

NE5550234

Silicon Power MOS FET

R09DS0039EJ0300 Rev.3.00 Mar 12, 2013

FEATURES

High Output Power
 P_{out} = 33.0 dBm TYP. (V_{DS} = 7.5 V, I_{Dset} = 40 mA, f = 460 MHz, P_{in} = 15 dBm)
 High power added efficiency
 η_{add} = 68% TYP. (V_{DS} = 7.5 V, I_{Dset} = 40 mA, f = 460 MHz, P_{in} = 15 dBm)
 G_L = 23.5 dB TYP. (V_{DS} = 7.5 V, I_{Dset} = 40 mA, f = 460 MHz, P_{in} = 0 dBm)

• High ESD tolerance

• Suitable for VHF to UHF-BAND Class-AB power amplifier.

APPLICATIONS

• 150 MHz Band Radio System

• 460 MHz Band Radio System

900 MHz Band Radio System

ORDERING INFORMATION

Part Number	Order Number	Package	Marking	Supplying Form
NE5550234	NE5550234-AZ	3-pin	V5	12 mm wide embossed taping
		power minimold		Gate pin faces the perforation side of the tape
NE5550234-T1	NE5550234-T1-AZ	(34 PKG)		12 mm wide embossed taping
		(Pb-Free)		Gate pin faces the perforation side of the tape
				Qty 1 kpcs/reel

Remark To order evaluation samples, please contact your nearby sales office.

Part number for sample order: NE5550234

ABSOLUTE MAXIMUM RATINGS ($T_A = 25^{\circ}C$, unless otherwise specified)

Operation in excess of any one of these parameters may result in permanent damage.

Parameter	Symbol	Ratings	Unit
Drain to Source Voltage	V_{DS}	30	V
Gate to Source Voltage	V_{GS}	6.0	V
Drain Current	I _{DS}	0.6	Α
Drain Current	I _{DS-pulse}	1.2	Α
(50% Duty Pulsed)			
Total Power Dissipation Note	P _{tot}	12.5	W
Channel Temperature	T _{ch}	150	°C
Storage Temperature	T _{stg}	–65 to +150	°C

Note: Value at $T_C = 25^{\circ}C$

CAUTION

Observe precautions when handling because these devices are sensitive to electrostatic discharge.

The mark <R> shows major revised points.

The revised points can be easily searched by copying an "<R>" in the PDF file and specifying it in the "Find what:" field.

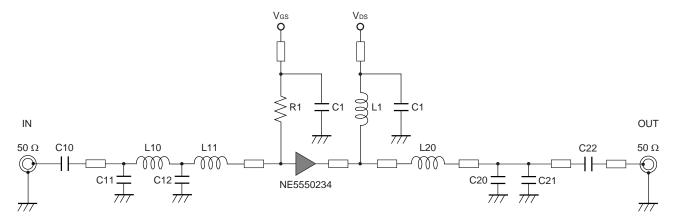
RECOMMENDED OPERATING RANGE ($T_A = 25$ °C)

Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
Drain to Source Voltage	V_{DS}		-	7.5	9.0	V
Gate to Source Voltage	V_{GS}		1.65	2.20	2.85	V
Drain Current	I _{DS}		-	0.38	-	Α
Input Power	P _{in}	f = 460 MHz, V _{DS} = 7.5 V	_	15	20	dBm

ELECTRICAL CHARACTERISTICS (T_A = 25°C, unless otherwise specified)

Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
DC Characteristics						
Gate to Source Leakage Current	I _{GSS}	V _{GS} = 6.0 V	_	_	100	nA
Drain to Source Leakage Current	I _{DSS}	V _{DS} = 25 V	_	_	10	μΑ
(Zero Gate Voltage Drain Current)						
Gate Threshold Voltage	V_{th}	$V_{DS} = 7.5 \text{ V}, I_{DS} = 1.0 \text{ mA}$	1.15	1.65	2.25	V
Drain to Source Breakdown Voltage	BV_{DSS}	$I_{DS} = 10 \mu\text{A}$	25	38	-	V
Transconductance	G _m	V_{DS} = 7.5 V, I_{DS} = 140±20 mA	_	0.44	-	S
Thermal Resistance	R _{th}	Channel to Case	_	10.0	-	°C/W
RF Characteristics						
Output Power	P _{out}	f = 460 MHz, V _{DS} = 7.5 V,	31.5	33.0	-	dBm
Drain Current	I _{DS}	P _{in} = 15 dBm,	_	0.38	-	Α
Power Drain Efficiency	$\eta_{\sf d}$	I _{Dset} = 40 mA (RF OFF)	_	70	-	%
Power Added Efficiency	η_{add}		_	68	-	%
Linear Gain	G _L Note 1		_	23.5	-	dB
Load VSWR Tolerance	Note 2	f = 460 MHz, V _{DS} = 9.0 V,	١	lo Destro	у	
		P _{in} = 15 dBm,				
		I _{Dset} = 40 mA (RF OFF)				
		Load VSWR=20:1(All Phase)				
Output Power	P_{out}	$f = 157 \text{ MHz}, V_{DS} = 7.5 \text{ V},$	_	33.0	_	dBm
Drain Current	I_{DS}	P_{in} = 15 dBm,	_	0.36	_	Α
Power Drain Efficiency	$\eta_{\sf d}$	I _{Dset} = 40 mA (RF OFF)	_	74	-	%
Power Added Efficiency	η_{add}		_	73	-	%
Linear Gain	G _L Note 3		_	25.8	-	dB
Output Power	P _{out}	$f = 900 \text{ MHz}, V_{DS} = 7.5 \text{ V},$	_	32.2	-	dBm
Drain Current	I _{DS}	P _{in} = 17 dBm,	_	0.35	-	Α
Power Drain Efficiency	η_{d}	I _{Dset} = 40 mA (RF OFF)	_	62	-	%
Power Added Efficiency	η_{add}		_	60	-	%
Linear Gain	G _L Note 4		_	18.3	_	dB

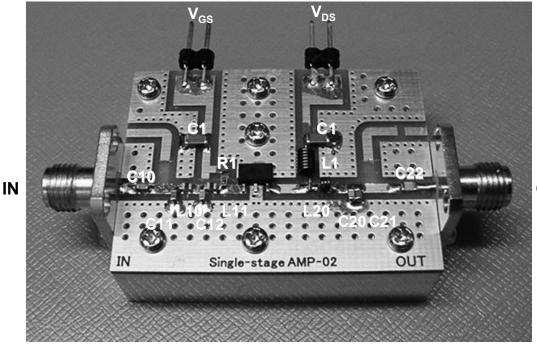
Notes: 1. $P_{in} = 0 dBm$


2. These characteristics values are measurement using measurement tools especially by RENESAS.

3. $P_{in} = -5 dBm$

4. $P_{in} = 7 dBm$

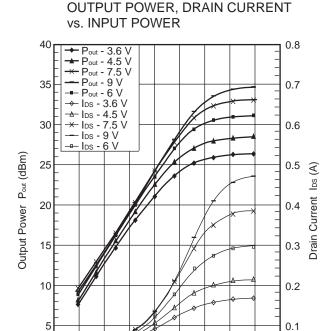
Remark DC performance is 100% testing. RF performance is testing several samples per wafer. The wafer rejection criterion for standard devices is 1 reject for several samples.

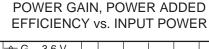

TEST CIRCUIT SCHEMATIC FOR 460 MHz

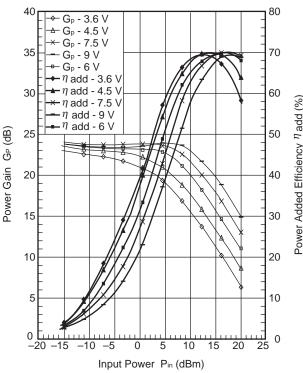
COMPONENTS OF TEST CIRCUIT FOR MEASURING ELECTRICAL CHARACTERISTICS

Symbol	Value	Туре	Maker
C1	1 <i>μ</i> F	GRM31MR71H105KA88L	Murata
C10	27 pF	GRM1882C1H270JA01	Murata
C11	3.9 pF	GRM1882C1H3R9CZ01	Murata
C12	18 pF	GRM1882C1H180JA01	Murata
C20	12 pF	GRM1882C1H120JA01	Murata
C21	1.5 pF	GRM1882C1H1R5CZ01	Murata
C22	100 pF	GRM2162C1H101JA01D	Murata
R1	4.7 kΩ	1/10 W Chip Resistor	SSM
		SSM_RG1608PB472	
L1	47.2 nH	ϕ 0.4 mm, ϕ D = 2 mm, 7 Turns	Ohesangyou
L10, L11	12 nH	LL1608-FS12NJ	токо
L20	7.8 nH	ϕ 0.4 mm, ϕ D = 1.4 mm, 3 Turns	Ohesangyou
PCB		R1766, t = 0.8 mm, ε r = 4.8, size = 30 × 40 mm	Panasonic
SMA Connecter	_	WAKA 01K0790-20	WAKA

COMPONENT LAYOUT OF TEST CIRCUIT FOR 460 MHz

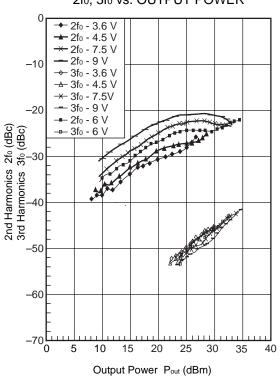

OUT


TYPICAL CHARACTERISTICS 1 ($T_A = 25^{\circ}C$)

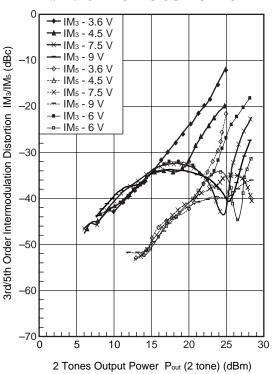

RF: f = 460MHz, $V_{DS} = 3.6/4.5/6/7.5/9 V$, $I_{Dset} = 40 mA$, $P_{in} = -15 to 20 dBm$

IM: f1 = 460MHz, f2 = 461 MHz, V_{DS} = 3.6/4.5/6/7.5/9 V, I_{Dset} = 40mA, P_{out} (2 tone) = 6 to 28 dBm

0.0

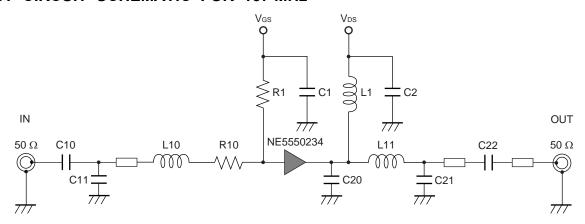


Input Power Pin (dBm)


10 15 20 25

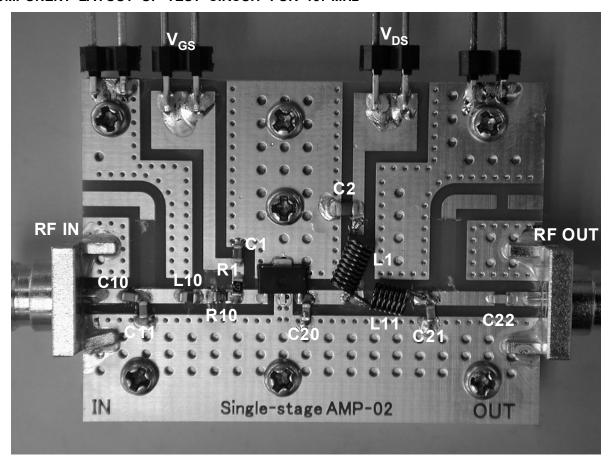
-15 -10

-20

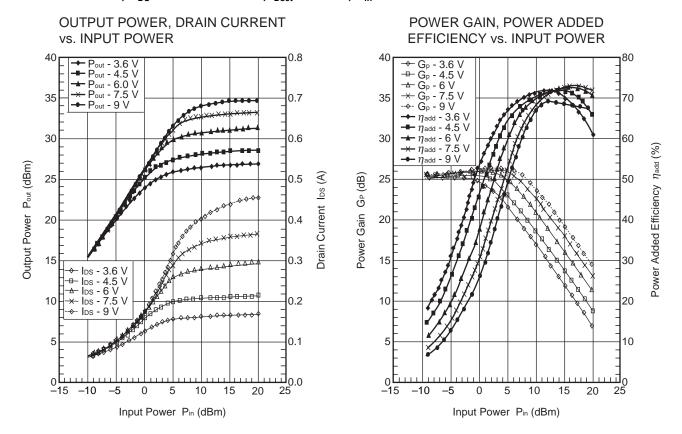


IM₃/IM₅ vs. 2 TONES OUTPUT POWER

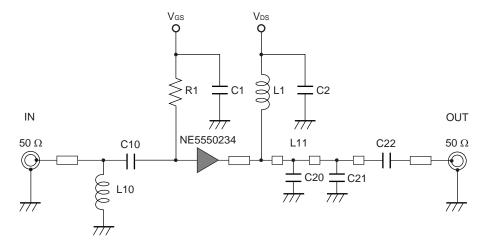
Remark The graphs indicate nominal characteristics.


TEST CIRCUIT SCHEMATIC FOR 157 MHz

COMPONENTS OF TEST CIRCUIT FOR MEASURING ELECTRICAL CHARACTERISTICS

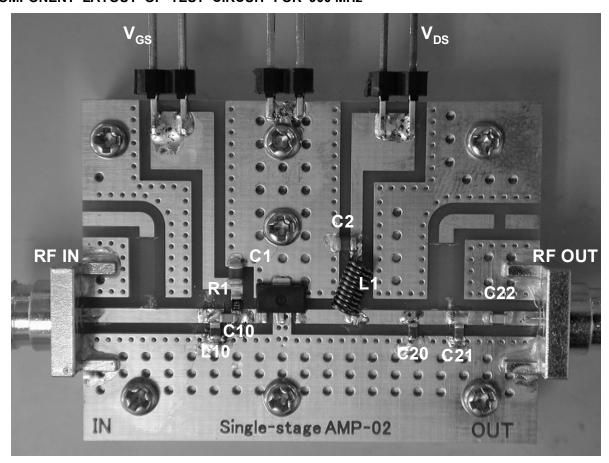

	Symbol	Value	Туре	Maker
	C10	27 pF	GQM1882C1H270JB01	Murata
	C11	6.8 pF	GQM1882C1H6R8DB01	Murata
	C20	8.2 pF	GQM1882C1H8R2DB01	Murata
	C21	27 pF	GQM1882C1H270JB01	Murata
	C22	100 pF	GQM1882C1H101JB01	Murata
	C1	1 <i>μ</i> F	GRM21BB31H105KA2L	Murata
	C2	1 <i>μ</i> F	GRM21BB31H105KA2L	Murata
	L10	100 nH	LL1608-FSLR10J	Toko
	L11	47 nH	D20-47N2	Ohesangyou
	L1	74 nH	D20-74N7	Ohesangyou
R>	R10	5.6 Ω	MCR03J5R6	Rohm
	R1	4.7 kΩ	MCR03J472	Rohm
R>	PCB	_	R1766, t = 0.8 mm, ε r = 4.8, size = 30 × 40 mm	Panasonic
	SMA Connecter	_	WAKA 01K0790-20	WAKA

COMPONENT LAYOUT OF TEST CIRCUIT FOR 157 MHz

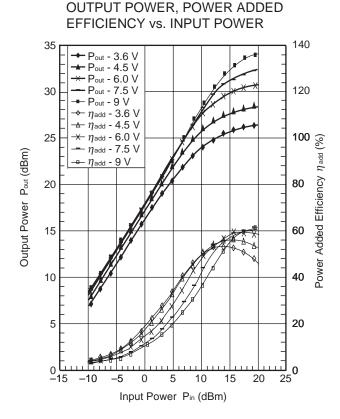

TYPICAL CHARACTERISTICS 2 $(T_A = 25^{\circ}C)$

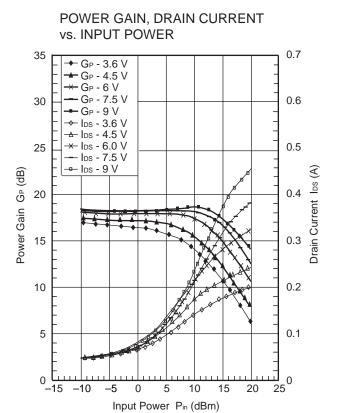
RF: f = 157 MHz, $V_{DS} = 3.6/4.5/6/7.5/9$ V, $I_{Dset} = 40$ mA, $P_{in} = -10$ to 20 dBm

Remark The graphs indicate nominal characteristics.


TEST CIRCUIT SCHEMATIC FOR 900 MHz

COMPONENTS OF TEST CIRCUIT FOR MEASURING ELECTRICAL CHARACTERISTICS


Symbol	Value	Туре	Maker
C10	10 pF	GQM1882C1H100JB01	Murata
C20	6.8 pF	GQM1882C1H6R8DB01	Murata
C21	1 pF	GQM1884C2A1R0CB01	Murata
C22	100 pF	GQM1882C1H101JB01	Murata
C1	1 <i>μ</i> F	GRM21BB31H105KA2L	Murata
C2	1 <i>μ</i> F	GRM21BB31H105KA2L	Murata
L10	2.7 nH	LL1608-FSL2N7S	Toko
L1	74 nH	D20-74N7	Ohesangyou
R1	$4.7~\mathrm{k}\Omega$	MCR03J472	Rohm
PCB	_	R1766, t = 0.8 mm, ε r = 4.8, size = 30 × 40 mm	Panasonic
SMA Connecter	_	WAKA 01K0790-20	WAKA


COMPONENT LAYOUT OF TEST CIRCUIT FOR 900 MHz

TYPICAL CHARACTERISTICS 3 (T_A = 25°C)

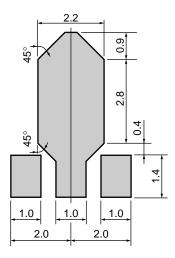
RF: f = 900 MHz, $V_{DS} = 3.6/4.5/6/7.5/9 \text{ V}$, $I_{Dset} = 40 \text{ mA}$, $P_{in} = -10 \text{ to } 20 \text{ dBm}$

Remark The graphs indicate nominal characteristics.

S-PARAMETERS

S-parameters and noise parameters are provided on our web site in a form (S2P) that enables direct import of the parameters to microwave circuit simulators without the need for keyboard inputs.

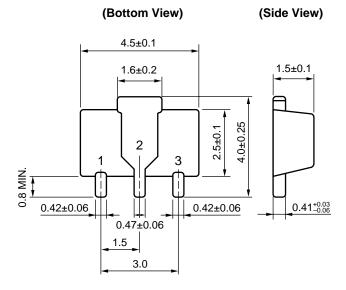
Click here to download S-parameters.


 $[Products] \rightarrow [RF \ Devices] \rightarrow [Device \ Parameters]$

URL http://www.renesas.com/products/microwave/

MOUNTING PAD LAYOUT DIMENSIONS

3-PIN POWER MINIMOLD (34 PKG) (UNIT: mm)



Remark The mounting pad layout in this document is for reference only.

When designing PCB, please consider workability of mounting, solder joint reliability, prevention of solder bridge and so on, in order to optimize the design.

PACKAGE DIMENSIONS

3-PIN POWER MINIMOLD (34 PKG) (UNIT: mm)

PIN CONNECTIONS

- 1. Drain
- 2. Source
- 3. Gate

RECOMMENDED SOLDERING CONDITIONS

This product should be soldered and mounted under the following recommended conditions. For soldering methods and conditions other than those recommended below, contact your nearby sales office.

Soldering Method	Soldering Conditions		Condition Symbol
Infrared Reflow	Peak temperature (package surface temperature)	: 260°C or below	IR260
	Time at peak temperature	: 10 seconds or less	
	Time at temperature of 220°C or higher	: 60 seconds or less	
	Preheating time at 120 to 180°C	: 120±30 seconds	
	Maximum number of reflow processes	: 3 times	
	Maximum chlorine content of rosin flux (% mass)	: 0.2% (Wt.) or below	
Wave Soldering	Peak temperature (molten solder temperature)	: 260°C or below	WS260
	Time at peak temperature	: 10 seconds or less	
	Preheating temperature (package surface temperature)	ature)	
		: 120°C or below	
	Maximum number of flow processes	: 1 time	
	Maximum chlorine content of rosin flux (% mass)	: 0.2% (Wt.) or below	
Partial Heating	Peak temperature (terminal temperature)	: 350°C or below	HS350
	Soldering time (per side of device)	: 3 seconds or less	
	Maximum chlorine content of rosin flux (% mass)	: 0.2% (Wt.) or below	

CAUTION

Do not use different soldering methods together (except for partial heating).

Revision History

NE5550234 Data Sheet

			Description
Rev.	Date	Page	Summary
1.00	Apr 25, 2012	_	First edition issued
2.00	Jul 04, 2012	p.2	Modification of ELECTRICAL CHARACTERISTICS
3.00	Mar 12, 2013	P3	Modification of COMPONENTS OF TEST CIRCUIT FOR MEASURING ELECTRICAL CHARACTERISTICS
		P5	Modification of TEST CIRCUIT SCHEMATIC FOR 157 MHz
		P8	Modification of COMPONENTS OF TEST CIRCUIT FOR MEASURING ELECTRICAL CHARACTERISTICS

Notice

- 1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information,
- 2. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 3. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or
- 4. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from such alteration, modification, copy or otherwise misappropriation of Renesas Electronics product.
- 5. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below

"Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots etc.

"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; and safety equipment etc.

Renesas Electronics products are neither intended nor authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems, surgical implantations etc.), or may cause serious property damages (nuclear reactor control systems, military equipment etc.). You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application for which it is not intended. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for which the product is not intended by Renesas Electronics.

- 6. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 7. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or systems manufactured by you.
- 8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 9. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You should not use Renesas Electronics products or technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. When exporting the Renesas Electronics products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations.
- 10. It is the responsibility of the buyer or distributor of Renesas Electronics products, who distributes, disposes of, or otherwise places the product with a third party, to notify such third party in advance of the contents and conditions set forth in this document. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties as a result of unauthorized use of Renesas Electronics products.
- 11. This document may not be reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries, (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics

SALES OFFICES

Renesas Electronics Corporation

http://www.renesas.com

Refer to "http://www.renesas.com/" for the latest and detailed information

California Eastern Laboratories, Inc. 4590 Patrick Henry Drive, Santa Clara, California 95054, U.S.A. Tel: +1-408-919-2500, Fax: +1-408-988-0279

Renesas Electronics Europe Limited
Dukes Meadow, Milliboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K
Tel: +44-1628-651-700, Fax: +44-1628-651-804

Renesas Electronics Europe GmbH Arcadiastrasse 10, 40472 Düsseldorf, Germar Tel: +49-211-65030, Fax: +49-211-6503-1327

Renesas Electronics (China) Co., Ltd.
7th Floor, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100083, P.R.China
Tel: +86-10-9235-1155, Fax: +86-10-8235-7679 Renesas Electronics (Shanghai) Co., Ltd. Unit 204, 205, AZIA Center, No.1233 Lujiazui Ring Rd., Pudong District, Shanghai 200120, China Tel: +86-21-5877-1818, Fax: +86-21-6887-7858 / -7898

Renesas Electronics Hong Kong Limited
Unit 1601-1613, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong
Tel: +852-2868-9318, Fax: +852-2886-9022/9044

Renesas Electronics Taiwan Co., Ltd. 13F, No. 363, Fu Shing North Road, Taipei, Tai Tel: +886-2-8175-9600, Fax: +886 2-8175-9670

Renesas Electronics Singapore Pte. Ltd. 80 Bendemeer Road, Unit #06-02 Hyflux Ini Tel: +65-6213-0200, Fax: +65-6213-0300 Innovation Centre Singapore 339949

Renesas Electronics Malaysia Sdn.Bhd.
Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia Tei: +60-3-7955-9390, Fax: +60-3-7955-9510

Renesas Electronics Korea Co., Ltd. 11F., Samik Lavied' or Bidg., 720-2 Yeoksam-Dong, Kangnam-Ku, Seoul 135-080, Korea Tel: 482-2-558-3737, Fax: +82-2-558-5141