
Features

- 1-port Resonator
- Provides reliable, fundamental mode, quartz frequency stabilization i.e. in transmitters or local oscillators
- In a low-profile metal **D-11** case
- Lead-free production and RoHS compliance

Package Dimensions

Pin No.	Function
1	Input
2	Ground
3	Output

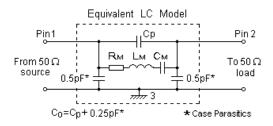
Dimensions	Data (unit: mm)		
Α	8.36		
В	3.45		
С	3.0		
D	0.45		
Е	3.0		
F	2.54		

Marking

NDR315

Ink OR Laser Marking

*ink Color: Black or Blue


Top View:

"ND": Manufacturer's mark

"R": SAW resonator

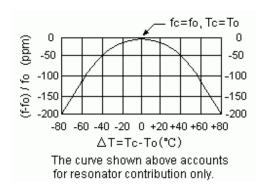
"315": center Frequency

Equivalent LC Model

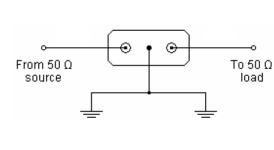
Maximum Ratings

Rating	Value	Unit	
CW RF power dissipation	Р	0	dBm
DC voltage between any terminals	$V_{ m DC}$	±30	V
Operating temperature range	T_{A}	-40 ~ +85	°C
Storage temperature range	T_{stg}	-40 ~ +85	°C

Electrical Characteristics

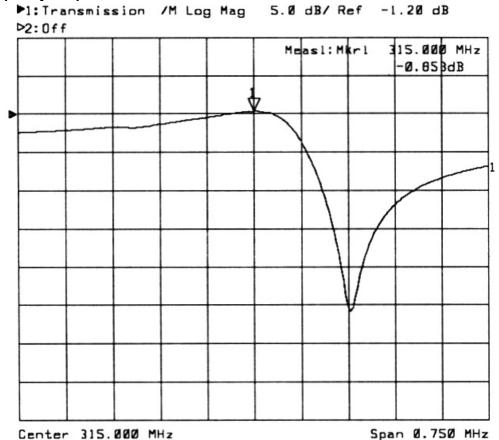

	Characteristic	Sym	Minimum	Typical	Maximum	Unit
Center Frequency	Absolute Frequency	f _C	314.925		315.075	MHz
(+25℃)	Tolerance from 315.000 MHz	Δf_{C}		±75		kHz
Insertion Loss		IL		1.0	1.6	dB
Quality Factor	Unloaded Q	Q _U		14,000		
Quality Factor	50 Ω Loaded Q	QL		1,500		
	Turnover Temperature	T ₀	25		55	$^{\circ}$
Temperature Stability	Turnover Frequency	f ₀		f _C		kHz
,	Frequency Temperature Coefficient	FTC		0.032		ppm/°C²
Frequency Aging Absolute Value during the First Year		f _A		≤10		ppm/yr
DC Insulation Resistance Between Any Two Pins			1.0			МΩ
	Motional Resistance	R _M		12	20	Ω
RF Equivalent	Motional Inductance	L _M		84.9257		μΗ
RLC Model	Motional Capacitance	См		3.0090		fF
	Pin 1 to Pin 3 Static Capacitance	C ₀	2.70	3.00	3.30	pF

NoHS Compliant

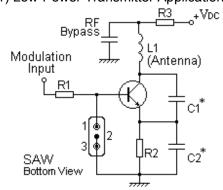

Electrostatic Sensitive Device

- 1. Unless noted otherwise, case temperature T_C = +25°C±2°C.
- 2. The center frequency, f_C , is measured at the minimum insertion loss point with the resonator in the 50 Ω test system.
- Frequency aging is the change in f_C with time and is specified at +65°C or less. Aging may exceed the specification for prolonged temperatures above +65°C. Typically, aging is greatest the first year after manufacture, decreasing in subsequent years.
- 4. Turnover temperature, T_O , is the temperature of maximum (or turnover) frequency, f_O . The nominal frequency at any case temperature, T_C , may be calculated from: $f = f_O [1 FTC (T_O T_C)^2]$.
- 5. This equivalent RLC model approximates resonator performance near the resonant frequency and is provided for reference only. The capacitance C_O is the static capacitance between the two terminals measured at low frequency (10MHz) with a capacitance meter. The measurement includes case parasitic capacitance.

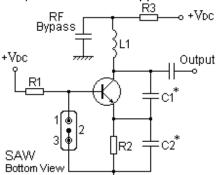
Temperature Characteristics



Test Circuit



Typical Frequency Response



Typical Application Circuits

1) Low-Power Transmitter Application

2) Local Oscillator Application

© NEDI 2009. All Rights Reserved.

- 1. The specifications of this device are subject to change or obsolescence without notice.
- Typically, equipment utilizing this device requires emissions testing and government approval, which is the responsibility of the equipment manufacturer.
- 3. Our liability is only assumed for the Surface Acoustic Wave (SAW) component(s) per se, not for applications, processes and circuits implemented within components or assemblies.
- 4. For questions on technology, prices and delivery, please contact our sales offices or e-mail winnsky@winnsky.com