Ultra High Accuracy, Low Iq, 500 mA Low Dropout Regulator

The NCP3335 is a high performance, low dropout regulator. With accuracy of ±0.9% over line and load and ultra-low quiescent current and noise it encompasses all of the necessary features required by today's consumer electronics. This unique device is guaranteed to be stable without a minimum load current requirement and stable with any type of capacitor as small as 1.0 µF. The NCP3335 also comes equipped with sense and noise reduction pins to increase the overall utility of the device.

- High Accuracy Over Line and Load (±0.9% at 25°C)
- Ultra-Low Dropout Voltage at Full Load (260 mV typ.)
- No Minimum Output Current Required for Stability
- Low Noise (35 µVrms w/ 10 nF C_{nr} and 56 µVrms w/out C_{nr})
- Low Shutdown Current (0.07 μA)
- 2.6 V to 12 V Supply Range
- Thermal Shutdown Protection
- Current Limitation
- voltages
 vol

MARKING DIAGRAM

8888

AYW-

.

Α L

Y

W

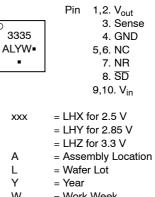
ON Semiconductor®

http://onsemi.com

- 1,2. V_{out}
 - 3. Sense 4. GND

Micro8[™]

DMR2 SUFFIX

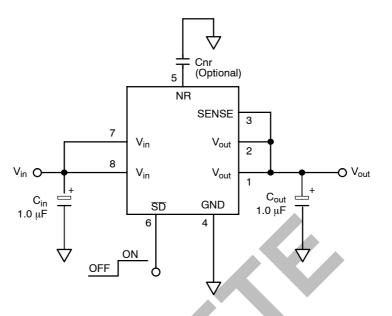

CASE 846A

QFN10

MN SUFFIX

CASE 485C

- 5. NR
- 6. SD (Shutdown)
- 7,8. V_{in}



= Work Week = Pb-Free Package

(Note: Microdot may be in either location)

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 7 of this data sheet.

Figure 1. Typical Application Schematic (Micro8 Package)

PIN FUNCTION DESCRIPTION

			Or						
	Figure 1. Typical Application Schematic (Micro8 Package)								
	PIN FUNCTION DESCRIPTION								
Pin No. Micro8	Pin No. QFN10	Pin Name	Description						
1, 2	1, 2	V _{out}	Regulated output voltage. Bypass to ground with $C_{out} \geq 1.0 \ \mu\text{F}.$						
3	3	SENSE	For output voltage sensing, connect to Pins 1 and 2.						
4	4	GND	Power Supply Ground						
5	7	NR	Noise Reduction Pin. This is an optional pin used to further reduce noise.						
6	8	SD	Shutdown pin. When not in use, this pin should be connected to the input pin.						
7, 8	9, 10	V _{in}	Power Supply Input Voltage						
-	5, 6	NC	Not Connected						

ABSOLUTE MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Input Voltage	V _{in}	-0.3 to +16	V
Output Voltage	V _{out}	–0.3 to V _{in} +0.3	V
Shutdown Pin Voltage	V _{sh}	-0.3 to +16	V
Thermal Characteristics Thermal Resistance, Junction-to-Air	$R_{ hetaJA}$	238	°C/W
Operating Junction Temperature Range	TJ	-40 to +150	°C
Storage Temperature Range	T _{stg}	-50 to+150	°C

1XAX

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

This device series contains ESD protection and exceeds the following tests: NOTE:

Human Body Model (HBM) JESD 22-A114-B

Machine Model (MM) JESD 22-A115-A

FI ECTRICAL CHARACTERISTICS - 2.5 V (′ _{out} = 2.5 V typical, V _{in} = 2.9 V, T _A = −40°C to +85°C, unless otherwise noted)
ELECTRICAL CHARACTERIOTICS LIG V	$\alpha_{\text{III}} = 2.0$ V (yplotic, V) = 2.0 V, $\alpha_{\text{III}} = -40$ O to 100 O, dillood other wide noted)

Characteristic	Symbol	Min	Тур	Max	Unit
Output Voltage (Accuracy) V_{in} = 2.9 V to 6.5 V, I _{load} = 0.1 mA to 500 mA, T _J = 25°C	V _{out}	-0.9% 2.477	2.5	+0.9% 2.523	V
Output Voltage (Accuracy) V_{in} = 2.9 V to 6.5 V, I _{load} = 0.1 mA to 500 mA, T _J = 0°C to +85°C	V _{out}	-1.4% 2.465	2.5	+1.4% 2.535	V
Output Voltage (Accuracy), (Note 1) V_{in} = 2.9 V to 6.5 V, I _{load} = 0.1 mA to 500 mA, T _J = -40°C to +150°C	V _{out}	-1.5% 2.462	2.5	+1.5% 2.538	V
Line Regulation $V_{in} = 2.9 \text{ V to } 6.5 \text{ V}, \text{ I}_{load} = 0.1 \text{ mA}$	Line _{Reg}		0.04		mV/V
Load Regulation $V_{in} = 2.9 \text{ V}, \text{ I}_{load} = 0.1 \text{ mA to } 500 \text{ mA}$	Load _{Reg}		0.04		mV/mA
Dropout voltage $I_{load} = 500 \text{ mA} \text{ (Note 2)}$ $I_{load} = 300 \text{ mA} \text{ (Note 2)}$ $I_{load} = 50 \text{ mA}$ $I_{load} = 0.1 \text{ mA}$	V _{DO}			340 230 110 10	mV
Peak Output Current (See Figure 6)	I _{pk}	500	700	800	mA
Short Output Current (See Figure 6)	I _{sc}		Ġ	900	mA
Thermal Shutdown	TJ		160		°C
Ground Current In Regulation $I_{load} = 500 \text{ mA} \text{ (Note 2)}$ $I_{load} = 300 \text{ mA} \text{ (Note 2)}$ $I_{load} = 50 \text{ mA}$ $I_{load} = 0.1 \text{ mA}$ In Dropout $V_{in} = 2.4 \text{ V}, I_{load} = 0.1 \text{ mA}$ In Shutdown	IGND	CON	9.0 4.6 0.8	14 7.5 2.5 190 500	mA μA μA
S _D = 0 V	IGNDsh		0.07	1.0	μΑ
Output Noise $C_{nr} = 0 \text{ nF}$, $I_{load} = 500 \text{ mA}$, f = 10 Hz to 100 kHz, $C_{out} = 10 \mu\text{F}$ $C_{nr} = 10 \text{ nF}$, $I_{load} = 500 \text{ mA}$, f = 10 Hz to 100 kHz, $C_{out} = 10 \mu\text{F}$	V _{noise}		56 35		μVrms μVrms
Shutdown Threshold Voltage ON Threshold Voltage OFF		2.0		0.4	V V
\overline{SD} Input Current, V _{SD} = 0 V to 0.4 V or V _{SD} = 2.0 V to V _{in}	I _{SD}		0.07	1.0	μΑ
Output Current In Shutdown Mode, V _{out} = 0 V	I _{OSD}		0.07	1.0	μΑ

1. For proper operation below $T_J = 0^{\circ}C$, please refer to Figure 8. 2. T_A must be greater than 0°C.

Characteristic	Symbol	Min	Тур	Max	Unit
Output Voltage (Accuracy) V_{in} = 3.25 V to 6.85 V, I _{load} = 0.1 mA to 500 mA, T _J = 25°C	V _{out}	-0.9% 2.824	2.85	+0.9% 2.876	V
Output Voltage (Accuracy) $V_{in} = 3.25$ V to 6.85 V, $I_{load} = 0.1$ mA to 500 mA, $T_J = 0^{\circ}C$ to +85°C	V _{out}	-1.4% 2.810	2.85	+1.4% 2.890	V
Output Voltage (Accuracy) (Note 3) V_{in} = 3.25 V to 6.85 V, I _{load} = 0.1 mA to 500 mA, T _J = -40°C to +150°C	V _{out}	-1.5% 2.807	2.85	+1.5% 2.893	V
Line Regulation $V_{in} = 3.25 \text{ V to } 6.85 \text{ V}, \text{ I}_{load} = 0.1 \text{ mA}$	Line _{Reg}		0.04		mV/V
Load Regulation $V_{in} = 3.25 \text{ V}, \text{ I}_{load} = 0.1 \text{ mA to } 500 \text{ mA}$	Load _{Reg}		0.04		mV/mA
Dropout voltage $I_{load} = 500 \text{ mA}$ $I_{load} = 300 \text{ mA}$ $I_{load} = 50 \text{ mA}$ $I_{load} = 0.1 \text{ mA}$	V _{DO}			340 230 110 10	mV
Peak Output Current (See Figure 6)	I _{pk}	500	700	800	mA
Short Output Current (See Figure 6)	I _{sc}		.C.	900	mA
Thermal Shutdown	TJ		160		°C
Ground Current In Regulation $I_{load} = 500 \text{ mA}$ (Note 4) $I_{load} = 300 \text{ mA}$ $I_{load} = 50 \text{ mA}$ $I_{load} = 0.1 \text{ mA}$ In Dropout $V_{in} = 2.75 \text{ V}, I_{load} = 0.1 \text{ mA}$	I _{GND}	CORN	9.0 4.6 0.8 -	14 7.5 2.5 190 500	mA μA μA
In Shutdown SD = 0 V	IGNDsh		0.07	1.0	μΑ
Output Noise $C_{nr} = 0 \text{ nF}, I_{load} = 500 \text{ mA}, f = 10 \text{ Hz to } 100 \text{ kHz}, C_{out} = 10 \mu\text{F}$ $C_{nr} = 10 \text{ nF}, I_{load} = 500 \text{ mA}, f = 10 \text{ Hz to } 100 \text{ kHz}, C_{out} = 10 \mu\text{F}$	V _{noise}		61 40		μVrms μVrms
Shutdown Threshold Voltage ON Threshold Voltage OFF		2.0		0.4	V V
S_D Input Current, V_{SD} = 0 V to 0.4 V or V_{SD} = 2.0 V to V_{in}	I _{SD}		0.07	1.0	μA
Output Current In Shutdown Mode, Vout = 0 V	I _{OSD}		0.07	1.0	μΑ

ELECTRICAL CHARACTERISTICS – 2.85 V	V (V _{out} = 2.85 V typical, V_{in} = 3.25 V, T_A = -40°C to +85°C, unless otherwise noted	i)
--	--	----

3. For proper operation below $T_J = 0^{\circ}C$, please refer to Figure 7. 4. T_A must be greater than 0°C.

Characteristic	Symbol	Min	Тур	Max	Unit
Output Voltage (Accuracy) $V_{in} = 3.7 V$ to 7.3 V, I _{load} = 0.1 mA to 500 mA, T _J = 25°C	V _{out}	-0.9% 3.270	3.3	+0.9% 3.330	V
Output Voltage (Accuracy) $V_{in} = 3.7 V$ to 7.3 V, I _{load} = 0.1 mA to 500 mA, T _J = 0°C to +85°C	V _{out}	-1.4% 3.254	3.3	+1.4% 3.346	V
Output Voltage (Accuracy) $V_{in} = 3.7 \text{ V to } 7.3 \text{ V}, I_{load} = 0.1 \text{ mA to } 500 \text{ mA}, T_J = -40^{\circ}\text{C} \text{ to } +150^{\circ}\text{C}$	V _{out}	-1.5% 3.250	3.3	+1.5% 3.350	V
Line Regulation V _{in} = 3.7 V to 7.3 V, I _{load} = 0.1 mA	Line _{Reg}		0.04		mV/V
Load Regulation V _{in} = 3.7 V, I _{load} = 0.1 mA to 500 mA	Load _{Reg}		0.04		mV/mA
Dropout Voltage $I_{load} = 500 \text{ mA}$ $I_{load} = 300 \text{ mA}$ $I_{load} = 50 \text{ mA}$ $I_{load} = 0.1 \text{ mA}$	V _{DO}			340 230 110 10	mV
Peak Output Current (See Figure 6)	lpk	500	700	800	mA
Short Output Current (See Figure 6)	I _{sc}			900	mA
Thermal Shutdown	TJ		160		°C
Ground Current In Regulation I _{load} = 500 mA (Note 5) I _{load} = 300 mA I _{load} = 50 mA I _{load} = 0.1 mA	I _{GND}	CON	9.0 4.6 0.8 -	14 7.5 2.5 190	mA μA
In Dropout V _{in} = 3.2 V, I _{load} = 0.1 mA	4.4	KO '	-	500	μΑ
In Shutdown $S_D = 0 V$	IGNDsh		0.07	1.0	μA
Output Noise $C_{nr} = 0 \text{ nF}, I_{load} = 500 \text{ mA}, f = 10 \text{ Hz to } 100 \text{ kHz}, C_{out} = 10 \mu\text{F}$ $C_{nr} = 10 \text{ nF}, I_{load} = 500 \text{ mA}, f = 10 \text{ Hz to } 100 \text{ kHz}, C_{out} = 10 \mu\text{F}$	V _{noise}		69 46		μVrms μVrms
Shutdown Threshold Voltage ON Threshold Voltage OFF		2.0		0.4	v v

0.07

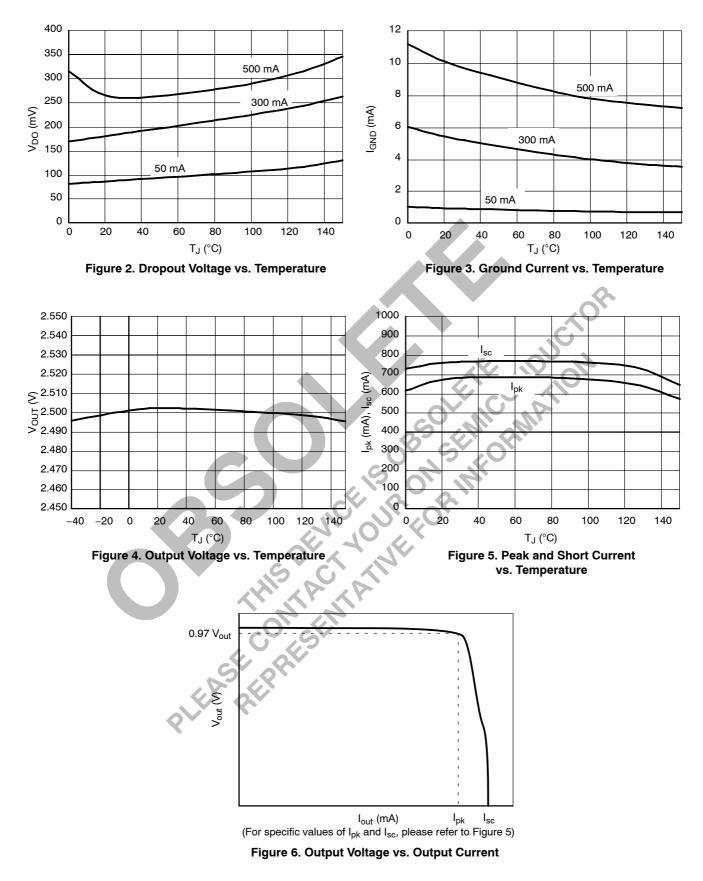
0.07

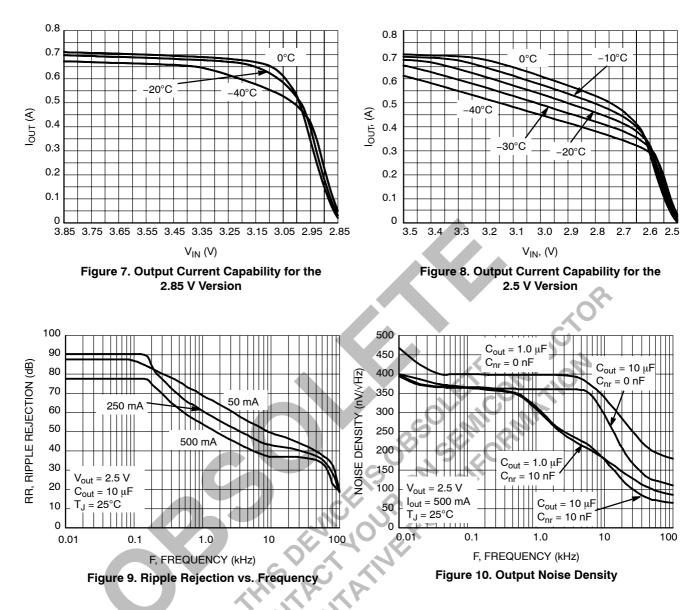
 I_{SD}

I_{OSD}

1.0

1.0

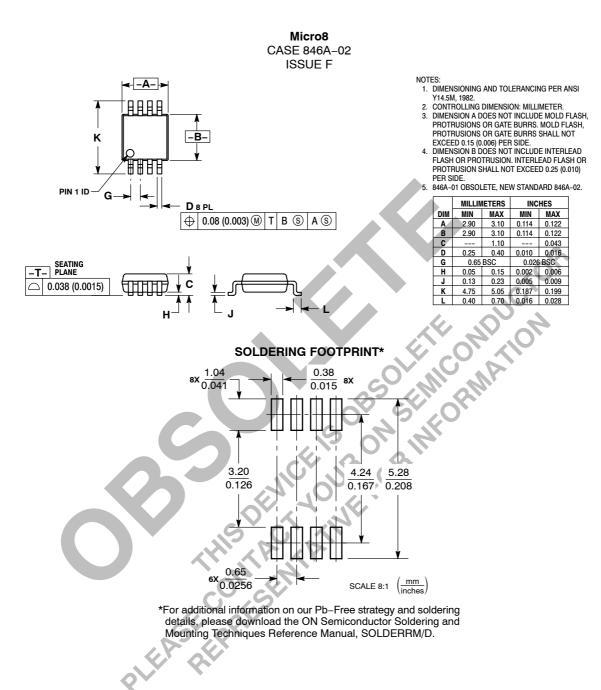

μA


μA

ELECTRICAL CHARACTERISTICS – 3.3	V (V_{out} = 3.3 V typical, V_{in} = 3.7 V, T_A = -40°C to +85°C, unless otherwise noted)
---	---

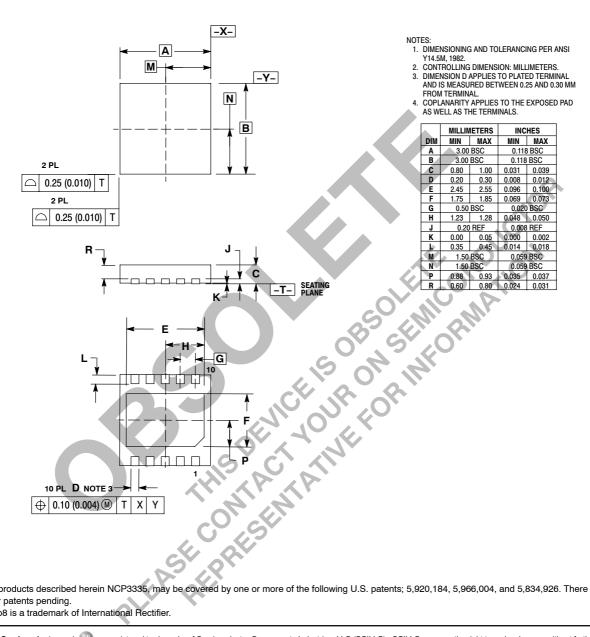
Output Current In Shutdown Mode, V_{out} = 0 V 5. T_A must be greater than 0°C.

 S_D Input Current, V_{SD} = 0 V to 0.4 V or V_{SD} = 2.0 V to V_{in}


ORDERING INFORMATION

Device	Nominal Output Voltage	Package	Shipping [†]
NCP3335DMR2250G	2.5 V	Micro8 (Pb–Free)	4000 / Tape & Reel
NCP3335DMR2285G	2.85 V	Micro8 (Pb–Free)	4000 / Tape & Reel
NCP3335DMR2330G	3.3 V	Micro8 (Pb–Free)	4000 / Tape & Reel
NCP3335MN250R2G	2.5 V	QFN10 (Pb-Free)	4000 / Tape & Reel
NCP3335MN330R2G	3.3 V	QFN10 (Pb-Free)	4000 / Tape & Reel

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.


*Please contact factory for other voltage options.

PACKAGE DIMENSIONS

PACKAGE DIMENSIONS

10 Pin QFN CASE 8485C-01 **ISSUE O**

The products described herein NCP3335, may be covered by one or more of the following U.S. patents; 5,920,184, 5,966,004, and 5,834,926. There may be other patents pending.

Micro8 is a trademark of International Rectifier.

ON Semiconductor and 💷 are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILIC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILIC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILIC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILIC obsent or any liability nor the rights of others. SCILIC products are not designed, intended, or authorized for use a components in systems intended for surgical implant into the body, or other applications are specified to the COULY of the COUL intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support:

Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81-3-5773-3850

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative