

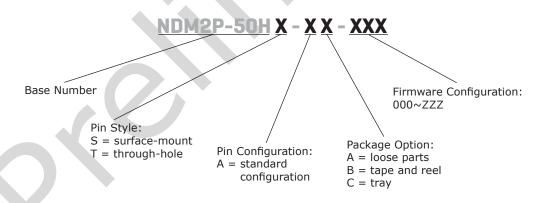
SERIES: NDM2P-50H | DESCRIPTION: AUTO COMPENSATED, DIGITAL DC-DC POL CONVERTER

GENERAL CHARACTERISTICS

- 4.5~14 V input range
- 0.6~3.3 V programmable output
- voltage tracking
- voltage margining
- active current sharing
- real-time adaptive loop compensation
- voltage/current/temperature monitoring
- synchronization and phase spreading
- remote differential voltage sense
- programmable soft start and soft stop
- fault management

FEATURES

- compact package horizontal:
 30.85 x 20.0 x 11.2 mm (1.215 x 0.787 x 0.441 in) vertical (SIP):
 33.0 x 7.6 x 18.1 mm (1.30 x 0.30 x 0.713 in)
- 50 A output
- high efficiency
- auto compensation
- SMBus interface
- PMBus[™] Compatible



MODEL	input voltage	t voltage output voltage output current		output wattage	
	(Vdc)	(Vdc)	max (A)	max (W)	
NDM2P-50H	4.5~14	0.6~3.3	50	165	

PART NUMBER KEY

Example part number: NDM2P-50HT-AA-002

horizontal module through-hole pins standard pin configuration loose parts package option firmware configuration 002

CONTENTS

 $-30^{\circ}C < T_{_{P1}} < +95^{\circ}C$, 4.5 V < V $_{_{in}} < 14$ V, typical measurements made at V $_{_{in}} = 12$ V, V $_{_{out}} = 1.0$ V, I $_{_{out}} = I_{_{MAX}}$, T $_{_{P1}} = 25^{\circ}C$, C $_{_{in}} = 470~\mu\text{F}/10~m\Omega$, Cout = 470 $\mu\text{F}/8~m\Omega$

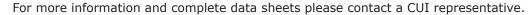
INPUT / OUTPUT

parameter	conditions/description	min	typ	max	units
V _{in}	input supply voltage	4.5		14	V
I _{out}	output current	0		50	А
V _{out}	adjustable via resistor or PMBus™ commands	0.6		3.3	V
V _{out} margin	adjustable via PMBus commands	0.6		3.63	V
voltage accuracy	over line, load and temperature measured at +S and -S	-1		1	%
voltage set-point resolution	when V _{out} set via PMBus commands		2.7		mV
voltage ripple and noise	$egin{array}{lll} V_{out} &= 0.6 \ V \\ V_{out} &= 1.0 \ V \\ V_{out} &= 1.8 \ V \\ V_{out} &= 3.3 \ V \end{array}$		16 22 26 28		mVp-p
ramp-up rate	adjustable via PMBus commands	0.04	7	10	V/ms
on time delay	adjustable via PMBus commands	10		1,000	ms
load transient voltage deviation	I_{out} : 25% \rightarrow 75% \rightarrow 25% of I_{max} , $dI/dt=2 A/\mu s$ $V_{out} = 0.6 V$ $V_{out} = 1.0 V$ $V_{out} = 1.8 V$ $V_{out} = 3.3 V$		80 80 85 105		mV
load transient recovery time ¹	I_{out} : 25% \rightarrow 75% \rightarrow 25% of $I_{max'}$ dI/dt=2 A/ μ s V_{out} = 0.6 V V_{out} = 1.0 V V_{out} = 1.8 V V_{out} = 3.3 V		30 25 20 20		μs

Notes:

1. settling to within 3% of $V_{\rm out}$

POWER / EFFICIENCY


parameter	conditions/descript	conditions/description		typ	max 181.5	units W
output power	V _{out} = 3.3 V + 10% margin		0			
	$I_{out} = 50\%$ of max	$V_{out} = 0.6 \text{ V}$ $V_{out} = 1.0 \text{ V}$ $V_{out} = 1.8 \text{ V}$ $V_{out} = 3.3 \text{ V}$		86.5 90.7 93.1 94.5		%
efficiency	I _{out} = max	$V_{out} = 0.6 \text{ V}$ $V_{out} = 1.0 \text{ V}$ $V_{out} = 1.8 \text{ V}$ $V_{out} = 3.3 \text{ V}$		81.5 87.1 90.1 92.3		%

POWER CONNECTIONS

symbol	pin	IO type	description
VOUT	1~3	Power	Output voltage
GND	4~7	Ground	Power ground
VIN	8~9	Power	Input voltage

COMMUNICATION CONNECTIONS

symbol	pin	IO type	description		
SA1	10	Digital	SMBus address pinstrap 1		
SA0	11	Digital	SMBus address pinstrap 0		
DSS	12	Digital	Digital Stress Share		
SYNC	13	Digital	Synchronization I/O		
VTRK	14	Analog	Voltage tracking input		
VSET	15	Digital	Output voltage pin-strap		
CONFIG	16	Analog	Configuration table selector		
-S	17	Analog	Output voltage negative sense input		
+S	18	Analog	Output voltage positive sense input		
PREF	19	Ground	Pin-strap ground		
PG	20	Digital	Power Good		
SYSG	21	Digital	System functioning properly		
CTRL	22	Digital	Remote control or enable pin		
SALERT	23	Digital	SMBus alert		
SDA	24	Digital	SMBus data		
SCL	25	Digital	SMBus clock		

REVISION HISTORY

rev.	description	date
0.9	preliminary release	09/12/2012

The revision history provided is for informational purposes only and is believed to be accurate.

Headquarters 20050 SW 112th Ave. Tualatin, OR 97062 800.275.4899

Fax 503.612.2383 cui.com techsupport@cui.com

Novum is a trademark of CUI. PMBus is a trademark of SMIF, Inc. Auto-Control is a trademark of Powervation Ltd. $\ensuremath{\mathsf{All}}$ other trademarks are the property of their respective owners.

CUI offers a two (2) year limited warranty. Complete warranty information is listed on our website.

CUI reserves the right to make changes to the product at any time without notice. Information provided by CUI is believed to be accurate and reliable. However, no responsibility is assumed by CUI for its use, nor for any infringements of patents or other rights of third parties which may result from its use.

CUI products are not authorized or warranted for use as critical components in equipment that requires an extremely high level of reliability. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.