

SYSTEM RESET IC WITH WATCHDOG TIMER

■ GENERAL DESCRIPTION

The NJU7291 is a system reset IC with watchdog timer. It can detect an instantaneous voltage drop and break, and generates a reset signal. The NJU7291 provides a fail-safe function with an internal watchdog timer on various microcomputer systems. It is available in 8-lead DIP and MSOP (TVSP) packages.

■ PACKAGE OUTLINE

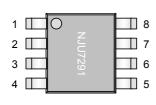
NJU7291D (DIP8)

■ FEATURES

• Supply Voltage Range : $V^+ = 2.5 \text{ V to } 7.0 \text{ V}$

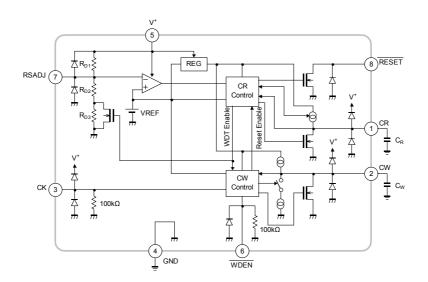
• RESET Detection Voltage : $V_{RL} = \pm 1.0 \%$ and Adjustable Detection Voltage with External Resistance

• Rising RESET Hold Time and Watchdog Timer RESET Time Setting Ratio = 30:1


• Configurable Watchdog Timer Watching Time Independent Setting

• Configurable Stopping Watchdog Timer Function

Package Outline : MSOP8 (TVSP8)*, DIP8


*MEET JEDEC MO-187-DA / THIN TYPE

■ PIN CONFIGRATION / PIN FUNCTION

PIN No.	PIN NAME	FUNCTION
1.	CR	External Capacitor Pin for Setting Reset Pin
2.	CW	External Capacitor Pin for Clock Pin
3.	CK	Clock Input Pin
4.	GND	Ground Pin
5.	V ⁺	Power Supply Pin
6.	WDEN	External Register Pin for Setting Watchdog Timer Pin
7.	RSADJ	External Register Pin for Setting Reset Pin
8.	RESET	Reset Signal Output Pin

■ BLOCK DIAGRAM

■ ABSOLUTE MAXIMUM RATING

 $(T_a = 25 ^{\circ}C)$

PARAMETER	SYMBOL	TEST CONDITION	RATINGS	UNIT
Supply Voltage	V ⁺		8.0	V
Detect Voltage Input voltage	V_{RSADJ}		8.0	V
Clock Input Voltage	V_{CK}	(*1)	8.0	V
WDEN Input Voltage	V_{WDEN}	(*1)	8.0	V
RESET Output Voltage	V_{RESET}		8.0	V
RESET Output Sink Current	I _{RESET}		20	mA
Power Dissipation	P_{D}	MSOP8(TVSP8) (*2)	470	mW
Fower Dissipation	ГΒ	DIP8(*3)	500	11100
Operating Temperature	T_{opi}		- 40 to + 85	°C
Storage Temperature	T_{stg}		- 40 to +125	°C

(*1): When input voltage is less than +8V, the absolute maximum control voltage is equal to the input voltage.

(*2) : Mounted on glass epoxy board ($76.2 \times 114.3 \times 1.6$ mm: 2Layers FR-4)

(*3): Device itself

■ RECOMMENDED OPERATING CONDITION

 $(T_a = 25 \, ^{\circ}C)$

PARAMETER	SYMBOL	TEST CONDITION	MIN.	TYP.
Supply Voltage	V^{+}		2.5 to 7.0	V
Detect Voltage Input voltage	V_{RSADJ}		0 to V ⁺	V
Clock Input Voltage	V_{CK}		0 to V ⁺	V
WDEN Input Voltage	V_{WDEN}		0 to V⁺	V

■ ELECTRICAL CHARACTERISTICS

< Voltage Detector Block >

Unless otherwise noted, $(V^{\dagger} = V_{RL} + 0.3V, T_a = 25^{\circ}C)$

PARAMETER	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Reset Voltage	V_{RL}		- 1.0 %	-	+1.0 %	V
Hysteresis Voltage	$V_{HYS\ RS}$	$V_{HYS RS} = V_{RH} (*4) - V_{RL}$	63	90	117	mV
Reference Voltage	V_{TRS}		0.95	1.00	1.05	V
Average temperature coefficient of Reference Voltage	$\Delta V_{TRS}/\Delta T_a$	$T_a = -40 ^{\circ}\text{C to} + 85 ^{\circ}\text{C}$	-	±200	-	ppm/°C
Output Delay Hold time	T_PR	$C_R = 0.01 \mu F$	1.9	2.5	3.5	ms
CR Pin Charge Current at Detect Voltage	I _{CRD}	V _{CR} = 0.05V	3	4	5	μA
CR Pin Threshold Voltage at Reset Release	V_{TCRD}	V _{CW} = 0.05V	0.95	1.00	1.05	V

(*4): V_{RH}: Release Voltage

< Output Block >

Unless otherwise noted, ($V^+ = V_{RL} + 0.3V$, $T_a = 25$ °C)

PARAMETER	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
RESET Output Voltage at "L" Output	V_{RSTL}	$I_{RESET} = 0.5 \text{mA}, V_{RSADJ} = 0 \text{V}$	1	0.2	0.4	V
RESET Output Sink Current at "L" Output	I _{RST}	$V_{RESET} = 0.5V, V_{RSADJ} = 0V$	5	10	1	mA
RESET Minimum Operating Voltage	V_{OPL}	$V_{RESET} = 0.4V$, R_{pu} (*5) = 330k Ω		0.8	1.2	V

(*5): R_{pu}: Pull up Resistor

< Watch Dog Timer Block >

Unless otherwise noted, (\	$I^{+} = V_{RI} + 0.3V. T_a = 25^{\circ}C$
Offices of ici whoch follow, ()	VRI U.U.V, Ia ZU U

PARAMETER	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Clock Input Threshold Voltage	V_{TCK}		0.6	0.9	1.2	V
Clock Input Pulse With	T _{CKW}		0.05	-	-	ms
Clock Input Cycle	T _{CK}		0.1	1	-	ms
WDT Monitor Time	T_WD	$C_W = 0.01 \mu F$	1.5	2.0	2.8	ms
CW Pin Charge Current	I_{CK}	$V_{CW} = 0.05V$	3	4	5	μA
CW Pin Threshold Voltage at WDT Reset	V_{TCWH}	$V_{CR} = 0.05V$	0.95	1.00	1.05	V
CW Pin Discharge Current at Clock Detect	I _{CWL}	V _{CW} = 0.05V	30	40	50	μA
CW Pin Threshold Voltage at Changing Charge	V_{TCWL}	V _{CR} = 0.05V	0.18	0.20	0.22	V
WDT Reset Time	T _{WR}	$C_R = 0.01 \mu A$	0.063	0.083	0.117	ms
CR Pin Charge Current at Timer Reset	I _{CRW}	V _{CR} = 0.05V	45	60	75	μA
CR Pin Threshold Voltage at Release Timer Reset	V_{TCRW}	V _{CW} = 0.05V	0.48	0.50	0.53	V
WDENPin Threshold Voltage at Stop WDT	V_{TWDIS}		1.6	1	> ⁺	V
WDENPin Threshold Voltage at Release Stop WDT	V_{TWEN}		0	-	0.3	V

< General Characteristics >

PARAMETER	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Operating Current	I _{SS}	WDT Active	-	170	250	μΑ

■ DETECT VOLTAGE LINE UP

DEVICE NAME	V_{RL}	STATUS	DEVICE NAME	V_{RL}	STATUS
NJU7291RB1-03	3.0V	MP	NJU7291D46	4.6V	MP
NJU7291RB1-46	4.6V	PLAN			

TIMING CHART

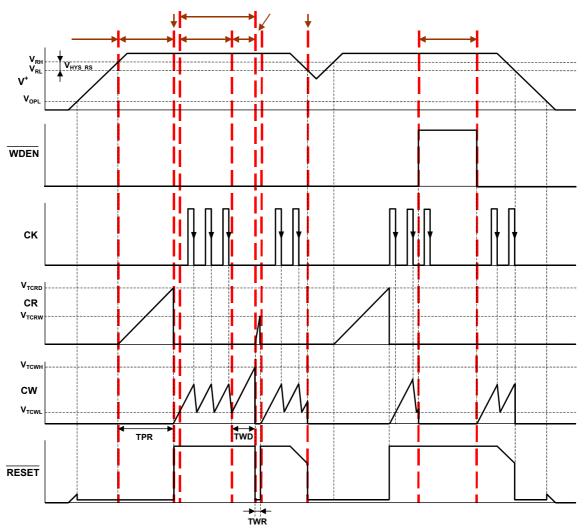


Fig. 1 NJU7291 Timing Chart

OPERATING EXPLANATION

Output Delay Hold Period

Initial Condition

Under this condition, V^+ is less than release voltage: ($V^+ < V_{RH} (V_{RH} = V_{RL} + V_{HYS_RS})$). The CR Pin and CW Pin are 0(zero) V. ($V_{CR} = 0V$, $V_{CW} = 0V$) and RESET level is "L".

In the case of V⁺ exceeding the Reset Release Voltage: V_{RH}.

The C_R at the CR Pin is charged by "CR Pin Charge Current at Detect Voltage": I_{CRD} (typ. $4\mu A$), then V_{CR} voltage rises.

The CW Pin is 0(zero) V. And RESET level keeps "L". The condition returns to the state of when V^+ decreases less than release voltage: V_H .

In the case of the CR Pin Capacitor Voltage: V_{CR} reaching to the CR Pin Threshold Voltage at Release Timer Reset: V_{TCRD} (typ. 1V), after release.

The RESET level becomes from "L" to "H". At this time, "Output Delay Hold Time": T_{PR} becomes the following period: Time to becoming of WDEN="H" from V_{RH} .

And C_R at the CR Pin is discharged then the CR Pin Voltage becomes 0(zero) V. And the C_W at the CW Pin is charged by "CW Pin Charge Current": I_{CW} (typ. $4\mu A$), then the V_{CW} voltage rises. From this condition, "RESET Detection Voltage": V_{RL} will be detectable.

WDT Monitor Period

The standby condition of the clock CK falling edge detection

The C_W is charged by charge current: I_{CW} . It becomes possible to detect the clock CK falling edge with greater than equal to the C_W Pin threshold voltage V_{TCWL} (typ. 0.205V).

In the case of clock CK falling edge detection

When it detects the clock CK falling edge, it changes to discharging mode by I_{CWL} (typ. 36μ A) from charging mode by I_{CWL} , and the CW Pin voltage: V_{CW} falls. Then, when the CW Pin voltage: V_{CW} reaches the threshold voltage: V_{TCWL} , it changes to charging mode by I_{CW} , and the CW Pin voltage: V_{CW} rises.

In the case of clock CK falling edge undetection

In this condition, the WDT Reset Time: T_{WD} is the time that the CW Pin voltage reaches to the threshold voltage V_{TCWL} from the threshold voltage V_{TCWL} .

WDT Reset Period

Until the CR Pin Voltage: V_{CR} exceeds "Timer Reset Release Threshold Voltage": V_{TCRW} (typ. 0.5V).

Until this condition, the reset signal is kept RESET ="L". The period keeping RESET ="L" becomes WDT Reset Time: T_{WR} .

Detection of Reset Voltage

In the case of Supply Voltage: V⁺ < Reset Voltage: V_{RL}

At the watchdog timer monitoring period and the watchdog timer reset period, the reset signal outputs RESET ="L" at this condition. The CR Pin and CW Pin become V_{CR} =0V and V_{CW} =0V to discharge the C_R and C_W . The CR Pin and CW Pin become VCR=0V and VCW=0V in order to discharge the C_R and C_W .

Then the operating condition returns to the state of

Stop of WDT Function

In the case of WDT Timer Setting Pin: WDEN="H"

Setting to WDEN="H", WDT Monitor operation is stopped. At this time, the C_W is discharged and V_{CW} becomes 0(zero) V. If Power Supply: V^+ is greater than Reset Voltage: V_{RL} , RESET is kept "H" level. Setting to WDEN="L" or OPEN, the C_W charge operation starts and returns WDT Monitor operation.

Also, when it is set the WDEN="H" in the WDT Reset period, the WDT Monitor operation stops after the elapse of the WDT Reset Time.

When you want to not use WDT, the Pin(s) handling is the following. WDEN="H", CK Pin =GND or OPEN and CW Pin =OPEN.

External Parts Setting

C_R for Reset Time Setting

The C_R set the following two parameters: "Output Delay Hold Time": T_{PR} and "WDT Reset Time": T_{WR} . The T_{PR} is calculated the following.

$$T_{PR} = \frac{C_R}{I_{CRD}} \cdot V_{TCRD} \qquad \cdot \cdot \cdot \cdot \cdot <1>$$

From formula<1>, C_R is calculated as follows:

$$C_R = \frac{I_{CRD}}{V_{TCRD}} \cdot T_{PR} \qquad \qquad \cdot \cdot \cdot \cdot < 2 >$$

The C_R value can calculate by the following formula.

The CR Pin Charge Current at Detect Voltage: I_{CRD} is $4\mu A$ (typ.). The CR Pin Threshold Voltage at Reset Release: V_{TCRD} is 1V (typ.).

$$C_R = 4 \times T_{PR} \times 10^{-6}$$
 [F] · · · · · · <3> The unit of T_{PR} is [s] (second).

The WDT Reset Time: T_{WR} is decided depending on the value of capacitor: C_R . The T_{WR} is calculated the following.

$$T_{WR} = \frac{C_R}{I_{CRW}} \cdot V_{TCRW} \cdot \cdot \cdot \cdot \cdot < 4 >$$

The WDT Reset Time: T_{WR} can calculate by the following formula.

The CR Pin Charge Current at Timer Reset: I_{CRW} is 60μ A (typ.). The CR Pin Threshold Voltage at Release Timer Reset: V_{TCRW} is 0.5V (typ.).

$$T_{WR} = \frac{C_R}{120} \times 10^6 \quad [s] \quad \cdots \quad <5>$$

From formula<3> and <5>, the relation between T_{PR} and T_{WR} becomes the following.

From above mention, the relation between C_R , T_{PR} and T_{WR} becomes fig 2.

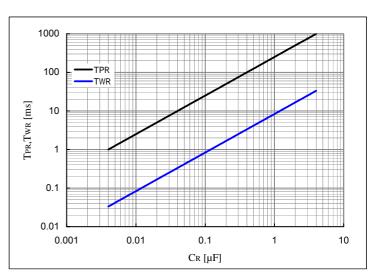


Fig 2. Output Delay Hold Time(T_{PR}) and WDT Reset Time(T_{WR}) vs. C_R for Reset Time Setting

 C_W for Clock Monitor Time Setting The C_W set the following: "WDT Monitor Time": T_{WD} . The T_{WD} is calculated the following.

$$T_{WD} = \frac{C_W}{I_{CW}} \cdot \left(V_{TCWH} - V_{TCWL} \right) \cdot \cdot \quad <7 >$$

From formula<7>, C_W is calculated as follows:

$$C_W = \frac{I_{CW}}{V_{TCWH} - V_{TCWL}} \cdot T_{WD} \cdot \cdots \quad <8>$$

The C_W value can calculate by the following formula. The CW Pin Charge Current: I_{CW} is $4\mu A$ (typ.). The CW Pin Threshold Voltage at WDT Reset: V_{TCWH} is 1V (typ.). The CW Pin Threshold Voltage at Changing Charge: V_{TCWH} is 0.2V (typ.).

$$C_W = 5 \times T_{WD} \times 10^{-6} [F] \cdot \cdot \cdot \cdot <9>$$

The unit of T_{WD} is [s] (second).

The relation between C_W and T_{WD} becomes Fig 3.

PRECAUTION

The C_W discharge time becomes long as with the increasing of C_W as shown in Fig 4. For this reason, if the C_W discharge is not completed within the TWR, a malfunction occurs in next watchdog timer operation.

To prevent this malfunction, you should set the C_R value greater than one-fifth of C_W value.

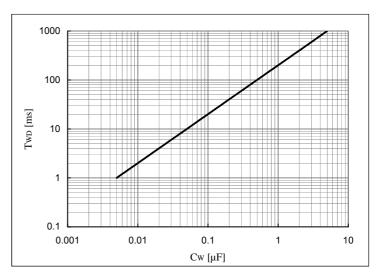


Fig 3. WDT Monitor Time (T_{WD}) vs. C_{W} for Clock Monitor Time Setting

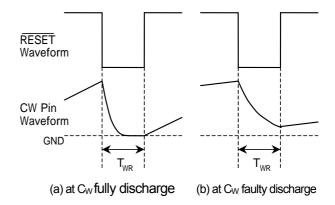


Fig 4. WDT Reset Time (T_{WR}) and CW Pin Voltage Waveform

External R₁/R₂ for Reset Voltage Setting

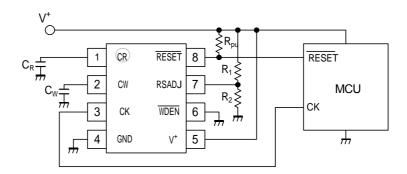


Fig 5. Application example using external resistance for Reset Voltage Setting

You should consider IC internal resistance for reset voltage setting when setting reset voltage using external resistance R₁/R₂ like Fig 5. The Fig 6 shows the block including IC internal resistance for reset voltage setting.

The Reset Voltage: V_{RL} and Release Voltage: V_{RH} are calculated the following using external resistance R₁/R₂.

[Reset Voltage: V_{RL} (Transistor M1 is OFF)]

$$V_{RL} = \left\{ \frac{R_{D1}}{R_{D2} + R_{D3}} \cdot \frac{1 + (R_{D2} + R_{D3})/R_2}{1 + R_{D1}/R_1} + 1 \right\} \cdot V_{REF} \cdot <10>$$

[Release Voltage: V_{RH} (Transistor M1 is ON)]

Release Voltage:
$$V_{RH}$$
 (Transistor M1 is ON)]
$$V_{RH} = \left(\frac{R_{D1}}{R_{D2}} \cdot \frac{1 + R_{D2}/R_2}{1 + R_{D1}/R_1} + 1\right) \cdot V_{REF} \qquad <11>$$

From Reset Voltage V_{RL} and Release Voltage V_{RH}, Hysteresis Voltage V_{HYS RS} is calculated as follows:

[Hysteresis Voltage: V_{HYS RS}]

$$V_{HYS_RS} = \frac{R_{D1} \cdot R_{D3}}{R_{D2} \cdot (R_{D2} + R_{D3}) \cdot (1 + R_{D1}/R_1)} \cdot V_{REF} \cdot \cdot \cdot < 12 >$$

Fig 6. Reset Voltage Detection Block

How to decide the R_1/R_2 value you want to set arbitrary reset voltage V_{RL} is as follows.

First, you should decide R₁ value. At this time, the Hysteresis Voltage is calculated by formula<12>. Next, R2 decides The R₂ value is decided by applying V_{RL} obtained from formula <10> to formula following <13>. Because the R_{D1}/R_{D2}/R_{D3} are different depending on the reset detection voltage rank, you should confirm separately to our sales department. The V_{REF} is equal to voltage detection reference voltage, therefore V_{REF} =1V.

$$R_{2} = \frac{R_{D2} + R_{D3}}{R_{D1}} \cdot \left(V_{RL} - 1\right) \cdot \left(1 + \frac{R_{D1}}{R_{1}}\right) - 1$$

Ex. Using NJU7291x-03

NJU7291x-03 Reset Voltage: V_{RL} is set at 3.0V (initial value). The IC internal resistance: R_{D1} to R_{D3} for reset voltage setting is shown Table 1.

Applying these values to the formula <10> to <13>, the formula <14> to <17> is obtained. $V_{REF} = 1[V]$ and a resistance unit is $[k\Omega]$.

Table 1. IC internal resistance value of the reset voltage detection block [NJU7291x-03]

[14007201X-00]				
R_{D1}	418 kΩ			
R_{D2}	200 kΩ			
R_{D3}	9 kΩ			

[Reset Voltage: V_{RL}]

$$V_{RL} = 2 \cdot \frac{1 + 209/R_2}{1 + 418/R_1} + 1$$
 [V] ... <14>

[Release Voltage: V_{RH}]

$$V_{RH} = 2.09 \cdot \frac{1 + 200/R_2}{1 + 418/R_1} + 1 \text{ [V]}$$
 <15>

[Hysteresis Voltage: V_{HYS RS}]

$$V_{HYS_RS} = \frac{0.09}{1 + 418/R_1}$$
 [V]<16>

[Calculation of R2]

$$R_{2} = \frac{209}{0.5 \cdot (V_{RL} - 1) \cdot \left(1 + \frac{418}{R_{1}}\right) - 1} \quad [k\Omega] \qquad \cdot \cdot <17 > 0.5 \cdot (V_{RL} - 1) \cdot \left(1 + \frac{418}{R_{1}}\right) - 1$$

[CAUTION]
The specifications on this data sheet are only given for information, without any guarantee as regards either mistakes or omissions.
The application circuits in this data sheet are described only to show representative usages of the product and not intended for the guarantee or permission of any right including the industrial rights.