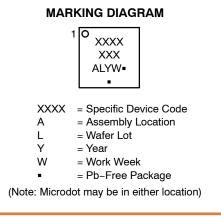
onsemi

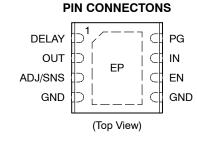
Product Preview NCP734

The NCP734 offers ideal combination of high performance and reach feature set which make this LDO suitable for various industrial applications. The wide input voltage up to 38 V and output voltage up to 35 V is very useful for powering device from low power MCUs up to high performance motor drivers. Low quiescent current 13 μ A allows to extend device battery life and design more efficient always–on devices. The power good feature with programmable delay brings additional safety for industrial applications. The NCP734 is available in thermal enhanced 3 mm x 3 mm DFN8 package. The device is stable with small 4.7 μ F MLCC output capacitor.

Features

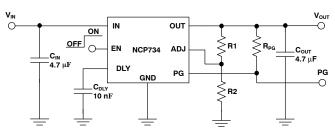
- Operating Input Voltage Range: 2.7 V to 38 V
- Available in Adjustable Voltage Option: 1.2 V to 35 V
- Available in Fixed Voltage Option: 3.3 V, 5 V
- Typ. ±1 % Accuracy
- Ultra-Low Quiescent Current Typ. 13 µA
- Standby Current 1 µA
- Very Low Dropout: 300 mV at 500 mA
- Operating Temperature: -40°C to 125°C
- Stable with a 4.7 µF Small Case Size Ceramic Capacitors
- Available in DFNW8 3 mm x 3 mm with EP
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant

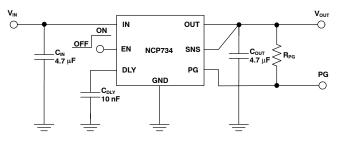

Typical Applications


- Test and Measurement Equipment
- Battery Power Tools
- IoT, Wireless Devices
- Smart Metering, Smart Grid
- Home Appliances

This document contains information on a product under development. **onsemi** reserves the right to change or discontinue this product without notice.

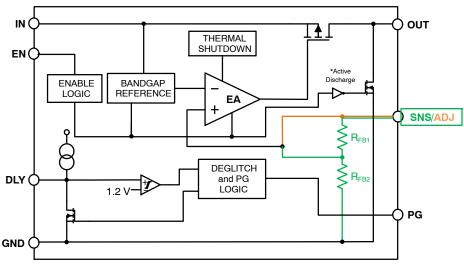
DFNW8 CASE 507AD




ORDERING INFORMATION

See detailed ordering and shipping information on page 5 of this data sheet.

1



Adjustable voltage output

Fixed voltage output

Figure 1. Typical Application Schematics

*Active Discharge - Only A version

Figure 2. Simplified Schematic Block Diagram

Pin No.	Pin Name	Description
1	DELAY	Delay pin. Connect a capacitor to GND to adjust power good delay or leave it unconnected to use default delay time – typ. 350 $\mu s.$
2	OUT	Regulated output voltage. Connect at least 4.7 μ F ceramic capacitor to ensure stability.
3	SNS	Feedback pin. Connect to output. (Fixed)
	ADJ	Adjust pin. Connect resistor divider to set output voltage. (Adjustable)
4, 5	GND	Common ground connection
6	EN	Chip enable: Applying V_{EN} < 0.4 V disables the regulator, Pulling V_{EN} > 1.7 V enables the LDO.
7	IN	Input voltage supply pin
8	PG	Power Good. Open drain output – should be connected via pull–up resistor to V _{OUT} . This pin is pulled down when V _{OUT} goes under PG threshold limit
EP	EPAD	Expose pad can be tied to ground plane for better power dissipation or can be left floating.

Table 2. ABSOLUTE MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Input Voltage (Note 1)	V _{IN}	–0.3 to 40	V
Output Voltage	V _{OUT}	–0.3 to V _{IN} + 0.3, max. 40	V
Chip Enable Input	V _{EN}	–0.3 to V _{IN} + 0.3, max. 40	V
Delay	V _{DELAY}	-0.3 to 2.4	V
Sense and Adjust Pin	V _{SNS,} V _{ADJ}	–0.3 to 6	V
Power Good Pin	V _{PG}	–0.3 to V _{IN} + 0.3, max. 40	V
Output Short Circuit Duration	t _{SC}	unlimited	s
Maximum Junction Temperature	TJ	150	°C
Storage Temperature	T _{STG}	–55 to 150	°C
ESD Capability, Human Body Model (Note 2)	ESD _{HBM}	2000	V
ESD Capability, Charged Device Model (Note 2)	ESD _{CDM}	500	V

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected. 1. Refer to ELECTRICAL CHARACTERISTIS and APPLICATION INFORMATION for Safe Operating Area.

This device series incorporates ESD protection and is tested by the following methods: ESD Human Body Model tested per ANSI/ESDA/JEDEC JS-001, EIA/JESD22-A114

ESD Charged Device Model tested per ANSI/ESDA/JEDEC JS-002, EIA/JESD22-C101

Table 3. THERMAL CHARACTERISTICS (Note 3)

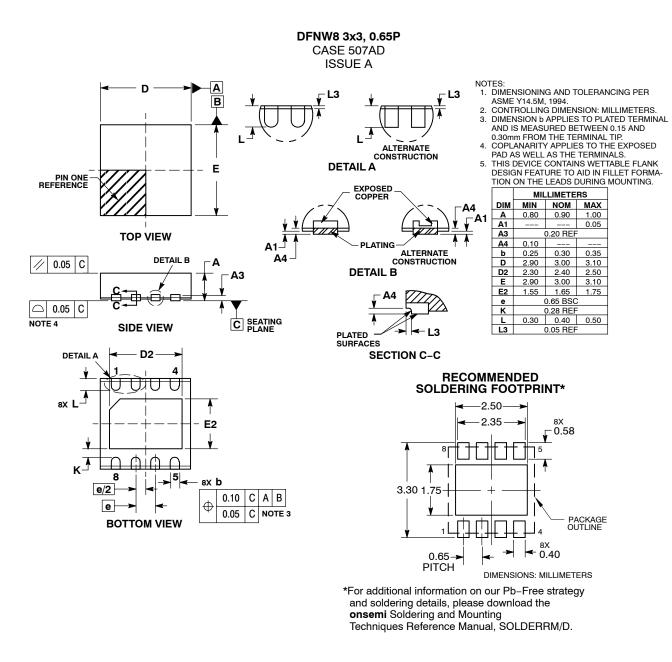
Rating	Symbol	Value	Unit
Thermal Resistance, Junction-to-Air	$R_{ hetaJA}$	50	°C/W
Thermal Resistance, Junction-to-Case (top)	R _{0JC(top)}	TBD	°C/W
Thermal Resistance, Junction-to-Case (bottom)	R _{θJC(bot)}	TBD	°C/W
Thermal Resistance, Junction-to-Board (top)	R _{0JB(top)}	TBD	°C/W
Thermal Characterization Parameter, Junction-to-Case (top)	$\Psi_{JC(top)}$	3.5	°C/W
Thermal Characterization Parameter, Junction-to-Board (FEM)	Ψ_{JB}	8.9	°C/W

3. Measured according to JEDEC board specification, 2S2P board, 1 oz. copper. Detailed description of the board can be found in JESD51-7.

NCP734

Parameter	Test Conditions		Symbol	Min	Тур	Max	Unit
Operating Input Voltage			V _{IN}	2.7		38	V
Under-Voltage Lockout	VIN Falling until device tu	urn–off	UVLO		2.55	2.6	V
UVLO Hysteresis			UVLO _{HYS}		50		mV
Output Voltage Accuracy	$T_J = 25^{\circ}C$		V _{OUT}		1		%
	$\begin{array}{l} V_{IN} = V_{OUT(NOM)} + 1 \ V \\ to \ 38 \ V, \ 100 \ \mu A \leq I_{OUT} \\ \leq 500 \ mA \end{array}$	$-40^\circ C \le T_J \le 125^\circ C$		-1.5		+1.5	
Reference voltage			V _{REF}		1.2		V
Output voltage range – Adjustable			V _{RANGE}	V _{REF}		35	V
ADJ Input Current	V _{ADJ} = 1.2 V		I _{ADJ}		0.01	TBD	μA
Line Regulation	$V_{OUT(NOM)}$ + 1 V \leq V _{IN} \leq	38 V	Line _{Reg}		0.01	0.2	%Vout
Load Regulation	. ,		Load _{Reg}		0.15	0.4	%Vout
Dropout Voltage (Note 5)	I _{OUT} = 500 mA	V _{OUT} = 3.3 V	V _{DO}		300	TBD	mV
Output Current Limit	V _{OUT} = 90% V _{OUT(NOM)}		I _{CL}	550	700	850	mA
Quiescent Current	V _{IN} = 2.7 V to 38 V, no lo	bad	Ι _Q		13	25	μA
Shutdown Current	V _{EN} = 0 V, V _{IN} = 38 V		I _{DIS}		1	TBD	μA
EN Pin Threshold Voltage	EN Input Voltage "L"		V _{ENL}			0.4	V
	EN Input Voltage "H"		V _{ENH}	1.2			
EN Pull Down Current	V _{EN} = 38 V, V _{IN} = 38 V		I _{EN}			1	μA
Turn–On Time	From assertion of V_{EN} to $V_{OUT} = 98\% V_{OUT(NOM)}$		t _{ON}		TBD		μs
Power Supply Rejection Ratio	I _{OUT} = 100 mA	f = 100 Hz	PSRR		75		dB
		f = 1 kHz	-		80		
		f = 100 kHz	-		45		
Output Voltage Noise	f = 10 Hz to 100 kHz		V _N		70		μV _{RMS}
Thermal Shutdown Threshold	Temperature rising		T _{SDH}		175		°C
	Temperature falling		T _{SDL}		160		
Active output discharge resistance	Temperature falling $V_{EN} < 0.4 V$, Version A only		R _{DIS}		100		Ω
PG Threshold	V _{OUT} falling		V _{PG-TH}	90	93	96	%
PG Hysteresis	V _{OUT} rising		V _{PG-HYST}		2		%
PG Delay Time	C _{DELAY} = floating		t _{PG-DLY}		350		μs
	C _{DELAY} = 10 nF		t _{PG-DLY_10nF}	8	10	12	ms
PG Deglitch Time			t _{PG_DG}		200		μs
PG Output Low Level Voltage	I _{OL} = 1 mA		V _{PG-OL}		0.2	0.4	V
PG leakage current	PG is pulled to V_{OUT} by 10 k Ω resistor		I _{PG-LK}		0.01	TBD	μA
C _{DELAY} charging current	1		I _{CAP-CHRG}		1.2		μA
DLY pin Threshold	DLY pin Voltage rising		V _{DLY TH}	1.1	1.2	1.3	V
DLY pin Hysteresis	DLY pin Voltage falling		V _{DLY HYST}		0.1		V
DLY pin voltage clamp	DLY pin floating		- V _{DLY_CLAMP}		2.4		V

Table 4. ELECTRICAL CHARACTERISTICS $(-40^{\circ}C \le T_J \le 125^{\circ}C; V_{IN} = V_{OUT(NOM)} + 1 V \text{ or } 2.7 V$, whichever is greater;	
$I_{OUT} = 1 \text{ mA}$, $C_{IN} = C_{OUT} = 4.7 \mu\text{F}$, $C_{DLY} = 10 \text{ nF}$, $V_{EN} = 1.2 \text{ V}$, unless otherwise noted. Typical values are at $T_J = +25^{\circ}\text{C}$ (Note 4))	


Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.
Performance guaranteed over the indicated operating temperature range by design and/or characterization. Production tested at T_A = 25°C. Low duty cycle pulse techniques are used during the testing to maintain the junction temperature as close to ambient as possible.
Dropout voltage is characterized when V_{OUT} falls -100 mV below V_{OUT(NOM)}.

ORDERING INFORMATION

Device	Output Voltage	Description	Marking	Package	Shipping
NCP734AML330TCG	3.3 V		TBD	DFNW8	
NCP734AML500TCG	5.0 V	500 mA, Active Discharge	TBD	CASE 507AD (Pb-Free)	TBD
NCP734AMLADJTCG	Adjustable		TBD		

NCP734

PACKAGE DIMENSIONS

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. **onsemi** reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and **onsemi** makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** prod

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

TECHNICAL SUPPORT

Email Requests to: orderlit@onsemi.com
onsemi Website: www.onsemi.com

North American Technical Support: Voice Mail: 1 800–282–9855 Toll Free USA/Canada Phone: 011 421 33 790 2910 Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative