NCE N-Channel Super Trench Power MOSFET ### **Description** The NCEP0109AR uses **Super Trench** technology that is uniquely optimized to provide the most efficient high frequency switching performance. Both conduction and switching power losses are minimized due to an extremely low combination of $R_{DS(ON)}$ and Q_g . This device is ideal for high-frequency switching and synchronous rectification. #### **General Features** - V_{DS} = 100V,I_D = 9A - $R_{DS(ON)} < 27m\Omega @ V_{GS}=10V (Typ:21m\Omega)$ - $R_{DS(ON)} < 37m\Omega$ @ V_{GS} =4.5V (Typ:30m Ω) - Excellent gate charge x R_{DS(on)} product(FOM) - Very low on-resistance R_{DS(on)} - 150 °C operating temperature - Pb-free lead plating - 100% UIS tested ### **Application** - Power switching application - Hard switched and high frequency circuits - Uninterruptible power supply SOT-223 top view ### **Package Marking and Ordering Information** | Device Marking | Device | Device Package | Reel Size | Tape width | Quantity | |----------------|------------|----------------|-----------|------------|------------| | NCEP0109AR | NCEP0109AR | SOT-223-3L | Ø330mm | 12mm | 2500 units | ### Absolute Maximum Ratings (T_A=25 ℃unless otherwise noted) | Parameter | Symbol | Limit | Unit | |--|------------------|------------|------------| | Drain-Source Voltage | V _{DS} | 100 | V | | Gate-Source Voltage | V _{GS} | ±20 | V | | Drain Current-Continuous | I _D | 9 | Α | | Drain Current-Pulsed (Note 1) | I _{DM} | 36 | Α | | Single pulse avalanche energy (Note 5) | E _{AS} | 96 | mJ | | Maximum Power Dissipation | P _D | 2.5 | W | | Operating Junction and Storage Temperature Range | T_{J}, T_{STG} | -55 To 150 | $^{\circ}$ | ### **Thermal Characteristic** | Thermal Resistance,Junction-to-Ambient (Note 2) | $R_{\theta JA}$ | 50 | °C/W | 1 | |---|-----------------|----|------|---| |---|-----------------|----|------|---| # Electrical Characteristics (T_A =25 $^{\circ}$ C unless otherwise noted) | Drain-Source Breakdown Voltage BV _{DSS} V _{GS} =0V I _D =250µA 100 - - V | Parameter | Symbol | Condition | Min | Тур | Max | Unit | | |--|------------------------------------|---------------------|---|-----|------|------|------|--| | Zero Gate Voltage Drain Current I _{DSS} V _{DS} =100V,V _{GS} =0V - - 1 μA | Off Characteristics | | | | | | | | | | Drain-Source Breakdown Voltage | BV _{DSS} | V _{GS} =0V I _D =250μA | 100 | - | - | V | | | On Characteristics (Note 3) | Zero Gate Voltage Drain Current | I _{DSS} | V _{DS} =100V,V _{GS} =0V | - | - | 1 | μA | | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | Gate-Body Leakage Current | I _{GSS} | V_{GS} =±20V, V_{DS} =0V | - | - | ±100 | nA | | | Drain-Source On-State Resistance R _{DS(ON)} V _{GS} =10V, I _D =9A - 21 27 mΩ | On Characteristics (Note 3) | | | | | | | | | Drain-Source On-State Resistance R _{DS(ON)} V _{GS} =4.5V, I _D =9A - 30 37 mΩ Forward Transconductance g _{FS} V _{DS} =5V, I _D =9A - 12 - 8 Dynamic Characteristics (Note4) Input Capacitance C _{Iss} V _{DS} =5V, V _{GS} =0V, | Gate Threshold Voltage | V _{GS(th)} | $V_{DS}=V_{GS},I_{D}=250\mu A$ | 1.2 | 1.9 | 2.5 | V | | | Forward Transconductance gFS V_{GS}=4.5V, l_D=9A - 30 37 mΩ | Drain Course On State Decistance | | V _{GS} =10V, I _D =9A | - | 21 | 27 | mΩ | | | Dynamic Characteristics Note 4 | Drain-Source On-State Resistance | R _{DS(ON)} | V _{GS} =4.5V, I _D =9A | - | 30 | 37 | mΩ | | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | Forward Transconductance | g FS | V_{DS} =5 V , I_{D} =9 A | - | 12 | - | S | | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | Dynamic Characteristics (Note4) | | | | • | | | | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | Input Capacitance | C _{lss} | \/ -50\/\/ -0\/ | - | 1600 | - | PF | | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | Output Capacitance | Coss | | - | 139 | - | PF | | | Turn-on Delay Time $t_{d(on)}$ V_{DD} =50V, R_L =5.5Ω - 4 - nS Turn-Off Delay Time $t_{d(off)}$ V_{GS} =10V, R_G =2.5Ω - 22 - nS Turn-Off Fall Time t_f - 5 - nS Total Gate Charge Q_g V_{DS} =50V, I_D =9A, V_{GS} =10V - 26 nC Gate-Source Charge Q_{gd} V_{DS} =10V - 7.4 - nC Drain-Source Diode Characteristics V_{SD} V_{GS} =0V, I_S =9A - - 1.2 V Diode Forward Voltage (Note 3) V_{SD} V_{GS} =0V, I_S =9A - - 1.2 V Diode Forward Current (Note 2) I_S - - 9 A Reverse Recovery Time trr T_J = 25°C, I_F = 4.5A - 34.6 - nS | Reverse Transfer Capacitance | C _{rss} | F=1.UIVID2 | - | 11 | - | PF | | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | Switching Characteristics (Note 4) | | | | • | | | | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | Turn-on Delay Time | t _{d(on)} | | - | 10 | - | nS | | | Turn-Off Fall Time $t_{f} = \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | Turn-on Rise Time | t _r | V_{DD} =50V, R_L =5.5 Ω | - | 4 | - | nS | | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | Turn-Off Delay Time | $t_{d(off)}$ | V_{GS} =10 V , R_{G} =2.5 Ω | - | 22 | - | nS | | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | Turn-Off Fall Time | t _f | | - | 5 | - | nS | | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | Total Gate Charge | Qg | \/ F0\/ OA | - | 26 | | nC | | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | Gate-Source Charge | Q_{gs} | | - | 7.4 | - | nC | | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | Gate-Drain Charge | Q_{gd} | V _{GS} =10V | - | 3.8 | - | nC | | | Diode Forward Current $^{(Note \ 2)}$ | Drain-Source Diode Characteristics | • | | • | • | | • | | | Reverse Recovery Time trr T _J = 25°C, I _F =4.5A - 34.6 - nS | Diode Forward Voltage (Note 3) | V_{SD} | V_{GS} =0 V , I_{S} =9 A | - | - | 1.2 | V | | | 41.0 | Diode Forward Current (Note 2) | Is | | - | - | 9 | Α | | | Reverse Recovery Charge Qrr di/dt = 100A/µs ^(Note3) - 57.7 - nC | Reverse Recovery Time | trr | T _J = 25°C, I _F =4.5A | - | 34.6 | - | nS | | | | Reverse Recovery Charge | Qrr | $di/dt = 100A/\mu s^{(Note3)}$ | - | 57.7 | - | nC | | ### Notes: - 1. Repetitive Rating: Pulse width limited by maximum junction temperature. - 2. Surface Mounted on FR4 Board, t ≤ 10 sec. - 3. Pulse Test: Pulse Width ≤ 300µs, Duty Cycle ≤ 2%. - 4. Guaranteed by design, not subject to product - **5.** EAS condition: Tj=25 $^{\circ}$ C,VDD=50V,VG=10V,L=0.5mH,Rg=25 Ω # **Test Circuit** # 1) E_{AS} test circuit ## 2) Gate charge test circuit ## 3) Switch Time Test Circuit ## **Typical Electrical and Thermal Characteristics** **Figure 1 Output Characteristics** **Figure 2 Transfer Characteristics** **Figure 3 Rdson- Drain Current** **Figure 4 Rdson-Junction Temperature** Figure 5 Gate Charge Figure 6 Source- Drain Diode Forward Figure 7 Capacitance vs Vds Figure 9 V_{GS}(th) vs Junction Temperature **Figure 8 Safe Operation Area** Figure 10 Current De-ratin **Figure 11 Normalized Maximum Transient Thermal Impedance** # **SOT-223 Package Information** | Symbol | Dimensions In | n Millimeters | Dimensions In Inches | | | |--------|---------------|---------------|----------------------|-------|--| | Symbol | Min. | Max. | Min. | Max. | | | Α | | 1.800 | | 0.071 | | | A1 | 0.020 | 0.100 | 0.001 | 0.004 | | | A2 | 1.500 | 1.700 | 0.059 | 0.067 | | | b | 0.660 | 0.840 | 0.026 | 0.033 | | | b1 | 2.900 | 3.100 | 0.114 | 0.122 | | | C | 0.230 | 0.350 | 0.009 | 0.014 | | | D | 6.300 | 6.700 | 0.248 | 0.264 | | | E | 6.700 | 7.300 | 0.264 | 0.287 | | | E1 | 3.300 | 3.700 | 0.130 | 0.146 | | | е | 2.300(BSC) | | 0.091(BSC) | | | | L | 0.750 | | 0.030 | | | | θ | 0° | 10° | 0° | 10° | | ### **Notes** - 1. All dimensions are in millimeters. - 2. Tolerance ±0.10mm (4 mil) unless otherwise specified - 3. Package body sizes exclude mold flash and gate burrs. Mold flash at the non-lead sides should be less than 5 mils. - 4. Dimension L is measured in gauge plane. - 5. Controlling dimension is millimeter, converted inch dimensions are not necessarily exact. # NCEP0109AR #### Attention: - Any and all NCE power products described or contained herein do not have specifications that can handle applications that require extremely high levels of reliability, such as life-support systems, aircraft's control systems, or other applications whose failure can be reasonably expected to result in serious physical and/or material damage. Consult with your NCE power representative nearest you before using any NCE power products described or contained herein in such applications. - NCE power assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all NCE power products described or contained herein. - Specifications of any and all NCE power products described or contained herein stipulate the performance, characteristics, and functions of the described products in the independent state, and are not guarantees of the performance, characteristics, and functions of the described products as mounted in the customer's products or equipment. To verify symptoms and states that cannot be evaluated in an independent device, the customer should always evaluate and test devices mounted in the customer's products or equipment. - NCE power Semiconductor CO.,LTD. strives to supply high-quality high-reliability products. However, any and all semiconductor products fail with some probability. It is possible that these probabilistic failures could give rise to accidents or events that could endanger human lives, that could give rise to smoke or fire, or that could cause damage to other property. When designing equipment, adopt safety measures so that these kinds of accidents or events cannot occur. Such measures include but are not limited to protective circuits and error prevention circuits for safe design, redundant design, and structural design. - In the event that any or all NCE power products(including technical data, services) described or contained herein are controlled under any of applicable local export control laws and regulations, such products must not be exported without obtaining the export license from the authorities concerned in accordance with the above law. - No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or any information storage or retrieval system, or otherwise, without the prior written permission of NCE power Semiconductor CO.,LTD. - Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production. NCE power believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties. - Any and all information described or contained herein are subject to change without notice due to product/technology improvement, etc. When designing equipment, refer to the "Delivery Specification" for the NCE power product that you intend to use. - This catalog provides information as of Sep.2010. Specifications and information herein are subject to change without notice.