

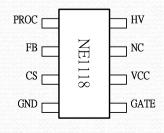
NE1118 12V/3A COC V5.0 Tier2 &DOE V6.0 Design

Power Boost and Green Mode PWM Controller with HV Start

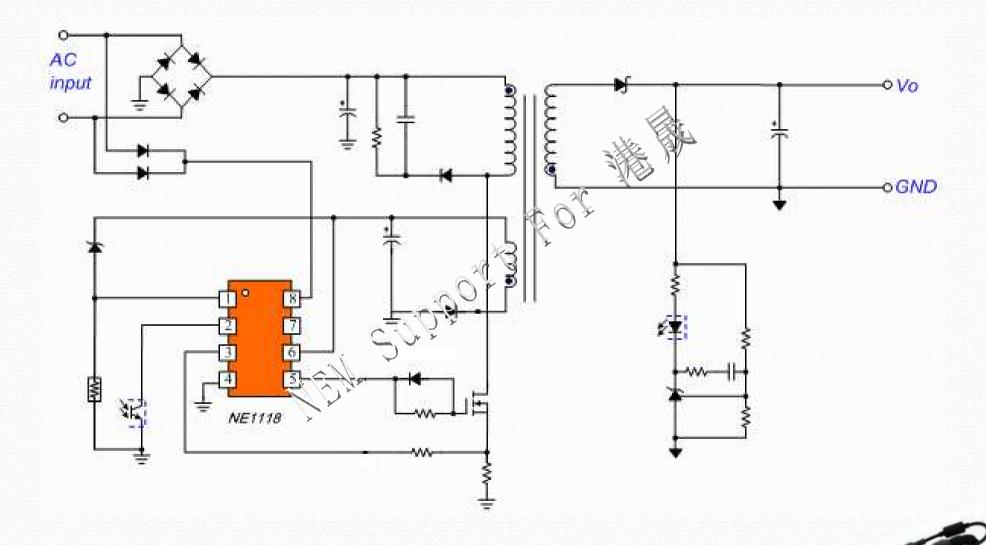
The NE1118 is a highly integrated PWM controller. It is built-in with several features to enhance the performance of off-line power supply in SOP-8 package. With the adjustable OPP function integrated in HV pin, it is easy to design the over power protection well under high/low line condition

Features

- Turbo boost technology during over load or peak load condition
- HV startup with low leakage current, Brown out function.
- Safety Protection: Vcc-GND short test, LPS limitation.
- Supplementary bias charging during load transient
- Low power consumption through x-cap discharge switch
- System Open Loop Protection
- Output Short Circuit Protection
- Internal 8mS Soft Start Time Period
- Internal 240nS Leading Edge Blanking+500, A 800mA Gate
 Drive Capability
- Frequency Jittering for EMI Reduction
- Internal Slope Compensation with Self Detection
- Peak power with Frequency Double to prevent from Tr.

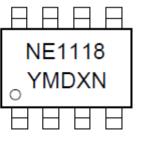

Saturation

Advantages


- ✓ Power boost in a specific period
- Increased frequency during peak load operation to avoid transformer saturation.
- ✔♂♥arious functions on HV pin
 - Supplemental bias charging from HV pin
 - HV start-up circuit for lower power consumption.
 - Internal Brown-in/ out.
 - X-cap discharge.
- ✓ Protection for LPS.

Package

Typical Application



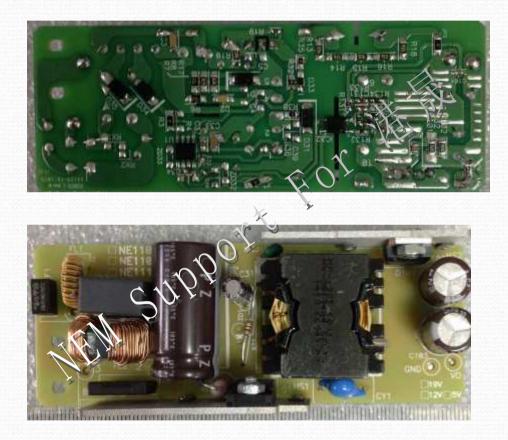
Pin Assignment

Pin Name	Pin no.	Function Description
Рго	1	保護腳
FB	2	電壓回饋腳,連接一個光耦控制輸出電壓
CS	3	電流檢測
GND	4	地
GATE	5	驅動腳
VCC	6	供電腳
NC	7	懸空腳 こうです
HV	8	帶X Cap 波電功能的高壓啟動腳

Package : SOT-26

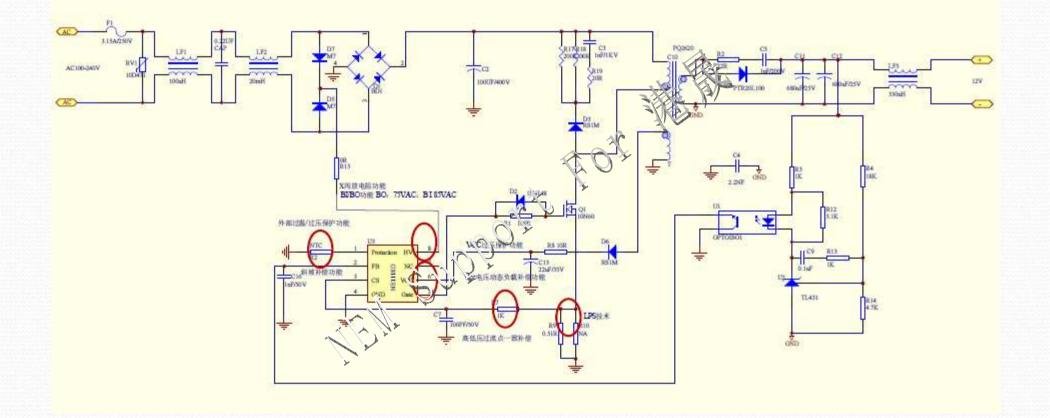
NE1118= Device Y=YEAR M=Month D=Date X=Assembly Info. N=Serial No.

PSU Specifications


Input Characteristics

Rated Input Voltage: 90~264Vac ■Frequency Range: 47~63Hz: ■Efficiency: Eff.> 87.4% @115V/230Vac, Po=36W ■BI/Bo:85Vac/75Vac;BO Delay time:<30mS ■X-Discharge:<1Sec **Output Characteristics Operating Voltage : 12V** ■Normal Current: 3A ■Rated Power: 36W ■Minimum Output Voltage: 11.75V@ Io=3A, Vin=264Vac/47Hz ■Dynamic loading Response:Vout+-0.6V × ■Output over/under shoot:<5%Vout Turn On Delay/Turn off Delay/DC Rise/Fall Time: Turn on time(<1Sec)@115VAac Turn off time(<30mS)@115Vac/230Vac Rise/fall time(<40mS) ■Over Current Protection: 3.5-3.75A; ■Over Current Protection delay time<20mS CoC V5.0 tier 2 and DOE V6

COC V5.0 tier 2 : Standby <75mW,Eff>87.4%; DOE V6.0:Standby<100mW,Eff>87.4%;



12V3A Demo Board Picture

NE1118 Schematic

Efficiency:

Output voltage is measured at the end of 18# 1.5m Wire (Burn-in 10 Minutes);

Input	Pi (W)	Vo (V)	lo (A)	Po (W)	EFF.	AVG. EFF.
	41.26	11.985	3.000	35.954	87.14%	2. And the second secon
115V	30.86	12.058	2.250	27.131	87.92%	87.96%
60Hz	20.6	12.132	1.500	18.197	088.34%	07.30%
	10.348	12.205	0.750	9.154	88.46%	
	41.14	11.984	3.000	35,951	87.39%	
230V	30.77	12.059	2.250	27.133	88.18%	87.87%
50Hz	20.54	12.132	1.530 -	18.198	88.60%	01.0176
	10.48	12.203	0.750	9.153	87.33%	
		A A A				

No load and light load consumption

Input	Pi (W)	Vo (V)	lo (A)	Po (W)	EFF.
	0.029	12.283	0.000	0.000	N/A
90V	0.348	12.285	0.021	0.258	74.13%
60Hz	0.481	12.285	0.030	0.372	8%
	4.177	12.259	0.295	3.616	86.43%
115V 60Hz	0.031	12.285	0.000	0.000	N/A
	0.349	12.285	0.021 🏠 🔇	0.258	73.92%
	0.483	12.246	0.030	0.371	76.82%
	4.184	12.258	A295	3.610	86.28%
	0.045	12.286	0:000	0.000	N/A
230V	0.379	12.2(15)	0.021	0.258	68.07%
50Hz	0.518	122842	0.030	0.372	71.86%
	4.355	12.256	0.295	3.610	82.81%
	60.08	12.286	0.000	0.000	N/A
264V	0.391	12.285	0.021	0.262	66.92%
50Hz	0.536	12.284	0.030	0.372	69.44%
	4.463	12.256	0.295	3.609	80.87%

Brown out Delay time:

Vin(Vac)	Freq(Hz)	Loading (A)	Spec Max. (mS)	Spec Min. (mS)	Reading (ms)	Result
90	60	3.00	30.00	THE '	20.02	PASS
115	60	3.00	30.00	X	20.22	PASS
230	50	3.00	30.00 🔨	QF	20.20	PASS
264	50	3.00	30.00		20.42	PASS

Over Current Delay time:

Vin(Vac)	Freq(Hz)	Loading	Spec Max. (mS)	Spec Min. (mS)	Reading (ms)	Result
90	60 ×	3.00	20.00		16.72	PASS
115	60	3.00	20.00		16.56	PASS
230	50	3.00	20.00		16.80	PASS
264	50	3.00	20.00		16.48	PASS

Regulation Measurement:

Vin (Vac)	Fin (Hz)	Power (W)	Loading (A)	Vout (V)	Result
90	47	0.16	0.013	12.283	PAS
90	47	35.76	3.000	11.983	PASS
115	60	0.16	0.013	12.285	ASS'
115	60	35.76	3.000	11.984	PASS
230	50	0.16	0.013	12.286	PASS
230	50	35.76	3.000	AT1.985 Y	PASS
264	63	0.16	0.013	12.286	PASS
264	63	35.76	3.000	11.985	PASS

Ripple reading:

Vin	Fin	Initial	YPZ	Vpp	Result
(Vac)	(Hz)	Load(A	(mV)	Reading (mV)	
90	60	2.000	250	26.0	PASS
90	60	× × 3.000	250	64.0	PASS
115	60	\$0.000	250	26.8	PASS
115	60	> 3.000	250	56.0	PASS
230	50	0.000	250	28.0	PASS
230	50	3.000	250	56.8	PASS
265	50	0.000	250	28.0	PASS
265	50	3.000	250	56.4	PASS

X-cap Discharge Measurement:

Vin(Vac)	Freq(Hz)	Loading (A)	Spec Max. (mS)	Spec Min. (mS)	Reading (ms)	Result
90	60	3.00	1000.00		45 2B	PASS
115	60	3.00	1000.00	1	49.23	PASS
230	50	3.00	1000.00	20	203.2	PASS
264	50	3.00	1000.00	AOY	345.2	PASS

OCP Measurement:

				- A
leası	iren	nent:	2000 S	×, *
Vac (V)	f (Hz)	OCP Reading (/	A) Ser V	
90	47	3.550	118.33%	
115	60	3.780	126.00%	
230	50	3.730	124.33%	
264	63	3.700	123.33%	
	ļ	22		

Sales and Technical supports

- Design-in documents:
 - Reference design schematics
 - PCB layout Gerber files
 - BOM
 - Mathcad external component calculation tool
 - 一级代理商 深圳港晟电子 郭先生 QQ:403920015 glf680409@163.com

