Product Preview

Better Efficiency Rectifier System

Ultra Efficient, High Speed Diode

The NIS6111 ORing diode is a high speed, high efficiency, hybrid rectifier, designed for low voltage, high current systems, such as those required for today's digital circuits. It couples a high speed integrated circuit with a power MOSFET to create a diode with the same forward drop characteristics as a MOSFET. It offers increased efficiency for switching power supplies as well as in ORing diode applications.

It offers a low on resistance that can be further reduced by the addition of external MOSFETs. It features the highest reverse recovery speed of any device in the industry.

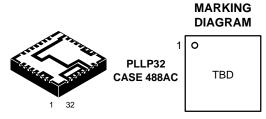
Features

- Low Forward Drop Improves System Efficiency
- Ultra High Speed
- Can be used in High Side and Low Side Configurations
- 24 V Rating
- Allows use of External MOSFETs for Extended Current Handling Capacity

Applications

- Redundant Power Supplies for High-Availability Systems
- Static ORing Diodes
- Low Voltage, Isolated Outputs
- Flyback, Forward Converter, Half Bridge Converters

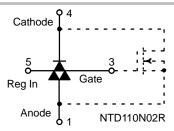
PIN ASSIGNMENT


Pin	Symbol	Function	
1	Anode	Power Input Connected to System	
2	Internal 5.0 V	Output of Internal Voltage Regulator provides power for internal only. No external components required at this pin.	
3	Gate	Gate Driver Output for Internal and External N–Channel MOSFET	
4	Cathode	Power Output Connected to System	
5	Reg In	put of Internal Voltage Regulator	

This document contains information on a product under development. ON Semiconductor reserves the right to change or discontinue this product without notice.

ON Semiconductor®

http://onsemi.com


A = Assembly Location

WL = Wafer Lot

YY = Year

WW = Work Week

(Bottom View)

Figure 1. Equivalent Circuit

ORDERING INFORMATION

Device	Package	Shipping [†]		
NIS6111QPT1	PLLP32	2000 Tape & Reel		

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

www.DataSheet4U.com

DataShe

MAXIMUM RATINGS ($T_J = 25^{\circ}C$, unless otherwise noted.)

Rating	Symbol	Value	Unit
Peak Repetitive Reverse Voltage (V _K to V _A)	V _{RRM}	24	V
Peak Regulator Input (Reg In) Voltage	Vreg _{max}	28	V
Average Rectified Forward Current	I _{FAV}	30	Α
Non-repetitive Peak Surge Current	I _{FSM}	90	Α
Analog Die Thermal Resistance (Min Copper Area)	θ _{A j–a}	83	°C/W
MOSFET Die Thermal Resistance (Min Copper Area)	θ _{M j-a}	78	°C/W
Analog Die Thermal Resistance (Junction-to-Top of Board)	$\theta_{A j-t}$	4.9	°C/W
MOSFET Die Thermal Resistance (Junction-to-Top of Board)	$\theta_{M j-t}$	0.6	°C/W
Analog Die Thermal Resistance (Junction-to-Bottom of Board) (Note 4)	θ _{A j-b}	30	°C/W
MOSFET Die Thermal Resistance (Junction-to-Bottom of Board) (Note 4)	θ_{Mj-b}	7.0	°C/W
Storage Temperature Range	T _{stg}	-55 to 150	°C
Operating Temperature Range	TJ	-20 to 125	°C

Maximum ratings are those values beyond which device damage can occur. Maximum ratings applied to the device are individual stress limit values (not normal operating conditions) and are not valid simultaneously. If these limits are exceeded, device functional operation is not implied, damage may occur and reliability may be affected.

et4U.com

DataShee

DataSheet4U.com

DataSheet4U.com www.DataSheet4U.com

ELECTRICAL CHARACTERISTICS ($T_J = 25^{\circ}C$, Reg In = 8.0 V, unless otherwise noted.)

Characteristic	Symbol	Min	Тур	Max	Unit
SYNCHRONOUS RECTIFIER	•	•	•		•
ON STATE					
Conduction Mode ON Resistance (I = 55 Adc, V_{GS} = (I = 20 Adc, V_{GS} =	4.5 V) R _{ON}		4.9 4.7	_ _	mΩ
OFF STATE	•	•	•		•
Reverse Leakage Current (V _R = 28 VDC)	I _{DSS}	_	_	1.5	μΑ
Reverse Leakage Current (V _R = 28 VDC, T _J = 150°C)	I _{DSS}	_	_	10	μΑ
SWITCHING (See Figures 2 and 4) (Note 2)	<u>.</u>		•	•	
FET Turn-on Time (Imax = 3.0 A, I rev = 1.0 A, Vrev = 5.0 V)	t _{sat}	_	45	_	ns
Reverse Recovery Time (Imax = 3.0 A, I rev = 1.0 A, Vrev = 5.0 V)	t _{rev}	_	35	-	ns
BODY DIODE	•	•	•		•
Forward On–Voltage (Notes 1 and 3) $ I = 20 \text{ Adc, V}_{GS} $ $ I = 55 \text{ Adc, V}_{GS} $	= 0 V = 0 V		0.82 0.99	1.2 -	Vdc
Reverse Recovery Time (I _S = 30 Adc, di/dt = 100 A/ μ s)	t _{rr} t _a t _b	- - -	36.5 17.7 18.8	- - -	ns
POWER SUPPLY (V _R = 20 V, T _J = 25°C)	-	1	1		
Supply Voltage (Pin 2 to Pin 1), Internal Bias Voltage	V _{CC}	4.7	4.9	5.1	V
Cap Charge Time (Zero Initial Charge, 5.0 V @ Reg In, to UVLO Threshold, $C = 0.22$ $T_J = -20^{\circ}C$ to $125^{\circ}C$	μF) t _{chg} t _{chg}	- -	2.7 3.3	_ _	μs μs
Headroom (for Vcap = 4.7 V)	Vhd	_	1.0	-	V
Minimum Duty Cycle for Operation (Freq = 100 kHz) DataS	neet4U.com d _{min}	_	2.0	-	%
Charge Current	-	250	300	-	mA
Delay Time (T _{amb} = 20°C)	T _d		51		ns
Reg In Voltage (Pin 5 to Pin 1)	<u>.</u>		•	•	
Minimum Voltage Required for Operation (V _{SD} + V _{hd})			4.65		V
Minimum Voltage Required for Fall Gate Drive (V _{CC} + V _{hd})			5.9		
CONTROL CIRCUIT	·				
Bias Supply Current (f _{sw} = 100 kHz)	I _{BIAS}	_	2.0	4.0	mA
Input Offset Voltage	los	_	2.0	5.0	mV
Shutdown Voltage (UVLO)	V _{SD}	_	3.65	_	V

- Pulse width ≤ 300 μs, duty cycle ≤ 2%.
 Pulse width 2.0 μs, duty cycle < 5%.
 Switching characteristics are independent of operating junction temperature.
 Based on 0.062" FR4 board, double-sided 1 oz copper.

DataShee

www.DataSheet4U.com DataSheet4U.com

et4U.com

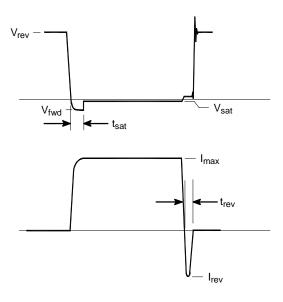


Figure 2. Switching Waveform

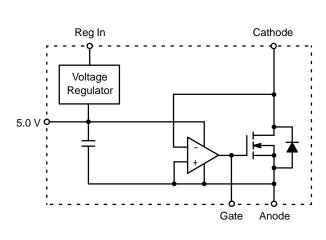


Figure 3. Functional Block Diagram

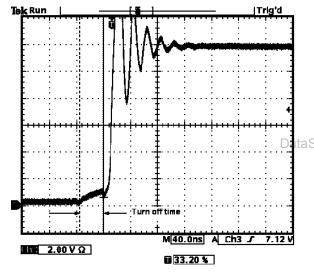


Figure 4. Synchronous Buck Turn Off Delay

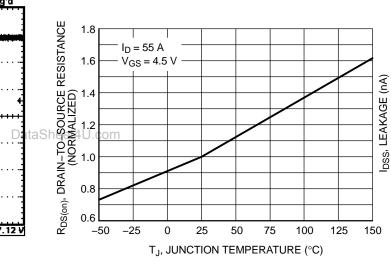


Figure 5. On-Resistance Variation with Temperature

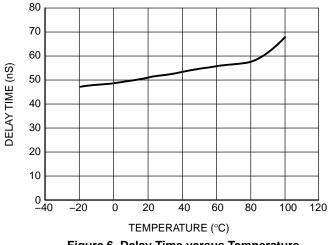


Figure 6. Delay Time versus Temperature

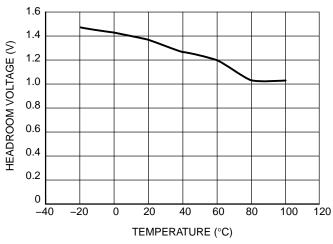


Figure 7. Headroom versus Temperature

www.DataSheet4U.com

DataSheet4U.com

et4U.com

DataShee

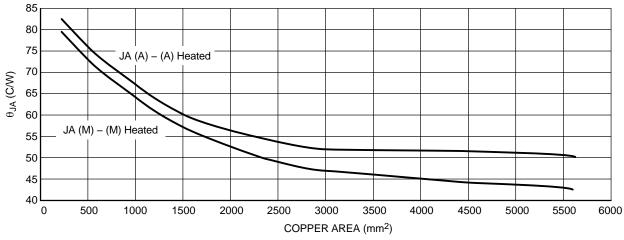


Figure 8. Thermal Resistance vs. Copper Area for MOSFET (M) and Analog Die (A)

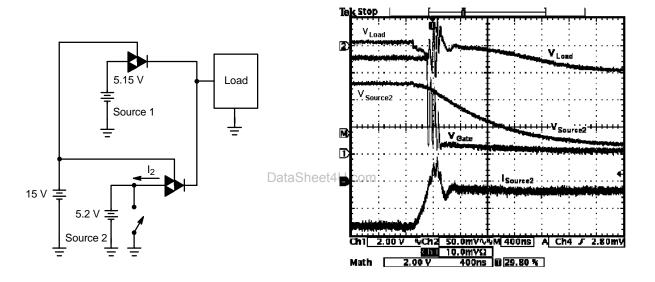


Figure 9. Test Circuit for Short Circuit ORing Test

Figure 10. Waveforms from Short Circuit ORing Test

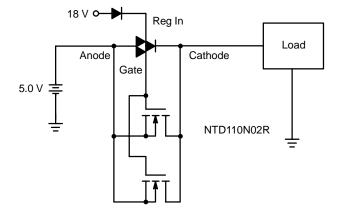


Figure 11. Positive ORing Diode Connection with Additional External FETs

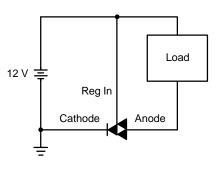


Figure 12. Negative ORing Diode Connection

www.DataSheet4U.com

DataSheet4U.com

et4U.com

DataShee

OPERATING DESCRIPTION

Introduction

The BERS rectifier offers a new concept in rectification for low voltage, high current outputs. This product combines a high speed integrated circuit with a power MOSFET, to create a device with speeds better than an ultrafast silicon rectifier, and a forward drop that is less than that of a Schottky diode.

This device is specifically designed for the low voltage outputs required by today's digital circuits. Current digital products operate on voltages of less than 5.0 V and currents in the tens to hundreds of amperes. BERS can greatly increase the efficiency of low voltage, high current converters, by reducing the rectifier drop to several hundred millivolts.

This device consists of four major circuits as well as a capacitor. BERS contains a power supply to regulate the voltage on the bias supply cap, a high speed comparator to sense the conduction state of the device, a high speed driver, a power FET and a capacitor.

Bias Supply

The internal bias supply is a high current, switching regulator. It will maintain a regulated voltage on the internal capacitor as long as sufficient voltage is available at the Reg In pin. When this pin is high, a current limited switch allows current to charge the capacitor. When the

maximum charge voltage is reached, the switch is turned off. If there is not sufficient reverse voltage to maintain a 5.0 V charge on the capacitor, the bias supply will charge it to within 1.0 V of the reverse voltage.

The Regulator Input pin can be connected to the cathode and will recharge the internal capacitor when the BERS is reversed biased. This input requires a minimum voltage of 4.7 V to operate. In some cases this amount of reverse voltage may not be available. When this is the case, the Reg In pin can be connected to a higher voltage source. It is not necessary that this source be synchronous with the cathode voltage.

The Reg In voltage should not be allowed to go more negative than the anode of the device. If this scenario can occur, a small switching diode should be placed in series with the Reg In pin.

Comparator/Driver

The polarity comparator is a medium gain, ultra high speed design. It is integrated with the driver circuit, to optimize the switching speed of the device. The comparator input has a low offset voltage which biases the inverting input several millivolts above ground. This is to assure that at zero (or very low) current levels, the device is off.

DataShe

DataSheet4U.com

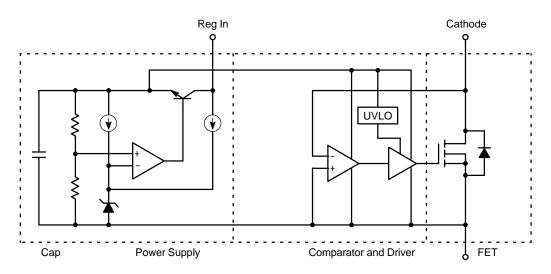
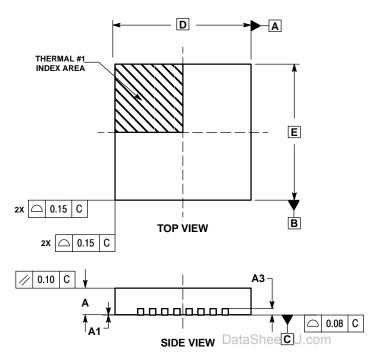


Figure 13. Detailed Block Diagram


et4U.com

www.DataSheet4U.com

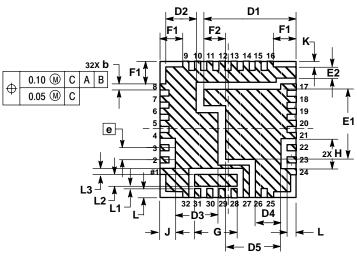
DataSheet4U.com

PACKAGE DIMENSIONS

PLLP32 CASE 488AC-01 **ISSUE A**

NOTES:

- NOTES:


 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.

 2. CONTROLLING DIMENSION: MILLIMETERS.

 3. DIMENSION & APPLIES TO METALLIZED TERMINAL AND IS MEASURED BETWEEN 0.25 MM AND 40 MM FROM TERMINAL TIP 4. UNILATERAL COPLANARITY ZONE APPLIES TO THE EXPOSED HEAT SINK SLUG AS WELL AS THEIR TERMINALS.

	MILLIMETERS		
DIM	MIN	NOM	MAX
Α	1.750	1.850	1.950
A1	0.000		0.050
А3	().254 RE	F
b	0.350	0.400	0.450
D	Ç	0.000 BS	С
D1	5.987	6.087	6.187
D2	1.924	2.024	2.124
D3	2.713	2.813	2.913
D4	1.584	1.684	1.784
D5	3.547	7 3.647 3.747	
Е	Ç	0.000 BS	С
E1	4.472	4.572	4.672
E2	0.638	0.738	0.838
е	0.800 BSC		
F1	1.500 REF		
F2	1.324	1.424	1.524
G	2.700	2.800	2.900
Н	2.000 REF		
J	1.016 BSC		
K	0.381 REF		
L	0.500	0.600	0.700
L1	0.062	0.162	0.262
L2	0.760	0.770	0.870
L3	0.281	0.381	0.481

DataShee

BOTTOM VIEW

www.DataSheet4U.com DataSheet4U.com

et4U.com

DataSneet4U.com

The product described herein (NIS6111), may be covered by U.S. patents including 6,271,712. There may be other patents pending.

ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT

Literature Distribution Center for ON Semiconductor P.O. Box 61312, Phoenix, Arizona 85082–1312 USA Phone: 480–829–7710 or 800–344–3860 Toll Free USA/Canada Fax: 480–829–7709 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800–282–9855 Toll Free USA/Canada

Japan: ON Semiconductor, Japan Customer Focus Center 2–9–1 Kamimeguro, Meguro–ku, Tokyo, Japan 153–0051 Phone: 81–3–5773–3850

ON Semiconductor Website: http://onsemi.com

Order Literature: http://www.onsemi.com/litorder

For additional information, please when build Sheet 4U.com local Sales Representative.

NIS6111/D

DataSheet4U

et4U.com