

RS232C LINE DRIVER/RECEIVER

GENERAL DESCRIPTION

The NJU6401B is a RS232C line driver/receiver composed of 3 drivers and 5 receivers.

The drivers convert the input of TTL level signals into RS232C level signals and limit the slew rate below $30V/\mu s$.

The receivers accept the input levels both of RS-232C standard minimum requirement level(\pm 3V) and TTL level.

Furthermore, the hysteresis circuit and noise filter incorporated on each receiver ensures noise-free operation. ■ PACKAGE OUTLINE

NJU6401BD

NJU6401BM

PIN CONFIGURATION

Dol [20 Vcc Rx1 [2 19 Rx5 Do2 3 18 Do5 Rx2 4 17 Rx4 Do 3 [16 Do4 Rx3 6 19 GND VDD 7 14 Tx3 Di1 8 13 Di 3 Txi 🧕 12 Tx2 11 Di2 Vss 10

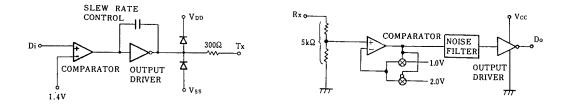
FEATURES

- Based on the R\$232C Standard
- 3 Drivers and 5 Receivers
- Low Operating Current

•	Driver	Output	Voltage		±25V
---	--------	--------	---------	--	------

- Receiver Input Voltage --- ±27V
- Output Impedance at Power-off (Driver)
 - --- 300Ω (Min)
 - --- 30V/µs (Max)
- TTL-compatible Input (Driver)
- TTL-compatible input/Output (Receiver)

(Driver)


- Hysteresis Input (Receiver)
- Noise Filter On-chip (Receiver)
 - Package Outline --- DIP/DMP 20
- C-MOS Technology

Slew Rate

BLOCK DIAGRAM

(1) Driver Section (1-circuit)

(2) Receiver Section (1-circuit)

7

TERMINAL DESCRIPTION

NO.	SYMBOL	FUNCTION	NO.	SYMBOL	FUNCTION
1	Do1	Receiver Output 1	11	Di2	Driver Input 2
2	Rx1	Receiver Input 1	12	Tx2	Driver Output 2
3	Do2	Receiver Output 2	13	Di3	Driver Input 3
4	Rx2	Receiver Input 2	14	Tx3	Driver Output 3
5	Do3	Receiver Output 3	15	GND	Ground
6	Rx3	Receiver Input 3	16	Do4	Receiver Output 4
7	Voo	Driver Positive Voltage Supply(+12V)	17	Rx4	Receiver Input 4
8	Di1	Driver Input 1	18	Do5	Receiver Output 5
9	Tx1	Driver Output 1	19	Rx5	Receiver Input 5
10	Vss	Driver Negative Voltage Supply(-12V)	20	Vcc	Logic Operating Voltage Supply(+5V)

FUNCTIONAL DESCRIPTION

(1) Driver Section

The drivers output the RS-232C standard signals which are converted from the TTL level signal to RS-232C standard level by the level shifter and limit the slew rate below $30V/\mu s(6V/\mu s typ)$, to the RS-232C lines.

The each driver incorporate series resistance to keep the output impedance to 300Ω or more during the power-off. This series resistance also protect the internal circuits against the overvoltage of $\pm 25V$ impressed from outside.

(2) Receiver Section

The input of each receiver incorporate the resistor(TYP:5k Ω) as the drivers load. This resistor also protect the internal circuits against the overvoltage of $\pm 27V$. The receiver accept the both of $\pm 3V$ of RS-232C standard minimum requirement level and TTL level as the threshold voltage of input comparators are adjusted for both input levels.

The noise less than $1V_{P-P}$ and spike noise below 3μ s pulse width are eliminated by the hysteresis circuits and noise filter.

The output signals are TTL compatible and capable of 8-LSTTL driving.

M ABSOLUTE MAXIMUM RATINGS

BSOLUTE MAXII	MUM RATINGS			(Ta=25℃)
PAR	AMETER	SYMBOL	RATINGS	UNIT
Supply Vol	tage	Vcc Vdd Vss	-0.3 ~ + 6 Vcc ~ +14 (Note1) +0.3 ~ -14	v
Receiver	Receiver Input Voltage V _{RI} Output Voltage V _{DO}		$-0.3 \stackrel{\pm 27}{\sim} V_{cc}+0.3$	۷
D r iver	Input Voltage Output Voltage Output Current	V _{D 1} Vтх Iтх	$^{-0.3} \sim V_{cc} + 0.3 \pm 25 \pm 60$	V V mA
Power Dissipation		Po	DIP 500	mW
Operating Temperature		Topr	- 20 \sim + 75	°C
Storage Temperature		Tstg	- 65 ~ + 150	Ĵ

Note1) The V_{DD} level must be maintained higher than V_{CC} level. If the V_{CC} rise up before V_{DD} supply when the power is turned on, the latch-up may occur because of the reverse current flows from V_{cc} to V_{bb}. If there are possibilities of early V_{cc} supply, the diode connect to Vop and Vss terminals shown in application circuits are required.

■ ELECTRICAL CHARACTERISTICS

(Ta=25°C)

PARAMETER	SYMBOL	CONDITIONS	MIN	ТҮР	MAX	UNIT
Quiescent Current	CC DD SS	Vcc=5.5V Vpp=12V Vss=-12V			1 1 1	mA
Operating Voltage	Vcc Vdd Vss		4.5 4.5 -12		5.5 12 -4.5	v

DRIVER ELECTRICAL CHARACTERISTICS

 $(Ta=25^{\circ}C, 4.5 \le V_{cc} \le 5.5V, V_{DD}=4.5 \sim 12V, V_{SS}=-4.5V \sim -12V, GND=0V)$

PARAMETER	SYMBOL	CONDITIONS			MIN	ТҮР	MAX	UNIT
Input Voltage H Level L Level	Vтн Vт⊾				2.0		0.8	. V
Maximum Input Current	իս,իս	VIN=GND or VDD			-10		10	μA
H Level Output Voltage	Vон	R∟=3kΩ	V_{DD} =+4.5V, V_{SS} =-4.5V V_{DD} =+9V, V_{SS} =-9V V_{DD} =+12V, V_{SS} =-12V		3.0 6.5 9.0			v
L Level Output Voltage	Vol	$\begin{array}{llllllllllllllllllllllllllllllllllll$				-3.0 -6.5 -9.0	v	
Autnut Shart Current	los+	Vour=GND,	V _{DD} =+12V	VIN=VIL			45	πА
Output Short Current (Note 2)	los-	Vss=-12V		VIN=VIH	-45			
Output Impedance	Rour	Vcc=Vpp=V	'ss=0V,~2V≦	V _{ou r} ≦+2V	300			Ω

Note 2) The output short current is specified by 1 output terminal. If plural outputs short at once, the NJU6401B may destroy due to the power over the package power dissipation.

-New Japan Radio Co., Ltd.

DRIVER AC CHARACTERISTICS

 $(T_a=25^{\circ}C, 4.5 \le V_{cc} \le 5.5V, V_{DD}=4.5 \sim 12V, V_{SS}=-4.5V \sim -12V, GND=0V, R_L=3k\Omega, C_L=50pF)$ (Note 3.4)

PARAMETER	SYMBOL	CONDITIONS	MIN	ТҮР	MAX	UNIT
Propagation Delay Time	todi	$\begin{array}{c} V_{\text{DD}} = +4.5V, \ V_{\text{SS}} = -4.5V \\ V_{\text{DD}} = +9V, \ V_{\text{SS}} = -9V \\ V_{\text{DD}} = +12V, \ V_{\text{SS}} = -12V \end{array}$			6.0 5.0 4.0	μs
Propagation Delay Time	todo	$\begin{array}{c} V_{\text{DD}} = +4.5V, \ V_{\text{SS}} = -4.5V \\ V_{\text{DD}} = +9V, \ V_{\text{SS}} = -9V \\ V_{\text{DD}} = +12V, \ V_{\text{SS}} = -12V \end{array}$			6.0 5.0 4.0	μs
Rise/Fall Time (Note 5)	tr/tr		0.2			μs
Delay Time Skew	tak	V_{DD} = +12V, V_{SS} = -12V		400		ns
Slew Rate (Note 5)	SR	R _L =3 to 7k Ω ,15pF \leq C _L \leq 2.5nF		6	30	v∕µs

Note 3) AC input waveform: $t_f = t_f \leq 20$ ns, $V_{1H} = 2.0V$, $V_{1L} = 0.8V$

Note 4) Input Rise/Fall time are less than 5μ s.

Note 5) Output slew rate, output rise time and fall time are specified output waveform changing time either from +3V to -3V or -3V to +3V.

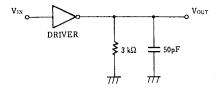
RECEIVER ELECTRICAL CHARACTERISTICS

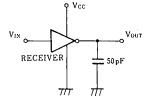
 $(Ta=25^{\circ}C, 4.5 \le V_{CC} \le 5.5V, V_{DD}=4.5 \sim 12V, V_{SS}=-4.5V \sim -12V, GND=0V)$

PARAMETER	SYMBOL	CONDITIONS	MIN	ТҮР	MAX	UNIT
Input Voltage H Level L Level	Vp Vn		1.3 0.5	2.0 1.0	2.5 1.7	V
Hysteresis Voltage	V _H			1.0		V
Input Impedance	RIN	$V_{IN}=\pm 3V\sim\pm 12V$	3	5	7	kΩ
Output Voltage H Level L Level	Voh Vol	V _{IN} =V _N (Min.), I _{OUT} =-3.2mA V _{IN} =V _P (Max.), I _{OUT} =+3.2mA	2.8	5	0.4	٧

RECEIVER AC CHARACTERISTICS

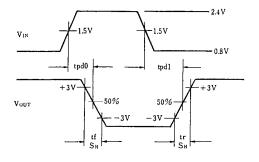
(Ta=25℃, 4.5≦Vcc≦5.5V, Vpp=4.5~12V, Vss=-4.5V~-12V, GND=0V, CL=50pF) (Note 6)

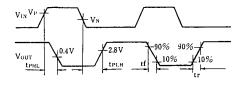

PARAMETER	SYMBOL	CONDITIONS	MIN	ТҮР	MAX	UNIT
Propagation Delay Time	tplh, tphl	Input Pulse Width≧10µs			6.5	μs
Delay Time Skew	tsк			400		ns
Output Rise Time	tr				300	ns
Output Fall Time	tr	· · · · · · · · · · · · · · · · · · ·			300	ns


Note 6) AC input waveform tr=tf=200ns, V_{1H} =+3V, V_{1L} =-3V, f=20kHz.

MEASUREMENT CIRCUITS

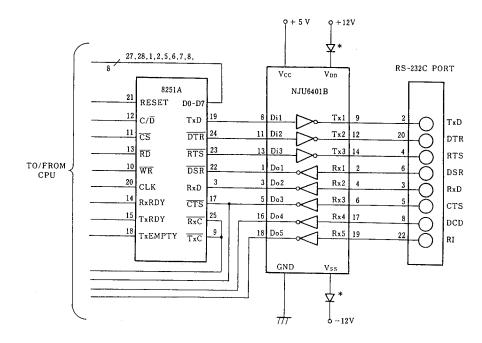
(1) Driver AC Characteristics


(2) Receiver AC Characteristics



MEASUREMENT WAVEFORM

(1) Driver AC Characteristics


(2) Receiver AC Characteristics

-New Japan Radio Co.,Ltd.

APPLICATION CIRCUIT

RS-232C port

-New Japan Radio Co.,Ltd.

* External diode for protective use. Protection of in case +5V voltage supplied before than +12V and overvoltage stress.

7

7-6-

NJU6401B

www.DataSheet4U.com

MEMO

[CAUTION] The specifications on this databook are only given for information , without any guarantee as regards either mistakes or omissions. The application circuits in this databook are described only to show representative usages of the product and not intended for the guarantee or permission of any right including the industrial rights.

New Japan Radio Co., Ltd.

www.DataSheet4U.com