

SPDT SWITCH GaAs MMIC

■GENERAL DESCRIPTION

NJG1508F is a GaAs SPDT switch MMIC which features low loss, high isolation and low control current, and ideally suitable the cellular phone handsets which needs to switch during two frequency bands.

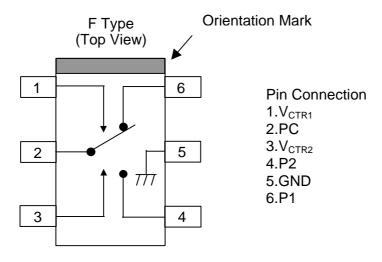
NJG1508F is operated in the wide frequency range from 50MHz to 3GHz at a low voltage from 2.5V with very small MTP6 package.

■PACKAGE OUTLINE

NJG1508F

FEATURES

- Single and low control voltage
- Low insertion loss
- High isolation
- Transmission power
- •Low control current
- Package


+2.5~+5.5V

0.3dB typ. @f=1.0GHz, P_{in}=0dBm 27dB typ. @f=1.0GHz, P_{in}=0dBm 19dBm max. @f=2.0GHz, V_{CTL}=3.0V

1.0uA typ. @f=0.05~2.5GHz, P_{in}=10dBm

MTP6 (Mount Size: 2.8x2.9x1.2mm)

PIN CONFIGURATION

TRUTH TABLE

"H"= $V_{CTR (H)}$, "L"= $V_{CTR (L)}$

V _{CTR1}	Н	L	L	Н
V_{CTR2}	L	Н	L	Н
P1-PC	OFF	ON	Loss=15dB P1 Return Loss=-3dB	Loss=16dB P1 Return Loss=-2dB
P2-PC	ON	OFF	Loss=15dB P2 Return Loss=-3dB	Loss=16dB P2 Return Loss=-2dB

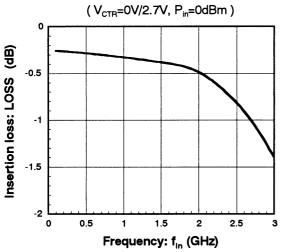
Note) The values of "Loss" and "Return Loss" are typical values.

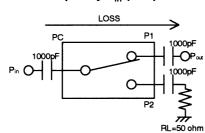
NJG1508F

■ABSOLUTE MAXIMUM RATINGS

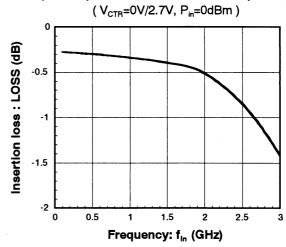
 $(T_a=25^{\circ}C)$

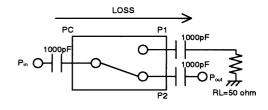
			(·a = 0 0)
PARAMETER	SYMBOL	RATINGS	UNITS
Input Power	P _{in}	28	dBm
Control Voltage	V_{CTR}	6.0	V
Power Dissipation	P_D	300	mW
Operating Temp.	T_{opr}	-20~+85	°C
Storage Temp.	T_{stg}	-40~+150	°C

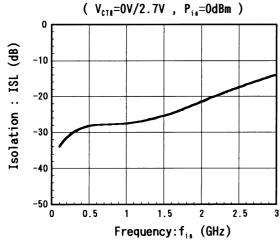

■ELECTRICAL CHARACTERISTICS

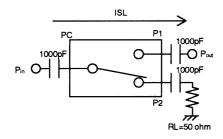

 $(V_{CTR (L)}=0V, V_{CTR (H)}=2.7V, Z_{S}=Z_{O}=50\Omega, T_{a}=25^{\circ}C)$

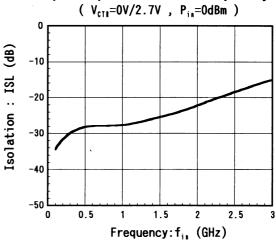
(VCTR (L)=0 V, VCTR (H)=2.7 V, ZS=Z0=3032, Ta=20 O)					<u> </u>	
PARAMETER	SYMBOL	RATINGS	MIN	TYP	MAX	UNITS
Control voltage (L)	V _{CTR (L)}	f=0.05~2.5GHz, P _{in} =10dBm	-0.2	0.0	0.2	V
Control voltage (H)	V _{CTR (H)}	f=0.05~2.5GHz, P _{in} =10dBm	2.5	2.7	5.5	V
Control current	I _{CTR}	f=0.05~2.5GHz, P _{in} =10dBm	-	1.0	2.0	uA
Insertion loss 1	Loss1	f=1.0GHz, P _{in} =0dBm	-	0.3	0.6	dB
Insertion loss 2	Loss2	f=2.0GHz, P _{in} =0dBm	-	0.5	0.85	dB
Isolation 1 (PC-P1, PC-P2, P1-P2)	ISL1	f=1.0GHz, P _{in} =0dBm	23	27	-	dB
Isolation 2 (PC-P1, PC-P2, P1-P2)	ISL2	f=2.0GHz, P _{in} =0dBm	20	23	ı	dB
Pin at 1dB compression point	P _{-1dB}	f=2.0GHz	19	22	-	dBm
VSWR (PC, P1, P2)	VSWR	f=0.05~2.5GHz, ON State	-	1.3	1.6	
Switching time	T_sw	f=0.05~2.5GHz	-	15	-	ns

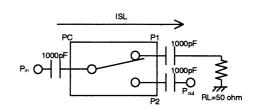

■TYPICAL CHARACTERISTICS

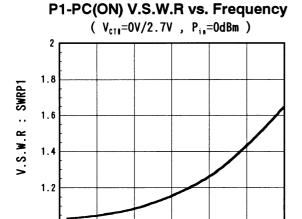

(PC-P1) Insertion loss vs. Frequency

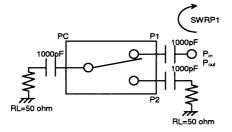



(PC-P2) Insertion loss vs. Frequency

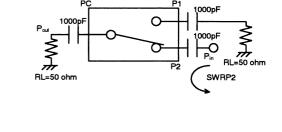



(PC-P1) Isolation vs. Frequency

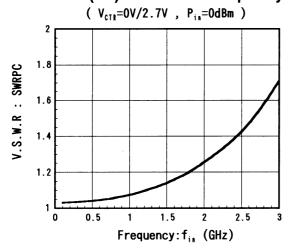


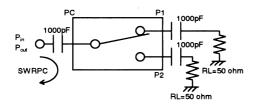

(PC-P2) Isolation vs. Frequency

■TYPICAL CHARACTERISTICS

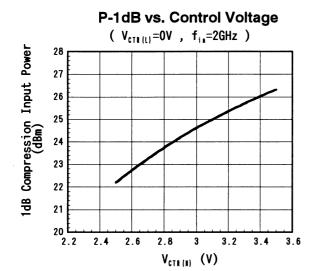


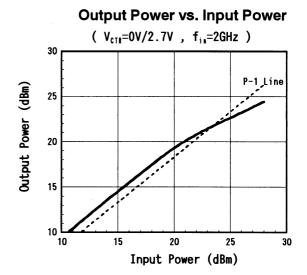
Frequency: f_i (GHz)

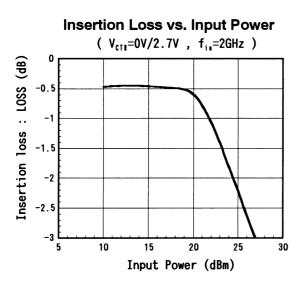

1.8 1.6 2 1.4 1.2 1.2 1.0 0.5 1 1.5 2 2.5 3 Frequency: f_i, (GHz)

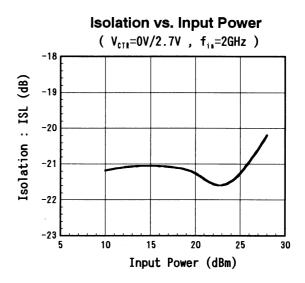

P2-PC(ON)V.S.W.R vs. Frequency

($V_{cTR}=0V/2.7V$, $P_{in}=0dBm$)




PC-P1(ON) V.S.W.R vs. Frequency



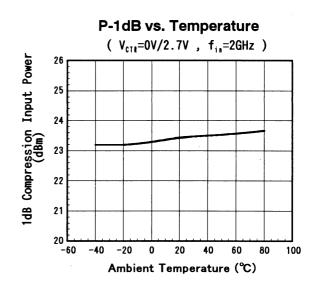


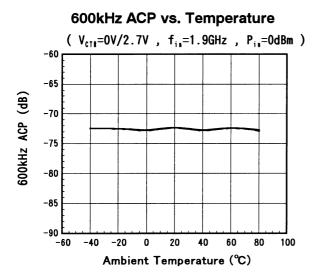
TYPICAL CHARACTERISTICS

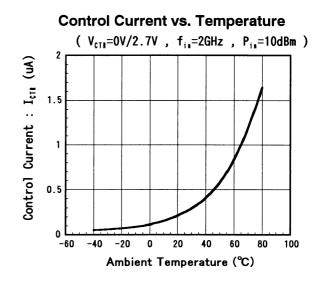
(V_{CTI}=0V/2.7V , f_{ij}=2GHz)

Input Power (dBm)

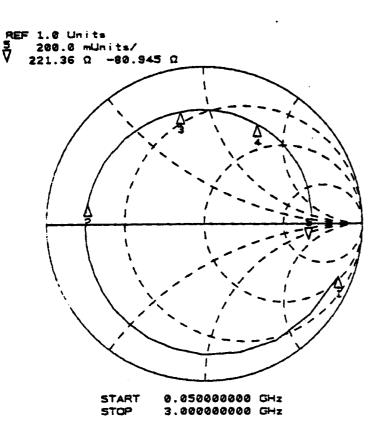

10

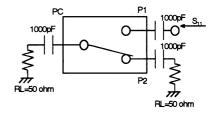

Control Current vs. Input Power

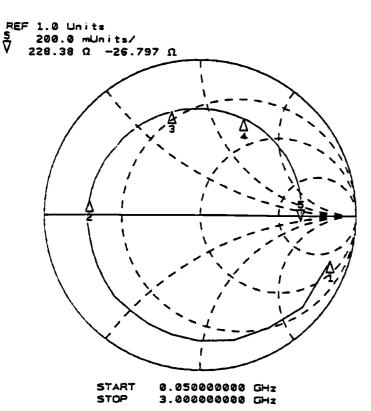

30

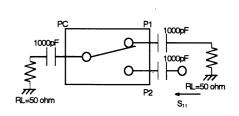

35

TYPICAL CHARACTERISTICS





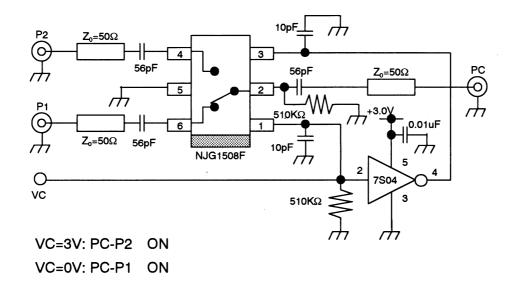

■TYPICAL CHARACTERISTICS P1 PORT IMPEDANCE (OFF STATE)



MARKER	f(MHz)	Mag.	Ang. (∠°)
1	50	0.912	-21.7
2	800	0.748	170.1
3	1500	0.728	101.3
4	2000	0.718	61.7
5	3000	0.671	-8.7

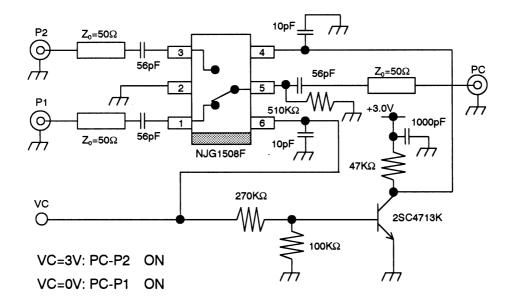
P2 PORT IMPEDANCE (OFF STATE)

MARKER	f(MHz)	Mag.	Ang. (∠°)
1	50	0.881	-19.2
2	800	0.713	172.3
3	1500	0.690	104.9
4	2000	0.681	66.1
5	3000	0.643	-3.2

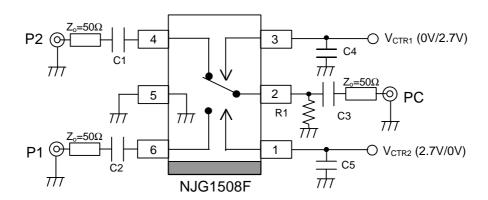

■TYPICAL CHARACTERISTICS

Scattering Parameters: S11 (OFF STATE)

 $(V_{CTR}=0/2.7V, 50\Omega System)$

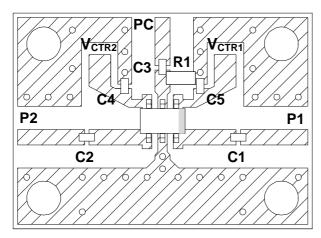

	P1 F	PORT	P2 PORT		
f(MHz)	Mag.	Ang.(∠°)	Mag.	Ang.(∠°)	
50	0.912	-21.7	0.881	-19.2	
100	0.886	-40.6	0.883	-41.9	
200	0.849	-75.2	0.832	-75.1	
300	0.818	-103.8	0.787	-103.6	
400	0.792	-127.1	0.757	-126.1	
500	0.776	-146.5	0.743	-145.5	
600	0.762	-163.0	0.726	-161.4	
700	0.754	-177.1	0.721	-175.0	
800	0.748	170.1	0.713	172.3	
900	0.743	158.5	0.709	160.9	
1000	0.740	147.7	0.704	150.4	
1100	0.728	137.1	0.694	139.9	
1200	0.731	128.0	0.696	131.0	
1300	0.732	118.7	0.695	122.1	
1400	0.730	110.0	0.694	113.3	
1500	0.728	101.3	0.690	104.9	
1600	0.726	93.0	0.689	96.9	
1700	0.724	85.1	0.686	89.1	
1800	0.724	77.1	0.684	81.3	
1900	0.721	69.1	0.682	73.6	
2000	0.718	61.7	0.681	66.1	
2100	0.717	54.5	0.679	59.1	
2200	0.714	46.9	0.677	51.7	
2300	0.710	39.3	0.672	44.4	
2400	0.706	32.4	0.670	37.3	
2500	0.703	25.1	0.666	30.2	
2600	0.696	18.2	0.664	23.4	
2700	0.689	11.8	0.658	16.9	
2800	0.684	5.0	0.655	10.0	
2900	0.679	−2 .1	0.648	3.3	
3000	0.671	-8.7	0.643	-3.2	

■APPLICATION CIRCUIT 1: Single control signal operation by using C-MOS inverter.



[1]Please connect bypass capacitors to the supply terminals f the C-MOS inverter. [2]In order to stabilize input impedance of inverter, please pull down using $510 \mathrm{K}\Omega$ resister from the input terminal of the C-MOS inverter to the ground plane.

EAPPLICATION CIRCUIT 2: Single control signal operation by using a transistor.



TEST CIRCUIT

■RECOMMENDED PCB DESIGN

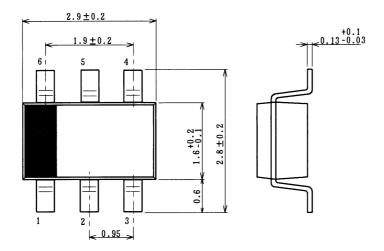
PCB SIZE=19.4x14.0mm

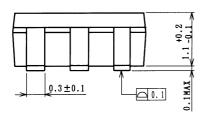
PCB: FR-4, t=0.5mm

CAPACITOR: size 1005

STRIP LINE WIDTH=1mm

C1~C3: 56pF


C4, C5: 10pF


R1: 510KΩ

Precautions

- [1]External capacitors should be connected to the input and output RF terminals (P1, P2, PC) to block the DC current. The above example is a circuit at 900MHz.Please select the capacitor value suitable for actual frequency from 10pF to 1000pF.
- [2]Decoupling capacitors should be connected to the control terminals (V_{CTR1} , V_{CTR2}) as close as possible. The values of these capacitors should be selected from 5pF to 100pF range. Please consider that these values are very effective to switching time (Larger capacitor gives longer switching time).
- [3]In order to keep good isolation characteristics, the ground terminal (5pin) should be connected to the ground pattern with wider width as close as possible, and through-hole in the ground plane should also be placed as close as possible.

■PACKAGE OUTLINE (MTP6)

Lead material : Copper

Lead surface finish : Solder plating

Molding material : Epoxy resin

UNIT : mm Weight : 14mg

Cautions on using this product

This product contains Gallium-Arsenide (GaAs) which is a harmful material.

- Do NOT eat or put into mouth.
- Do NOT dispose in fire or break up this product.
- Do NOT chemically make gas or powder with this product.
- To waste this product, please obey the relating law of your country.

This product may be damaged with electric static discharge (ESD) or spike voltage. Please handle with care to avoid these damages.

[CAUTION]

The specifications on this databook are only given for information , without any guarantee as regards either mistakes or omissions. The application circuits in this databook are described only to show representative usages

of the product and not intended for the guarantee or permission of any right including the industrial rights.