Ko measured from a plane on the inside bottom of the pocket to the top surface of the carrier.
6. Pocket position relative to sprocket hole measured as true position of pocket, not pocket hole.

$Ao = 5.25 \text{ mm}$   
 $Bo = 5.25 \text{ mm}$   
 $Ko = 1.1 \text{ mm}$

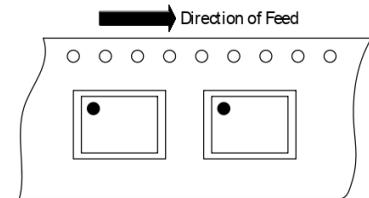
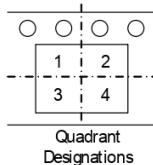




Figure 13.1 Tape and Reel Information of QFN20

## 14. Revision History

| Revision | Description     | Date      |
|----------|-----------------|-----------|
| 1.0      | Initial version | 2024/4/14 |

## IMPORTANT NOTICE

The information given in this document (the “Document”) shall in no event be regarded as any warranty or authorization of, express or implied, including but not limited to accuracy, completeness, merchantability, fitness for a particular purpose or infringement of any third party’s intellectual property rights.

Users of this Document shall be solely responsible for the use of NOVOSENSE’s products and applications, and for the safety thereof. Users shall comply with all laws, regulations and requirements related to NOVOSENSE’s products and applications, although information or support related to any application may still be provided by NOVOSENSE.

This Document is provided on an “AS IS” basis, and is intended only for skilled developers designing with NOVOSENSE’ products. NOVOSENSE reserves the rights to make corrections, modifications, enhancements, improvements or other changes to the products and services provided without notice. NOVOSENSE authorizes users to use this Document exclusively for the development of relevant applications or systems designed to integrate NOVOSENSE’s products. No license to any intellectual property rights of NOVOSENSE is granted by implication or otherwise. Using this Document for any other purpose, or any unauthorized reproduction or display of this Document is strictly prohibited. In no event shall NOVOSENSE be liable for any claims, damages, costs, losses or liabilities arising out of or in connection with this Document or the use of this Document.

For further information on applications, products and technologies, please contact NOVOSENSE ([www.novosns.com](http://www.novosns.com) ).

**Suzhou NOVOSENSE Microelectronics Co., Ltd**