RENESAS

PHOTO DIODE NDL5521P Series

2.5 Gb/s OPTICAL FIBER COMMUNICATIONS ϕ 50 μm InGaAs AVALANCHE PHOTO DIODE WITH MMF

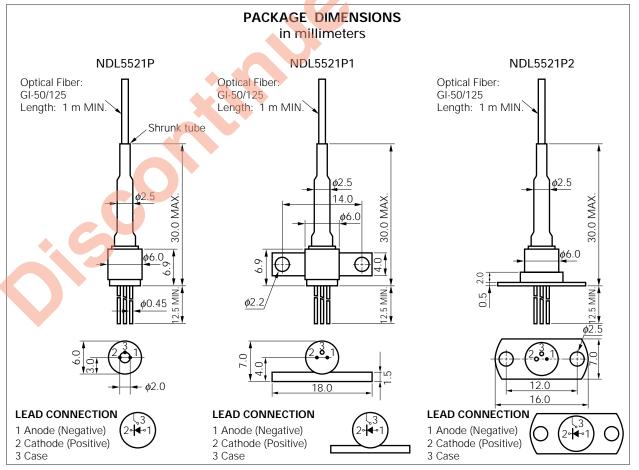
DESCRIPTION

NDL5521P Series are InGaAs avalanche photo diode modules with multimode fiber. They are designed for 2.5 Gb/s optical fiber communication systems and cover the wavelength range between 1 000 and 1 600 nm with high efficiency.

These modules are also available with FC-PC connector and SC-PC connector.

FEATURES

- Small dark current
 ID = 5 nA
- High quantum efficiency
- η = 90 % @ λ = 1 300 nm, M = 1


*φ*50 μm

High speed response

fc = 2.5 GHz MIN. @M = 10

 $\eta = 77 \% @ \lambda = 1550 \text{ nm}, \text{ M} = 1$

- Detecting area size
- · Coaxial module with multimode fiber (GI-50/125)
- NDL5521P1 and NDL5521P2 have a flange.

Document No. P10314EJ2V0DS00 (2nd edition) (Previous No. LD-2370) Date Published July 1995 P Printed in Japan

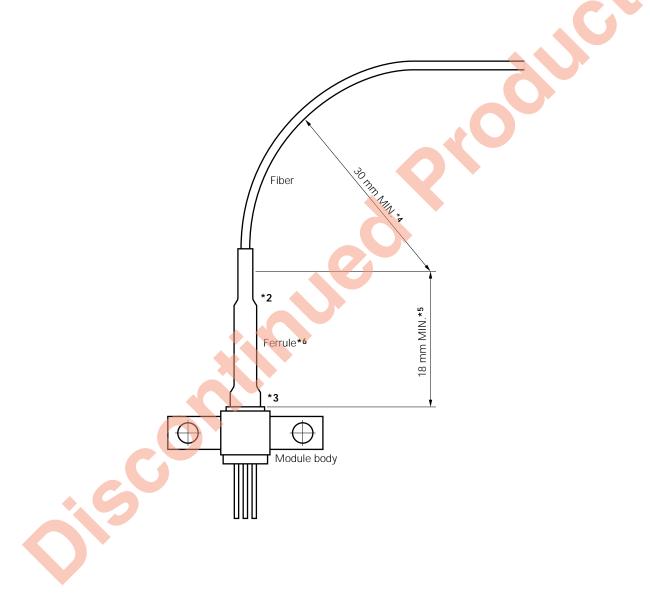
ORDERING INFORMATION

PART NUMBER	AVAILABLE CONNECTOR
NDL5521P	Without Connector
NDL5521PC	With FC-PC Connector
NDL5521PD	With SC-PC Connector
NDL5521P1	Without Connector
NDL5521P1C	With FC-PC Connector
NDL5521P1D	With SC-PC Connector
NDL5521P2	Without Connector
NDL5521P2C	With FC-PC Connector
NDL5521P2D	With SC-PC Connector

ABSOLUTE MAXIMUM RATINGS (Tc = 25 °C)

Forward Current	IF	10	mA
Reverse Current	Ir	0.5	mA
Operating Case Temperature	Tc	-40 to +85	°C
Storage Temperature	Tstg	-40 to +85	°C

ELECTRO-OPTICAL CHARACTERISTICS (Tc = 25 °C)


CHARACTERISTIC	SYMBOL	MIN.	TYP.	MAX.	UNIT	TEST CONDITIONS
Reverse Breakdown Voltage	V _{(BR)R}	40	55	80	V	$I_D = 100 \ \mu A$
Temperature Coefficient of Reverse Breakdown Voltage	δ*1		0.2		%/°C	
Dark Current	lo		5	30	nA	$V_R = V_{(BR)R} \times 0.9$
Multiplied Dark Current	Ірм		0.5	5	nA	M = 2 to 10
Terminal Capacitance	Ct		0.4	0.75	pF	$V_{\text{R}} = V_{(\text{BR})\text{R}} \times 0.9, \ f = 1 \ MHz$
Cut-off Frequency		2.5			GHz	M = 5
	fc	2.5	3.0			M = 10
		1.0				M = 30
Quantum Efficiency	η	76	90		%	λ = 1 300 nm, M = 1
		65	77			λ = 1 550 nm, M = 1
Responsivity	S	0.8	0.94		A/W	λ = 1 300 nm, M = 1
		0.81	0.96			λ = 1 550 nm, M = 1
Multiplication Factor	Μ	30	40			$\lambda = 1550 \text{ nm}, \text{ Ipo} = 1.0 \ \mu\text{A}$ V _R = V (@ I _D = 1 \ \mu\text{A})
Excess Noise Factor	х		0.7			λ = 1 300 nm, 1 550 nm, I _{po} = 1.0 μ A
Excess Noise Coefficient	F		5			M = 10, f = 35 MHz, B = 1 MHz
Optical Return Loss	ORL		30		dB	

 $*1: \delta = \frac{V_{(\text{BR})\text{R}} < 25 \text{ }^{\circ}\text{C} + \Delta\text{T} \text{ }^{\circ}\text{C} > - V_{(\text{BR})\text{R}} < 25 \text{ }^{\circ}\text{C} >}{\Delta\text{T} \text{ }^{\circ}\text{C} \cdot V_{(\text{BR})\text{R}} < 25 \text{ }^{\circ}\text{C} >}$

HANDLING PRECAUTION for NEW TYPE PD/APD MODULE

The NEC's new type PD/APD module has the shrunk tube to guard the ferrule edge^{*2} and the junction between the ferrule and the module body^{*3}. If adequate care is not taken with the shrunk tube module, there is possibility of fiber-break and/or optical coupling degradation. In order to protect this module, NEC recommends following condition for handling.

- 1. Keep the minimum fiber bend radius (30 mm min.*⁴).
- 2. Do not bend the fiber within the 18 mm region $^{\rm +5}$ from the module body.
- 3. Do not stress the ferrule *6, lateral force < 500 g.

InGaAs APD FAMILY

FEATURES		A	PD		
PACKAGES	<i>φ</i> 30 μm	<i>φ</i> 50 μm (for 2.5G)	<i>φ</i> 50 μm	<i>φ</i> 80 μm	REMARKS
TO-18 CAN	NDL5530		NDL5500	NDL5510	3PIN
CHIP ON CARRIER	NDL5530C	NDL5520C	NDL5500C	NDL5510C	
COAXIAL MODULE WITH MMF		NDL5521P NDL5521P1 NDL5521P2	NDL5551P NDL5551P1 NDL5551P2 NDL5553P*8 NDL5553P2*8 NDL5553P2*8 NDL5590P*9 NDL5590P1*9 NDL5590P1*9	NDL5561P* ⁷ NDL5561P1* ⁷ NDL5561P2* ⁷	P1, P2: WITH FLANGE
COAXIAL MODULE WITH SMF	NDL5531P NDL5531P1 NDL5531P2				0
14 PIN DIP MODULE WITH TEC, MMF* ⁸			NDL5506P NDL5506PS	NDL5516P*7	⊿T = 45 K (@lc = 1.1 A) PS: WITH SMF
			NDL5507P NDL5507PS	NDL5517P*7	∆T = 65 K (@lc = 1.3 A) PS: WITH SMF
6 PIN BFY MODULE WITH MMF		NDL5522P* ⁹			

*7 WITH GI62.5 *8 FOR OTDR APPLICATION *9 WITH PRE-AMP

REFERENCE

le on NEC semiconductor devices IEI-1209 itor device mounting technology manual IEI-1207 itor device package manual IEI-1213 ality assurance for semiconductor devices IEI-1202 itor selection guide MF-1134	Quality grade on NEC semiconductor devices IEI-1209 Semiconductor device mounting technology manual IEI-1207 Semiconductor device package manual IEI-1213 Guide to quality assurance for semiconductor devices IEI-1202	NEC semiconductor device reliability/quality control system	Document No.
tor device mounting technology manual IEI-1207 tor device package manual IEI-1213 ality assurance for semiconductor devices IEI-1202 tor selection guide MF-1134	Semiconductor device mounting technology manual IEI-1207 Semiconductor device package manual IEI-1213 Guide to quality assurance for semiconductor devices IEI-1202 Semiconductor selection guide MF-1134	We semiconductor device renability/quality control system	IEI-1205
tor device package manual IEI-1213 ality assurance for semiconductor devices IEI-1202 tor selection guide MF-1134	Semiconductor device package manual IEI-1213 Guide to quality assurance for semiconductor devices IEI-1202 Semiconductor selection guide MF-1134	Quality grade on NEC semiconductor devices	IEI-1209
ality assurance for semiconductor devices IEI-1202 tor selection guide MF-1134	Guide to quality assurance for semiconductor devices IEI-1202 Semiconductor selection guide MF-1134	Semiconductor device mounting technology manual	IEI-1207
tor selection guide MF-1134	Semiconductor selection guide MF-1139	Semiconductor device package manual	IEI-1213
		Guide to quality assurance for semiconductor devices	IEI-1202
		Semiconductor selection guide	MF-1134

CAUTION

Within this module there exists GaAs (Gallium Arsenide) material which is a harmful substance if ingested. Please do not under any circumstance break the hermetic seal.

The export of this product from Japan is prohibited without governmental license. To export or re-export this product from a country other than Japan may also be prohibited without a license from that country. Please call an NEC sales representative.

No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in this document.

NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from use of a device described herein or any other liability arising from use of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Corporation or others.

While NEC Corporation has been making continuous effort to enhance the reliability of its semiconductor devices, the possibility of defects cannot be eliminated entirely. To minimize risks of damage or injury to persons or property arising from a defect in an NEC semiconductor device, customer must incorporate sufficient safety measures in its design, such as redundancy, fire-containment, and anti-failure features.

NEC devices are classified into the following three quality grades:

"Standard", "Special", and "Specific". The Specific quality grade applies only to devices developed based on a customer designated "quality assurance program" for a specific application. The recommended applications of a device depend on its quality grade, as indicated below. Customers must check the quality grade of each device before using it in a particular application.

- Standard: Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots
- Special: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support)
- Specific: Aircrafts, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems or medical equipment for life support, etc.

The quality grade of NEC devices in "Standard" unless otherwise specified in NEC's Data Sheets or Data Books. If customers intend to use NEC devices for applications other than those specified for Standard quality grade, they should contact NEC Sales Representative in advance.

Anti-radioactive design is not implemented in this product.

M4 94.11