-Software

Features

- Dolby[®] Virtual Speaker •
- Dolby[®] Headphone
- Dolby[®] Pro Logic II[®] (Max 5.1ch Output)
- Multi-channel signals input (Max 5.1ch Input)
- Monitor output
- Lip-Sync Delay function (Digital Audio Delay)

-Hardware

products.

- 24bit Fixed-point Digital Signal Processing
- Maximum Clock Frequency : 12.288MHz(Standard), built-in PLL Circuit

The NJU26220 simulates a highly realistic 5.1-speaker surround sound listening environment from as few as two speakers or headphone by Dolby® Virtual

The NJU26220 processes the Dolby® Virtual Speaker and Dolby® Headphone technology that combined with Pro Logic II processing. It includes Pro Logic II decoder.

It is suitable for digital TVs, stereo mini-components, PCs, and any audio/visual

Moreover, multi-channel signal inputs from an external decoder are possible.

- : 4 Input ports / 4 Output ports Digital Audio Interface
- Digital Audio Format : I²S 24bit, left-justified, right-justified, BCK: 32fs/64fs

Dolby Virtual Speaker / Dolby Headphone Decoder

- Master / Slave Mode
 - In Master mode, MCK : 256fs @fs=48kHz / 384fs @fs=32kHz
- Microcomputer Interface
 - I²C Bus (Standard-mode/100kbps, Fast-mode/400kbps)
 - 4 -Wire Serial Bus (4-Wire: Clock, Enable, Input data, Output data)
- Operating Voltage $: V_{DD} = V_{DDPLL} = 1.8V$
- $: V_{DDIO} = 3.3V$
- Input Terminal : 5.0V Input tolerant
- : LQFP48-R3 (Pb-Free) Package

* The detail hardware specification of the NJU26220 is described in the "NJU26200 Series Hardware Data Sheet".

NJU26220FR3

PRO LOGIC II

General Description

Speaker/Dolby[®] Headphone technology.

VIRTUAL SPI

Package

NJU26220

Block Diagram

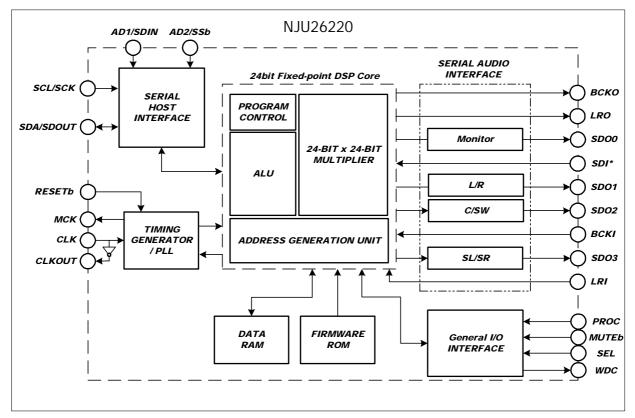
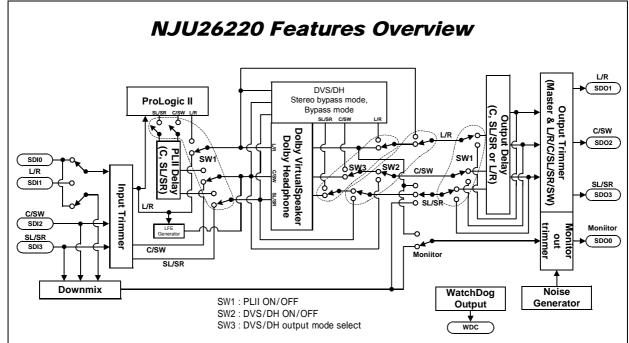
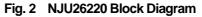




Fig. 1 NJU26220 Hardware Block Diagram

Function Block Diagram

NJU26220

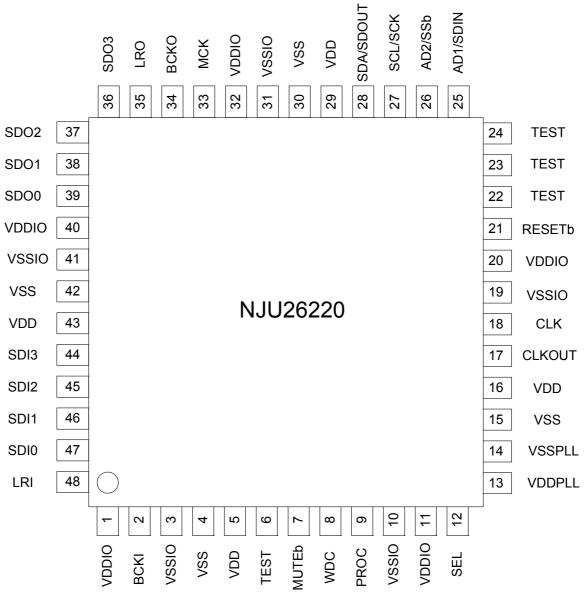


Fig. 3 NJU26220 Pin Configuration

Pin Description

Table 1 Pin Description

Pin No.	Symbol	I/O	Function
1,11,20,32,40	VDDIO	-	I/O Power Supply +3.3V
2	BCKI	I	Bit Clock Input
3,10,19,31,41	VSSIO	-	I/O GND
4,15,30,42	VSS	-	Core GND
5,16,29,43	VDD	-	Core Power Supply +1.8V
6	TEST	I	for test (connected to VSSIO through $3.3k\Omega$ resistance.)
7	MUTEb *	I	Master Volume level, After Reset DSP ("1": 0dB , "0": Mute)
8	WDC *	OD	Clock for Watch Dog Timer (Open Drain Output)
9	PROC *	I	After Reset DSP. ("1": Normal, "0": Wait from Command)
12	SEL	I	Select I ² C or Serial bus ('1': Serial , '0': I ² C-Bus)
13	VDDPLL	-	PLL Analog Power Supply +1.8V
14	VSSPLL	-	PLL Analog GND
17	CLKOUT	0	OSC Output
18	CLK	I	X'tal Clock Input (12.288MHz)
21	RESETb	I	Reset (RESETb='0' : DSP Reset)
22	TEST	I	for Test (Connect to VDDIO)
23,24	TEST	I	for Test (Connect to VSSIO)
25	AD1/SDIN	I	I ² C Address / Serial Input
26	AD2/SSb	I	I ² C Address / Serial Enable
27	SCL/SCK	I	I ² C Clock / Serial Clock
			I ² C I/O (Open Drain output) / Serial Output (CMOS output)
28	SDA/SDOUT	I/O	I ² C Bus mode : SDA pin requires a pull-up resistance.
			4-wire Serial mode : SDOUT does not require a pull-up resistance.
33	MCK	0	Master Clock Output (CLK Terminal=27pin Buffer Out)
34	BCKO	0	Bit Clock Output
35	LRO	0	LR Clock Output
36	SDO3	0	Audio Data Output 3 (SL/SR)
37	SDO2	0	Audio Data Output 2 (C/ SW)
38	SDO1	0	Audio Data Output 1 (L/R)
39	SDO0	0	Audio Data Output 0 (Monitor output)
44	SDI3	I	Audio Data Input 3
45	SDI2	I	Audio Data Input 2
46	SDI1	I	Audio Data Input 1
47	SDI0	I	Audio Data Input 0
48	LRI	I	LR Clock Input

I : Input

O : Output

OD : Open Drain Output

I/O : Bi-directional

Note: Pins symbol with * : Connect with VDDIO or VSSIO through $3.3k\Omega$ resistance

Audio Interface

The NJU26220 audio interface provides industry serial data formats of I²S, MSB-first Left-justified or MSB-first Right-justified. The NJU26220 audio interface provides four data inputs, SDI0, SDI1, SDI2 and SDI3, and four data outputs, SDO0, SDO1, SDO2 and SDO3, as shown in table 2 and 3. The input serial data is selected by the firmware command.

Table Z	Senai Audio input Fin		
Pin No.	Symbol	Description	
47	SDI0	Stereo L/R input (Pin select)	
46	SDI1		
45	SDI2	C/SW	
44	SDI3	SL/SR	

Table 2 Serial Audio Input Pin

Table 3Serial Audio Output Pin

Pin No.	Symbol	Description
39	SDO0	Monitor output
38	SDO1	L/R
37	SDO2	C/SW
36	SDO3	SL/SR

Note: L/R : Front channel

C/SW : Center channel and Sub woofer

SL/SR: Surround channel

Host Interface

The NJU26220 can be controlled via Serial Host Interface (SHI) using either of two serial bus formats : I²C bus or 4-Wire serial bus. Data transfers are in 8 bits packets (1 byte) when using either format. The SHI operates only in a SLAVE fashion. A host controller connected to the interface always drives the clock (SCL / SCK) line and initiates data transfers, regardless of the chosen communication protocol.

The detail I²C bus and 4-Wire Serial bus information are described in the 'NJU26200 Series Hardware Data Sheet'.

Pin No.	Symbol	Setting	Host Interface
	SEL	Low	I ² C Bus Interface
		High	4-Wire Serial Interface

Table 4 Serial Host Interface Pin Descriptions

Table 5	Serial Host Interface Pin Description

Pin No.	Symbol	I ² C bus Interface	4-Wire Serial Interface
	(l ² C /Serial)		
25	AD1/SDIN	I ² C Address Select Bit1	Serial data input
26	AD2/SSb	I ² C Address Select Bit2	Slave select
27	SCL/SCK	Serial Clock	Serial Clock
28	SDA/SDOUT	Serial Data Input/Output	Serial data output
		(Open Drain output)	(CMOS Output)

Note: When 4-Wire Serial bus is selected, The SDA/SDOUT pin is CMOS output. The SDOUT pin does not require a pull-up resistance.

When I²C Bus is selected, this pin is a bi-directional Open Drain output. This pin, which is assigned for I²C Bus, requires a pull-up resistance.

The SDA/SDOUT pin isn't 5.0V Input tolerant. Please note the voltage level (Max voltage is V_{DDIO}).

■ I²C Bus

When the NJU26220 is configured for I²C bus communication in SEL="Low", the serial host interface transfers data on the SDA pin and clocks data on the SCL pin. SDA is an open drain pin requiring a pull-up resistance. Pins AD1 and AD2 are used to configure the seven-bit SLAVE address of the serial host interface. (Table 6)

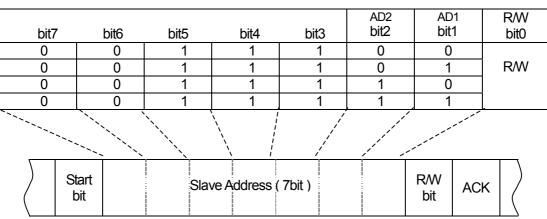


Table 6 I²C-Bus Interface Slave address

* SLAVE address is 0 when AD1/2 is "Low". SLAVE address is 1 when AD1/2 is "High".

Note: The serial host interface supports "Standard-Mode (100kbps)" and "Fast-Mode (400kbps)" I²C bus data transfer. Moreover, after sending S ("START" condition), Sr (repeated "START" condition) is not received but it becomes the waiting for the P ("STOP" condition). Therefore, please be sure to send P ("STOP" condition).

4-Wire Serial Interface

The serial host interface can be configured for 4-Wire Serial bus communication by setting SEL1="High" during the Reset Sequence initialization. SHI bus communication is full-duplex; a write byte is shifted into the SDIN pin at the same time that a read byte is shifted out of the SDOUT pin.

Data transfers are MSB first and are enabled by setting SSb = "Low". Data is clocked into SDIN on rising transitions of SCK. Data is latched at SDOUT on falling transitions of SCK except for the first byte(MSB) which is latched on the falling transitions of SSb. The SDOUT pin is always CMOS output. This pin does not require a pull-up resistance.

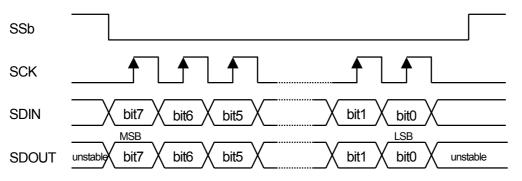


Fig. 4 4-Wire Serial Interface Timing

Note : When the data-clock is less than 8 clocks, the input data is shifted to LSB side and is sent to the DSP core at the transition of SSb="High".

When the data-clock is more than 8 clocks, the last 8 bit data becomes valid. After sending LSB data, SDOUT transmits the MSB data which is received via SDIN until SSb becomes "High".

Pin setting

The NJU26220 operates default command setting after resetting the NJU26220. In addition, the NJU26220 restricts operation at power on by setting PROC pin and MUTEb pin (Table 7). These pins are input pin. However, these pins operate as bi-directional pins. Connect with V_{DDIO} or V_{SSIO} through 3.3k Ω resistance.

Table 7	Pin setting
	i ili settilig

Pin No.	Symbol	Setting	Function
		"High"	The NJU26220 operates default setting after reset.
9	PROC	"Low"	The NJU26220 does not operate after reset. Sending start
			command is required for starting operation.
7	MUTEb	"High" Master volume is set 0dB after reset.	
		"Low"	Master volume is set mute after reset.

WatchDog Clock

The NJU26220 outputs clock pulse through WDC (Pin No.8) during normal operation. The WDC clock is useful to check the status of the NJU26220 operation. For example, a microcomputer monitors the WDC clock and checks the status of the NJU26220. When the WDC clock pulse is lost or not normal clock cycle, the NJU26220 does not operate correctly. Then reset the NJU26220 and set up the NJU26220 again. The WDC clock is able to be variable for 10ms to 640ms by command. Default setting of WDC clock is 200ms.

The WDC pin is open drain output. The WDC pin setting (Table 8)

Table o WDC pin setung				
Pin No	Symbol	Setting		
8	WDC	WDC pin is used. WDC pin is not used.	Connect with V_{DDIO} through $3.3k\Omega$ resistance Connect with V_{SSIO} through $3.3k\Omega$ resistance. Do not open WDC pin.	

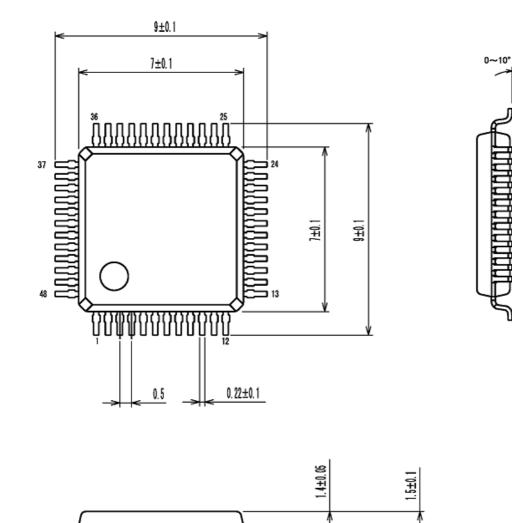
Table 8 WDC pin setting

Note: The cycle of WDC output is rough. Because WDC output inserts in the process of sound processing. In slave mode, when there is no input of BCKI/LRI, the WDC pin can't output. It is required to set up a sampling rate correctly.

Firmware Command Table

No.	Command
1	SET_TASK_CMD
2	PRO2MODE_CMD
3	PRO2CDCFG_CMD
4	PRO2FLAGS_CMD
5	DVS_DH_CMD
6	SAMPLERATE_CMD
7	PNG_MODE_CMD
8	DELAY_CMD
9	GAIN_CMD
10	SYSTEM_STATE_CMD
11	WATCHDOG_CMD
12	SMOOTH_CMD
13	OUTPUT_SEL_CMD
14	LFE_CONFIG_CMD
15	REINIT_CMD
16	SOFTWARE_RESET_CMD
17	START_CMD
18	NOP_CMD

Table 9 NJU26220 Command


Notes : In respect to detail command information, request New Japan Radio Co., Ltd. and permission of a licenser (Dolby) is required.

License Information

The Word "DOLBY", "Pro Logic" and the double D mark are trademarks of Dolby Laboratories. The NJU26220 can only be delivered to licensees of Dolby Laboratories. Please refer to the licensing application manual issued by Dolby Laboratories. Package Dimensions (LQFP48-R3, Pb-Free)

ппппппппп

0.076

MOLD MATERIAL : EPOXY RESIN

0.6±0.1

UNIT : mm Lead Plating : SnBi

[CAUTION] The specifications on this databook are only given for information, without any guarantee as regards either mistakes or omissions. The application circuits in this databook are described only to show representative usages of the product and not intended for the guarantee or permission of any right including the industrial rights.

0.1±0.05

MOLD BASE

0. 17TYP