www.DataSheet4U.com

DOLBY PRO LOGIC SURROUND DECODER

■ GENERAL DESCRIPTION

The NJM2177A is a higher level integration and high quality audio performance monolithic IC designed for use in Dolby Pro Logic Surround System. The NJM2177A provides all the necessary function for a complete Pro Logic processor except time delay; Automatic input balance, noise sepuencer, adaptibve matrix, center mode control, and modified B-type noise reduction all on chip.

In addition to Dolby Pro Logic function including Dolby 3-stereo, this device provides two channel bypass mode and two special outputs used for other surround conbeniently.

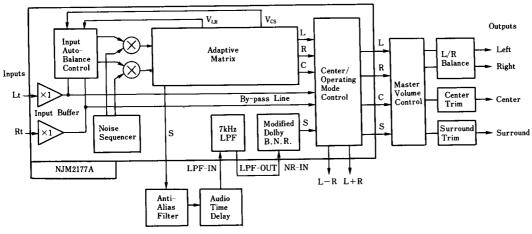
(note) Dolby and the double-D symbol are trademarks of Dolby Laboratories Licensing Corporation. San Francisco, CA94103-4813, USA.

This device available only to licensees of Dolby Lab.

Licensing and application information may be obtained from Dolby

FEATURES

- Operating Voltage
 Dolby operating level
 Lower Operating Current
 Internal mode control switches
- Package


■ FUNCTIONS

- Auto input balance and buffer
- Noise sequencer; a Noise generator, a sequencer controlled by external two bits

TQFP64

- Adaptive Matrix
- Center mode control; ON/OFF, Normal/Phantom/Wideband
- Modified Dolby B Type Noise Reduction and OP amp. for 7kHz low-pass filter
- Operating mode control; 4ch(L,C,R), 3ch(L,C,R), 2ch(no processing)
- L+R and L-R output

■ ACTIVE SURROUND DECODER BLOCK DIAGRAM

■ PACKAGE OUTLINE

www.DataSheet4U.com

■ ELECTRICAL CHARACTERISTICS

(Ta=25°C, V $^+$ =12V, 0dB Reference is 300mV/1kHz at C-OUT. Unless otherwise specified.)

PARAMETER	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNI
Overall				*****	•	
Operating Voltage Range	V _{OP}		9.0	_	13.0	v
Operating Current	I _{CC}	No signal		34.0	40.0	mA
Reference Voltage	V _{ref}	No signal	l —	4.0	_	v
Control SW input voltage		_				'
2ch Mode	V _C -2ch	MODE-CNT PIN	0.0		0.8	v
3ch	V _C -3ch	MODE-CNT PIN	_	Open	_	`
4ch	V _C -4ch	MODE-CNT PIN	3.8	_	7.0	v
Center on	V _C -con	CENTER-CNT PIN	2.4		7.0	v
Center off	V _C -coff	CENTER-CNT PIN	0.0	_	0.8	v
Noise Seq. on	V _C -nson	NOISE-CNT-E PIN	0.0	_	0.8	v
Noise Seq. off	V _C -nsoff	NOISE-CNT-E PIN	3.2		7.0	v
Noise Seq. channel select H	V _C -nssH	NOISE-CNT-A and NOISE-CNT-B PIN	3.2	l _	7.0	v
Noise Seq. channel select L	V _C -nssL	NOISE-CNT-A and NOISE-CNT-B PIN	0.0		0.8	v
Modified B Noise Reduction (0dBd Reference	is input lev	ve at NR-IN when adjust to 300mV/100Hz at	S-OUT)		i	L.,
Voltage Gain	GV-BNR	V _{in} = 0dBd, f=100Hz	Ι_	9.0	l _	dB
Decode Responce 1	D _{ecl}	V _{in} =0dBd, f=1.0kHz	-1.6	-0.1	1.4	dB
. 2	$D_{\infty 2}$	V _{in} =-15dBd, f=1.4kHz	-3.0	-1.5	0.0	dB
3	D_{ec3}	$V_{in} = -20 dB$, $f = 1.4 kHz$	-4.9	-3.4	-1.9	dB
4	D _{ec4}	V _{in} =40dBd, f=5.0kHz	-6.8	-5.3	-3.8	dB
T.H.D	THD-NR	V _{in} =0dBd, f=1.0kHz	0.0	0.07	J.6	%
Headroom	HR-NR	V+=9V AT T.H.D.=1%	15.0	17.0	_	dB
SN Ratio	SN-NR	Rg=0, weighted CCIR/ARM	76	82	_	dВ
Noise sequencer					<u> </u>	1
OUTPUT Noise level	V _{no}		Γ.,			
Output Noise Level Accuracy relative to Cch Lch			-15 0.5	-12.5	-10	dB
Rch S'ch	ΔVno		-0.5	0.0	0.5	dB
Adaptive Matrix						
Output Level Accuracy relative to Cch	-					
L,R,S'ch out	ΔVol		-0.5	0.0	0.5	dB
Matrix Rejection relative L,R,C,S'ch out	Mr		25.0	40.0	-	dB
T.H.D L,R,C,S'ch out	THD-AM		_	0.02	_	%
Headroom L,R,C,S'ch out	HR-AM	V+=9V at T.H.D=1%	15.0	15.7	_	dB
Signal to Noise Ratio L,R,C,S' ch out	SN-AM	Rg=0, weighted CCIR/ARM	78	83	_	dB
Auto Balance			L			
Capture Range	CPR		_	±5		dB
Error collection	CER		_	±4	_	dB
F.H.D Lt, Rt OUT	THD-AB			0.03		%
S/N Lt, Rt OUT	SN-AB	Rg=0, weighted CCIR/ARM	78	83	_	dB
Headroom Lt,Rt OUT	HR-AB	V+=9V at T.H.D=1%	15.0	17.0		dВ
L+R & L-R OUTPUT						
Output Level Accuracy relative to Cch						
L+R, L-R ch	ΔVol-OP			0.0	_	dB
r.H.D	THD-OP			0.02	_ [%
5/N	SN-OP	Rg=0, weighted CCIR/ARM	_	92		% dB
Headroom	HR-OP	V _{CC} =9V at T.H.D=1%	_			
	11101	7(C-77 at 1.11.D-1/0		17.0	_	dB

– New Japan Radio Co., Ltd. –

www.DataSheet4U.com

■ ABSOLUTE MAXIMUM RATINGS

(Ta=25°C)

PARAMETER	SYMBOL	RATINGS	UNIT
Supply Voltage	V+	15	V
Power Dissipation	PD	700	mW
Operating Temperature Range	Topr	−20~+75	r
Storage Temperature Range	T _{stg}	-40~+125	r

1-40-

– New Japan Radio Co., Ltd. -

[CAUTION]
The specifications on this databook are only given for information, without any guarantee as regards either mistakes or omissions. The application circuits in this databook are described only to show representative usages of the product and not intended for the guarantee or permission of any right including the industrial rights.