

HIGH POWER SP4T SWITCH GaAs MMIC

■ GENERAL DESCRIPTION

The NJG1809ME7 is a high power SP4T switch MMIC suitable for LTE-U / LAA, WLAN, and LTE applications.

This switch features very low insertion loss and high isolation up to 6GHz and excellent linearity performance with 1.8V control voltage. This switch achieves high speed switching time for WLAN application. Integrated ESD protection device on each port achieves excellent ESD robustness. No DC Blocking capacitors are required for all RF ports unless DC is biased externally.

The small and thin EQFN18-E7 package is adopted.

■ PACKAGE OUTLINE

NJG1809ME7

■ APPLICATIONS

High isolation

LTE-U / LAA, WLAN (802.11a/b/g/n/ac), LTE multi-mode applications General purpose switching applications

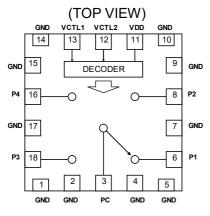
■ FEATURES

 Low voltage logic control 1.35 to 5.0V

0.40dB typ. @f=2.7GHz, 3.5GHz, P_{IN}=+27dBm Low insertion loss

0.50dB typ. @f=5.85GHz, P_{IN}=+27dBm 27dB typ. @f=2.7GHz, P_{IN}=+27dBm

25dB tvp. @f=3.5GHz. P_{IN}=+27dBm 30dB typ. @f= 5.85GHz, P_{IN}=+27dBm


+32dBm min.

● P_{-0.1dB} High speed switching time 250ns typ.

 Small and thin package EQFN18-E7 (2.0x2.0x0.397mm typ.)

RoHS compliant and Halogen Free, MSL1

■ PIN CONFIGURATION

$\overline{}$		4.	
μ	ın	connection	า

1. GND	10. GND			
2. GND	11. VDD			
3. PC	12. VCTL			
4. GND	13. VCTL			
5. GND	14. GND			
6. P1	15. GND			
7. GND	16. P4			
8. P2	17. GND			
9. GND	18. P3			
Exposed PAD: GND				

■ TRUTH TABLE

"H"= $V_{CTL(H)}$, "L"= $V_{CTL(L)}$					
VCTL1	VCTL2	Path			
L	L	PC-P1			
Н	L	PC-P2			
L	Н	PC-P3			
Н	Н	PC-P4			

NOTE: Please note that any information on this datasheet will be subject to change.

■ ABSOLUTE MAXIMUM RATINGS

 $(T_a=+25^{\circ}C, Z_s=Z_l=50\Omega)$

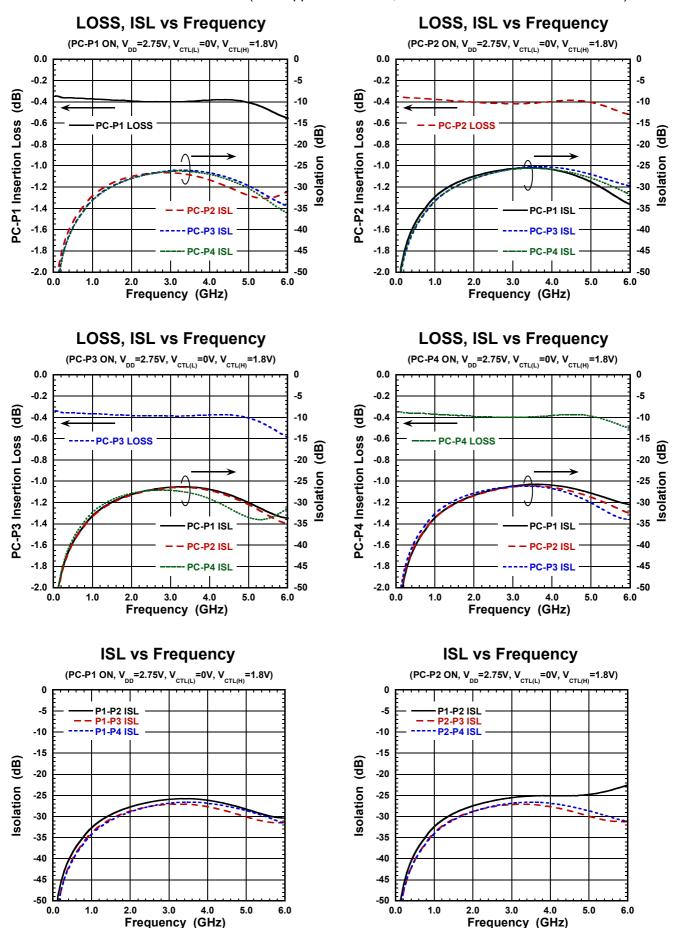
PARAMETER	SYMBOL	CONDITIONS	RATINGS	UNITS
RF Input Power	P _{IN}	V _{DD} =2.75V, V _{CTL} =0/1.8V	+33	dBm
Supply Voltage	V_{DD}	VDD terminal	5.0	V
Control Voltage	V _{CTL}	VCTL1, VCTL2 terminal	5.0	V
Power Dissipation	P_D	Four-layer FR4 PCB with through-hole (101.5x114.5mm), T _j =150°C	1400	mW
Operating Temp.	T_{opr}		-40 to +105	°C
Storage Temp.	T_{stg}		-55 to +150	°C

■ ELECTRICAL CHARACTERISTICS 1 (DC)

(General conditions: T_a =+25°C, V_{DD} =2.75V, $V_{CTL(H)}$ =1.8V, $V_{CTL(L)}$ =0V, with application circuit)

PARAMETERS	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Supply Voltage	V_{DD}	VDD Terminal	2.5	2.75	5.0	V
Operating Current	I _{DD}	No RF input	1	350	700	μΑ
Control Voltage (LOW)	$V_{\text{CTL}(L)}$	VCTL1, VCTL2 Terminal	0	1	0.45	V
Control Voltage (HIGH)	V _{CTL(H)}	VCTL1, VCTL2 Terminal	1.35	1.8	5.0	V
Control Current	I _{CTL}	V _{CTL(H)} =1.8V	-	4	10	μΑ

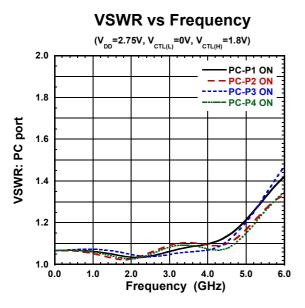
■ ELECTRICAL CHARACTERISTICS 2 (RF)

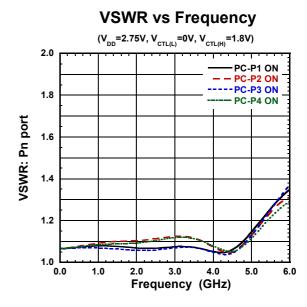

(General conditions: T_a =+25°C, Z_s = Z_I =50 Ω , V_{DD} =2.75V, $V_{CTL(H)}$ =1.8V, $V_{CTL(L)}$ =0V, with application circuit) **CONDITIONS SYMBOL** MIN **TYP** MAX **PARAMETERS** UNITS Insertion Loss 1 LOSS1 f=0.7GHz, $P_{IN}=+27dBm$ 0.35 0.55 dB LOSS2 Insertion Loss 2 f=2.0GHz, $P_{IN}=+27dBm$ 0.40 0.60 dB Insertion Loss 3 LOSS3 f=2.7GHz, P_{IN}=+27dBm 0.40 0.60 dB LOSS4 f=3.5GHz, $P_{IN}=+27dBm$ 0.40 0.60 dB Insertion Loss 4 Insertion Loss 5 LOSS5 f=5.85GHz, P_{IN}=+27dBm 0.50 0.75 dB Isolation 1 ISL₁ f=0.7GHz. P_{IN}=+27dBm 32 36 dB Isolation 2 ISL2 f=2.0GHz, $P_{IN}=+27dBm$ 25 28 dB Isolation 3 ISL3 f=2.7GHz, P_{IN}=+27dBm 24 27 dB ISL4 Isolation 4 f=3.5GHz, $P_{IN}=+27dBm$ 22 25 dB PC-Pn*1 26 30 Isolation 5 ISL5 f=5.85GHz, $P_{IN}=+27dBm$ dB Pm-Pn*2 20 23 Input Power at 0.1 dB P_{-0.1dB} f=5.85GHz +32 dBm Compression Point f=5.18GHz. 5.85GHz. 2nd Harmonics 1 2fo(1) -70 dBc P_{IN} =+27dBm f=2.69GHz, 2nd Harmonics 2 2fo(2) -95 dBc P_{IN}=0dBm f=5.18GHz, 5.85GHz, 3rd Harmonics 1 3fo(1) -70 dBc P_{IN} =+27dBm f=1.732GHz, 1.91GHz, 3rd Harmonics 2 3fo(2) -95 dBc P_{IN}=0dBm f=5.18GHz, 5.85GHz, 4th Harmonics 4fo -70 dBc $P_{IN}=+27dBm$ f=2.48+2.69GHz. Input 2nd order IIP2 f_{meas}=5.17GHz, +100 dBm intercept point P_{IN}=+10dBm each f=1.71+2.40GHz, Input 3rd order IIP3 fmeas=5.82 GHz, dBm +60 intercept point P_{IN}=+10dBm each VSWR1 VSWR1 On-state ports, f=2.7GHz 1.2 1.5 VSWR2 VSWR2 1.3 On-state ports, f=5.85GHz 1.6 250 400 Switching time T_{SW} 50% V_{CTL} to 10/90% RF ns

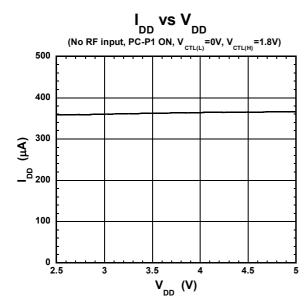
^{*1:} Pn=P1, P2, P3, P4

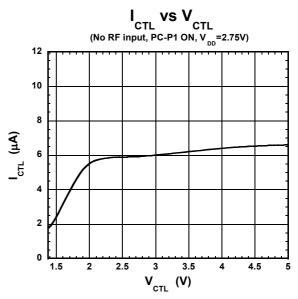
^{*2:} Pm=P1, P2, P3, P4. Pn=P1, P2, P3, P4. m≠n

■ TERMINAL INFORMATION

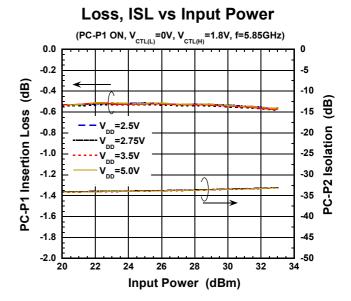

No.	SYMBOL	DESCRIPTION
1	GND	Ground terminal. Please connect this terminal with ground plane as close as possible for excellent RF performance.
2	GND	Ground terminal. Please connect this terminal with ground plane as close as possible for excellent RF performance.
3	PC	Common RF terminal. No DC blocking capacitor is required for this port unless DC is biased externally.
4	GND	Ground terminal. Please connect this terminal with ground plane as close as possible for excellent RF performance.
5	GND	Ground terminal. Please connect this terminal with ground plane as close as possible for excellent RF performance.
6	P1	RF terminal. No DC blocking capacitor is required for this port unless DC is biased externally.
7	GND	Ground terminal. Please connect this terminal with ground plane as close as possible for excellent RF performance.
8	P2	RF terminal. No DC blocking capacitor is required for this port unless DC is biased externally.
9	GND	Ground terminal. Please connect this terminal with ground plane as close as possible for excellent RF performance.
10	GND	Ground terminal. Please connect this terminal with ground plane as close as possible for excellent RF performance.
11	VDD	Positive voltage supply terminal. The positive voltage (+2.5 to +5V) has to be supplied. Please connect a bypass capacitor with ground plane for excellent RF performance.
12	VCTL2	Control signal input terminal. This terminal is set to High-Level (+1.35 to +5.0V) or Low-Level (0 to +0.45V).
13	VCTL1	Control signal input terminal. This terminal is set to High-Level (+1.35 to +5.0V) or Low-Level (0 to +0.45V).
14	GND	Ground terminal. Please connect this terminal with ground plane as close as possible for excellent RF performance.
15	GND	Ground terminal. Please connect this terminal with ground plane as close as possible for excellent RF performance.
16	P4	RF terminal. No DC blocking capacitor is required for this port unless DC is biased externally.
17	GND	Ground terminal. Please connect this terminal with ground plane as close as possible for excellent RF performance.
18	P3	RF terminal. No DC blocking capacitor is required for this port unless DC is biased externally.
Exposed Pad	GND	Ground pad of IC bottom side. Please connect this pad with ground plane as close as possible for excellent RF performance.

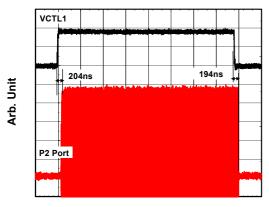



Nisshinbo Micro Devices Inc.

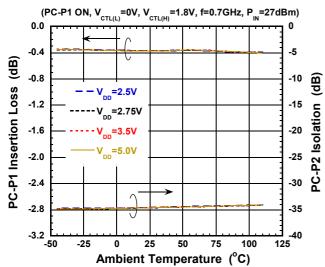


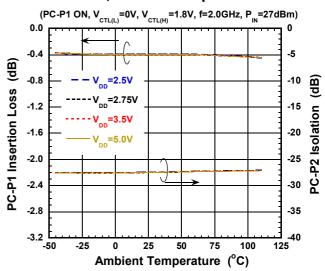
ISL vs Frequency $(\text{PC-P4 ON, V}_{\text{DD}} = 2.75\text{V, V}_{\text{CTL(L)}} = 0\text{V, V}_{\text{CTL(H)}} = 1.8\text{V})$ 0 -5 P2-P4 ISL -10 -15 Isolation (dB) -20 -25 -30 -35 -40 -45 -50 0.0 1.0 6.0 Frequency (GHz)



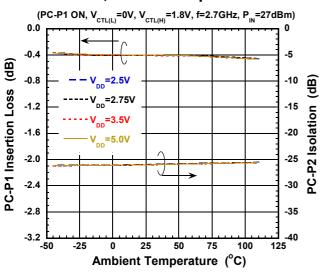


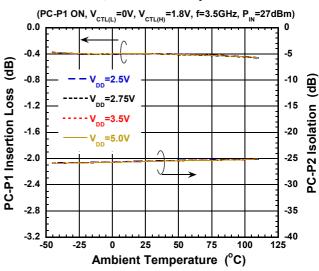
Output Power, $I_{\rm DD}$ vs Input Power (PC-P1 ON, V_{CTL(L)}=0V, V_{CTL(H)}=1.8V, f=5.85GHz) 34 700 $V_{_{\rm DD}}$ =2.5V V_DD=2.75V 32 600 V_{DD}=3.5V Output Power (dBm) 500 30 **Operating Current** 28 400 26 300 24 200 100 22 20 H 20 0 22 26 28 30 32 Input Power (dBm)

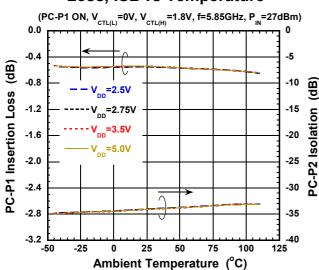


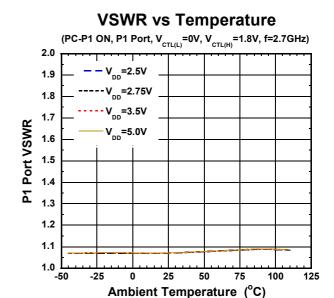


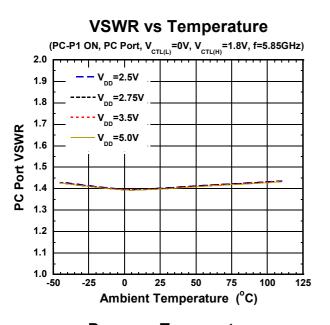
Time (1µs/div)

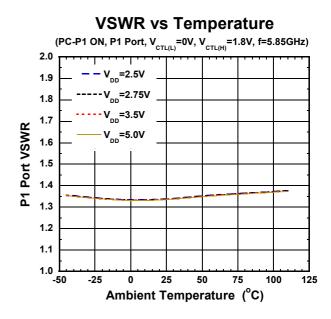


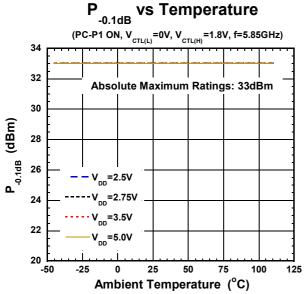

Loss, ISL vs Temperature


Loss, ISL vs Temperature

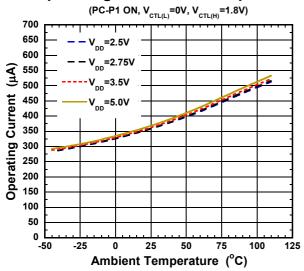

Loss, ISL vs Temperature

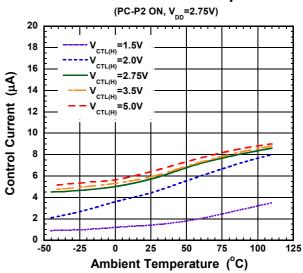


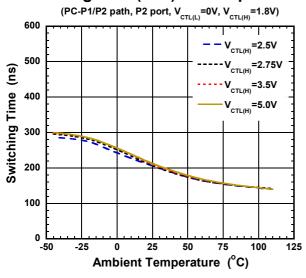

Loss, ISL vs Temperature

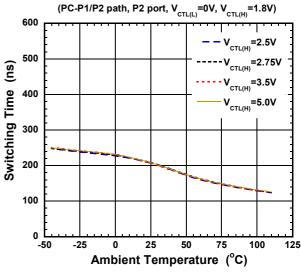


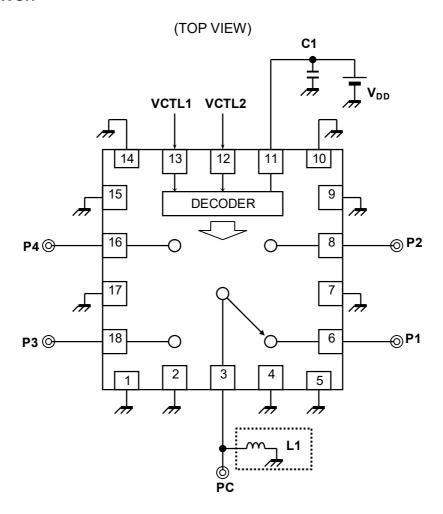
VSWR vs Temperature (PC-P1 ON, PC Port, $V_{CTL(L)}$ =0V, $V_{CTL(H)}$ =1.8V, f=2.7GHz) 2.0 V_{DD}=2.5V 1.9 V_{DD}=2.75V 1.8 V_{DD}=3.5V 1.7 PC Port VSWR V_{DD}=5.0V 1.6 1.5 1.4 1.3 1.2 1.1 1.0 100 125 Ambient Temperature (°C)





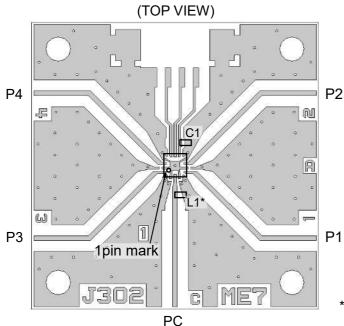

Operating Current vs Temperature


Control Current vs Temperature


Switching Time(rise) vs Temperature

Switching Time(fall) vs Temperature

■ APPLICATION CIRCUIT


Note:

- [1] No DC blocking capacitors are required on all RF ports, unless DC is biased externally.
- [2] The inductor L1 is optional in order to achieve enhancing ESD protection level. L1 is also recommended in order to keep the DC bias level of each RF port at ground level tightly.

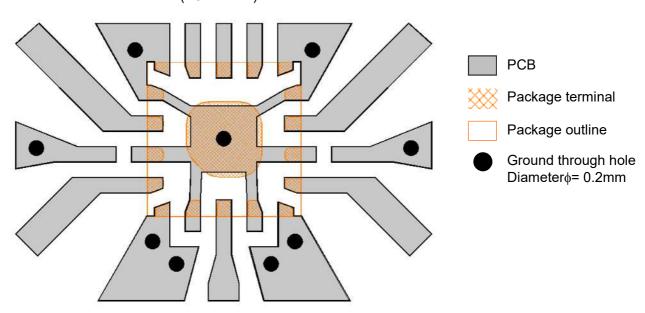
PARTS LIST

No.	Parameters	Note
C1	1000pF	MURATA (GRM15)
L1	68nH	TAIYO-YUDEN (HK1005)

■ PCB LAYOUT

PCB: FR-4, t=0.2mm

Capacitor size: 1005
Strip line width: 0.4mm
PCB size: 26x26mm²


Losses of PCB and connectors, Ta=+25 °C

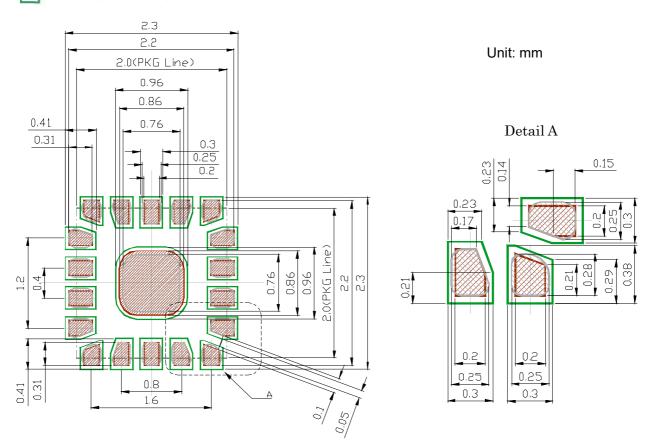
Frequency (GHz)	Loss (dB)
0.7	0.16
2.0	0.43
2.7	0.56
3.5	0.68
5.85	1.02

* L1 is

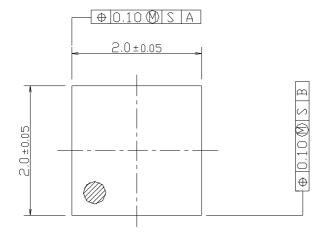
<PCB LAYOUT GUIDELINE>

(TOP VEIW)

■ PRECAUTIONS

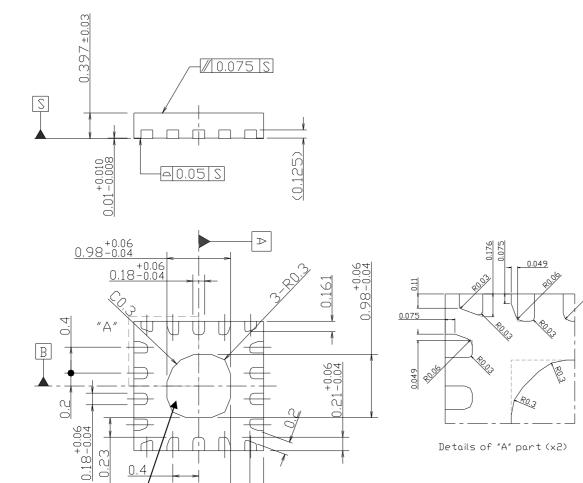

- [1] No DC block capacitors are required for RF ports unless DC is biased externally. When other device biased at certain voltage is connected to the NJG1809ME7, a DC block capacitor is required between the device and this switch IC. This is because the each RF port of this switch is biased at ground level.
- [2] For avoiding the degradation of RF performance, the bypass capacitor (C1) should be placed as close as possible to VDD terminal.
- [3] For good RF performance, all GND terminals are must be connected to PCB ground plane of substrate, and through holes for GND should be placed near the IC.
- [4] Please connect Exposed PAD to PCB ground plane of substrate, and through holes for ground should be placed under the IC.

■ RECOMMENDED FOOTPRINT PATTERN (EQFN18-E7 PACKAGE REFERENCE)


: Land

: Mask (Open area) *Metal mask thickness: 100μm PKG: 2.0x2.0mm² Pin pitch: 0.4mm

: Resist (Open area)


■ PACKAGE OUTLINE (EQFN18-E7)

Terminal Treat : SnBi
Board : Copper
Molding Material : Epoxy resin

Weight : 5.0mg

Unit : mm

Ground connection is required.

Cautions on using this product

Exposed PAD

This product contains Gallium-Arsenide (GaAs) which is a harmful material.

- Do NOT eat or put into mouth.
- Do NOT dispose in fire or break up this product.
- Do NOT chemically make gas or powder with this product.

Min 0

• To waste this product, please obey the relating law of your country.

This product may be damaged with electric static discharge (ESD) or spike voltage. Please handle with care to avoid these damages.

[CAUTION]

The specifications on this databook are only given for information, without any guarantee as regards either mistakes or omissions. The application circuits in this databook are described only to show representative usages of the product and not intended for the guarantee or permission of any right including the industrial rights.

+0.06 -0.04 Φ Φ 0.05 Φ S A B

- 1. The products and the product specifications described in this document are subject to change or discontinuation of production without notice for reasons such as improvement. Therefore, before deciding to use the products, please refer to our sales representatives for the latest information thereon
- 2. The materials in this document may not be copied or otherwise reproduced in whole or in part without the prior written consent of us.
- 3. This product and any technical information relating thereto are subject to complementary export controls (so-called KNOW controls) under the Foreign Exchange and Foreign Trade Law, and related politics ministerial ordinance of the law. (Note that the complementary export controls are inapplicable to any application-specific products, except rockets and pilotless aircraft, that are insusceptible to design or program changes.) Accordingly, when exporting or carrying abroad this product, follow the Foreign Exchange and Foreign Trade Control Law and its related regulations with respect to the complementary export controls.
- 4. The technical information described in this document shows typical characteristics and example application circuits for the products. The release of such information is not to be construed as a warranty of or a grant of license under our or any third party's intellectual property rights or any other rights.
- 5. The products listed in this document are intended and designed for use as general electronic components in standard applications (office equipment, telecommunication equipment, measuring instruments, consumer electronic products, amusement equipment etc.). Those customers intending to use a product in an application requiring extreme quality and reliability, for example, in a highly specific application where the failure or misoperation of the product could result in human injury or death should first contact us.
 - Aerospace Equipment
 - Equipment Used in the Deep Sea
 - · Power Generator Control Equipment (nuclear, steam, hydraulic, etc.)
 - · Life Maintenance Medical Equipment
 - · Fire Alarms / Intruder Detectors
 - Vehicle Control Equipment (automotive, airplane, railroad, ship, etc.)
 - Various Safety Devices
 - Traffic control system
 - Combustion equipment

In case your company desires to use this product for any applications other than general electronic equipment mentioned above, make sure to contact our company in advance. Note that the important requirements mentioned in this section are not applicable to cases where operation requirements such as application conditions are confirmed by our company in writing after consultation with your company.

- 6. We are making our continuous effort to improve the quality and reliability of our products, but semiconductor products are likely to fail with certain probability. In order to prevent any injury to persons or damages to property resulting from such failure, customers should be careful enough to incorporate safety measures in their design, such as redundancy feature, fire containment feature and fail-safe feature. We do not assume any liability or responsibility for any loss or damage arising from misuse or inappropriate use of the products.
- 7. The products have been designed and tested to function within controlled environmental conditions. Do not use products under conditions that deviate from methods or applications specified in this datasheet. Failure to employ the products in the proper applications can lead to deterioration, destruction or failure of the products. We shall not be responsible for any bodily injury, fires or accident, property damage or any consequential damages resulting from misuse or misapplication of the products.
- 8. Quality Warranty
 - 8-1. Quality Warranty Period
 - In the case of a product purchased through an authorized distributor or directly from us, the warranty period for this product shall be one (1) year after delivery to your company. For defective products that occurred during this period, we will take the quality warranty measures described in section 8-2. However, if there is an agreement on the warranty period in the basic transaction agreement, quality assurance agreement, delivery specifications, etc., it shall be followed.
 - 8-2. Quality Warranty Remedies
 - When it has been proved defective due to manufacturing factors as a result of defect analysis by us, we will either deliver a substitute for the defective product or refund the purchase price of the defective product.
 - Note that such delivery or refund is sole and exclusive remedies to your company for the defective product.
 - 8-3. Remedies after Quality Warranty Period
 - With respect to any defect of this product found after the quality warranty period, the defect will be analyzed by us. On the basis of the defect analysis results, the scope and amounts of damage shall be determined by mutual agreement of both parties. Then we will deal with upper limit in Section 8-2. This provision is not intended to limit any legal rights of your company.
- 9. Anti-radiation design is not implemented in the products described in this document.
- 10. The X-ray exposure can influence functions and characteristics of the products. Confirm the product functions and characteristics in the evaluation stage.
- 11. WLCSP products should be used in light shielded environments. The light exposure can influence functions and characteristics of the products under operation or storage.
- 12. Warning for handling Gallium and Arsenic (GaAs) products (Applying to GaAs MMIC, Photo Reflector). These products use Gallium (Ga) and Arsenic (As) which are specified as poisonous chemicals by law. For the prevention of a hazard, do not burn, destroy, or process chemically to make them as gas or power. When the product is disposed of, please follow the related regulation and do not mix this with general industrial waste or household waste.
- 13. Please contact our sales representatives should you have any questions or comments concerning the products or the technical information.

Official website

https://www.nisshinbo-microdevices.co.jp/en/

Purchase information

https://www.nisshinbo-microdevices.co.jp/en/buy/