
### 1.Package Dimension(F-11 SMD)



| NO. | Function     |
|-----|--------------|
| 1   | Output/Input |
| 2   | GND          |
| 3   | GND          |
| 4   | Input/Output |

Unit:mm

## 2. Marking

## **NDR433.92**

2-1.Color: Black or Blue

2-2.Center Frequency(MHz):433.92

#### 3.Performance

3-1.Maximum Rating

| DC Voltage V <sub>DC</sub> | 10V            |
|----------------------------|----------------|
| AC Voltage V <sub>PP</sub> | 10V(50Hz/60Hz) |
| Operation Temperature      | -40°C to +85°C |
| Storage Temperature        | -40°C to +85°C |
| RF Power Dissipation       | 0 dBm          |

#### 3-2Electronic Characteristics

| Characteristic                                       |                                   | Sym            | Minimum | Typical | Maximum | Unit    |
|------------------------------------------------------|-----------------------------------|----------------|---------|---------|---------|---------|
| Center<br>Frequency(+25 □ )                          | Absolute Frequency                | fc             | 433.845 |         | 433.995 | MHz     |
|                                                      | Tolerance from 433.92 MHz         | Δfc            |         | ±75     |         | kHz     |
| Insertion Loss                                       |                                   |                |         | 1.5     | 2.0     | dB      |
| Quality Factor                                       | Unloaded Q                        | $Q_U$          |         | 12,800  |         |         |
|                                                      | 50 Ω Loaded Q                     | $Q_{L}$        |         | 2,000   |         |         |
| Temperature<br>Stability                             | Turnover Temperature              | T <sub>0</sub> | 24      | 39      | 54      | °C      |
|                                                      | Turnover Frequency                | $f_0$          |         | fc+2.7  |         | kHz     |
|                                                      | Frequency Temperature Coefficient | FTC            |         | 0.037   |         | ppm/□ ² |
| Frequency Aging Absolute Value during the First Year |                                   |                |         | ≤10     |         | ppm/yr  |
| DC Insulation Resistance between Any Two Pins        |                                   |                | 1.0     |         |         | МΩ      |
| RF Equivalent<br>RLC Model                           | Motional Resistance               | R <sub>M</sub> |         | 18      | 26      | Ω       |
|                                                      | Motional Inductance               | L <sub>M</sub> |         | 86.0075 |         | μН      |
|                                                      | Motional Capacitance              | См             |         | 1.56417 |         | fF      |
|                                                      | Pin 1 to Pin 2 Static Capacitance | Co             |         | 1.9     |         | pF      |

# © CAUTION: Electrostatic Sensitive Device. Observe precautions for handling NOTES:

- 1.Frequency aging is the change in  $f_c$  with time and is specified at  $+65^{\circ}$ C or less. Aging may exceed the specification for prolonged temperatures above  $+65^{\circ}$ C. Typically, aging is greatest the first year after manufacture, decreasing in subsequent years.
- 2. The frequency  $f_c$  id the frequency of minimum IL with the resonator in the specified test fixture in a 50  $\Omega$  test system with VSWR  $\leq$  1.2 : 1. Typically,  $f_{oscillator}$  or  $f_{transmitter}$  is less than the resonator  $f_c$ .
- 3. Typically, equipment utilizing this device requires emissions testing and government approval, which is the responsibility of the equipment manufacturer.
- 4.Unless noted otherwise, case temperature  $T_c=\pm 22^{\circ}C \pm 2^{\circ}C$ .
- 5. The design, manufacturing process, and specifications of this device are subject to change without notice.
- 6.Derived mathematically from one or more of the following directly measured parameters:  $f_c$ , IL, 3 dB bandwidth,  $f_c$  versus  $T_c$ , and  $C_0$ .
- 7. Turnover temperature,  $T_0$ , is the temperature of maximum (or turnover) frequency,  $f_0$ , The nominal center frequency at any case temperature, TC, may be calculated from : $f = f_0 = 1$ -FTC ( $T_0$ - $T_0$ )  $T_0$  . Typically, oscillator  $T_0$  is  $T_0$ 0 less than the specified resonator  $T_0$ 0.
- 8. This equivalent RLC model approximates resonator performance near the resonant frequency and is provided for reference only . The capacitance  $C_0$  is the measured static (nonmotional) capacitance between either pin 1 and ground or pin 4 and ground . The measurement includes case parasitic capacitance.

One-port SAW Resonator For wireless Remote Controller 2002

Note: Reference temperature shall be  $25 \pm 2^{\circ}$ C. However, the measurement may be carried out at 5°C to 35°C unless there is a dispute.

#### 4. Reliability

- 4.1 Mechanical Shock: The components shall remain within the electrical specifications after 1000 shocks, acceleration 392m/s², duration 6 milliseconds.
- 4.2 Vibration Fatigue: The components shall remain within the electrical specifications after loaded vibration at 20 Hz , amplitude 1.5mm , for 2 hours.
- 4.3 Terminal Strength: The components shall remain within the electrical specifications after pulled 2 Kgs weight for 10 seconds towards an axis of each terminal.
- 4.4 High Temperature Storage: The components shall remain within the electrical specifications after being kept at the  $85^{\circ}$ C  $\pm 2^{\circ}$ C for 48 hours, then kept at room temperature for 2 hours.
- 4.5 Low Temperature Storage: The components shall remain within the electrical specifications after being kept at the -25°C ±2°C for 48 hours ,then kept room temperature for 2 hours.
- 4.6 Temperature Cycle: The components shall remain within the electrical specifications after 5 cycles of high and low temperature testing(one cycle: 80°C for 30 minutes → 25°C for 5 minutes → -25°C for 30 minutes ) than kept at room temperature for 2 hours.
- 4.7 Solder-heat Resistance: The components shall remain within the electrical specifications after dipped in the solder at 260°C for 10±1 seconds, then kept at room temperature for 2 hours. (Terminal must be dipped leaving 1.5 mm from the case).
- 4.8 Solder ability: Solder ability of terminal shall be kept at more than 80% after dipped in the solder flux at  $230^{\circ}\text{C} \pm 5^{\circ}\text{C}$  for  $5\pm 1$  seconds.

#### 5. Remarks

5.1Static voltage

Static voltage between signal load & ground may cause deterioration & destruction of the component. Please avoid static voltage.

5.2Ultrasonic cleaning

Ultrasonic vibration may cause deterioration & destruction of the component. Please avoid ultrasonic cleaning.

5.3Soldering

Only leads of component may be soldered. Please avoid soldering another part of component.