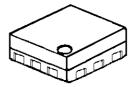


www.DataSheet4H.com

Single-phase DC Brushless Motor Driver IC

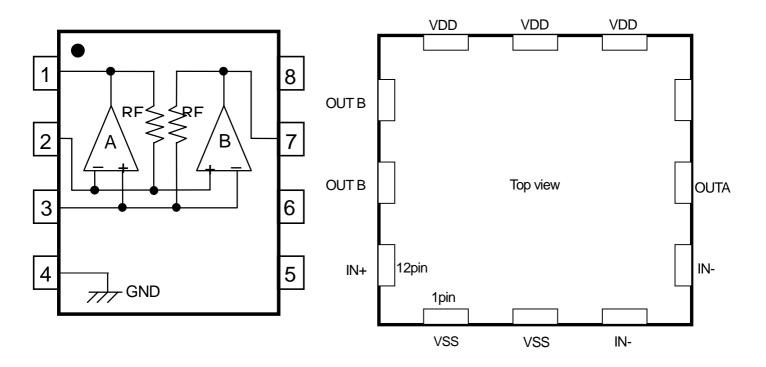

GENERAL DESCRIPTION

The NJU7332 is a single-phase DC brushless motor driver

IC for very small fan-motor application. It features MOS-FET driver circuit for better saturation characteristics. Slew late of amplifers and feedback resistors are optimized to achieve low-noise motor operation.

The NJU7332 adopt a very small FFP package, therefore it is suitable for micro motor applications.

PACKAGE OUTLINE


NJU7332PB1

FEATURES

Single supply
Operating Voltage V_{DD} = 2.4 ~ 5.5V
Low Operating Current
Low Saturation Output Voltage
Vsat= ± 0.2V @lo= ± 100mA
C-MOS Technology
Package Outline

BLOCK DIAGRAM / PIN CONFIGURATIONS

TVSP8/FFP12 (2mm \times 2mm \times 0.85mm)

FFP12 TVSP8

www.DataSheet4U.com

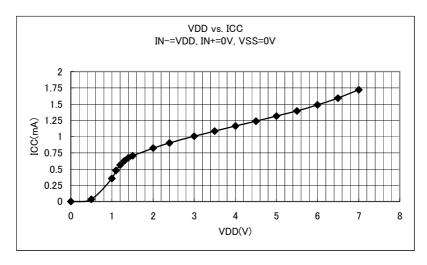
ABUSOLYTE MAXIMUM RATINGS

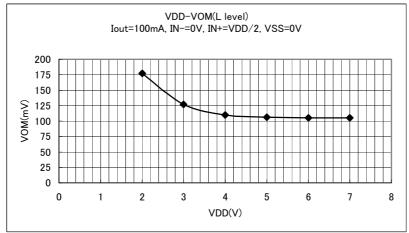
(Ta=25)

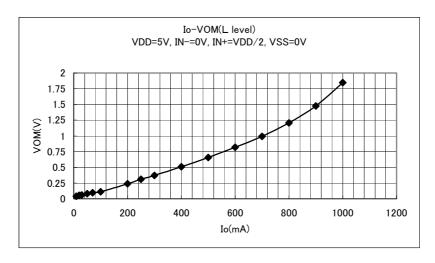
PARAMETER	RATINGS	SYMBOL (unit)	NOTE
Supply Voltage	+7.0	V _{DD} (V)	
Input Voltage	-0.3 ~ V _{DD} +0.3	V _{ID} (V)	
Operating Tempereture Range	-40 ~ +85	Topr ()	
Storage Temperature Range	-50 ~ + 150	Tstg ()	
Power Dissipation	300	P _D (mW)	(*1)

^(*1) When mounted on a glass epoxy board.

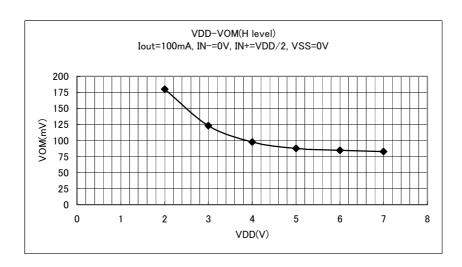
RECOMMENDED OPARATING CONDITIONS

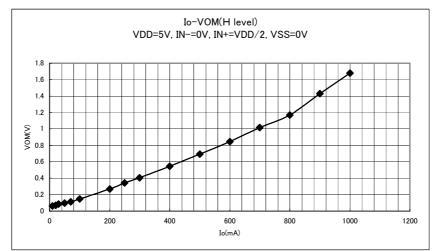

 $V_{DD} = 2.4V \sim 5.5V$

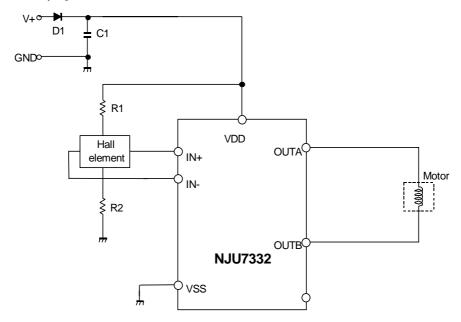

ERECTRICAL CHARACTERISTICS


 $(Ta=25 , V_{DD}=5 V)$

PARAMETER	SYMBOL	CONDITION	MIN.	TYP.	MAX.	UNIT.
Operating Current	I _{DD}	-	-	3.0	4.0	mA
Input Offset Voltage	V _{IO}	•	-15.0	-	15.0	mV
Input Common Mode Voltage Range	V _{ICM}	-	0.4 ~ 4.0	-	-	V
Maximum Output Voltage Range	V_{OM}	lo=+100mA	4.70	4.80	-	V
		lo=-100mA	-	0.20	0.30	
Feedback Resistance	R_{F}	-	22.0	27.5	33.0	kΩ
Open Loop Gain	Av	-	-	80	-	dB


TYPICAL CHARACTERISTICS




TYPICAL CHARACTERISTICS

APPLICATION NOTE

The NJU7332 is a signal-phase DC brushless motor driver IC featuring CMOS process. It is suitable for fan drivers for a small equipment such as the note personal computers. [Application Circuit Example]

[Design Notes]

Above application example is designed for 5V operation with motor current of 100mA, it uses the following components:

Hall Elements: HW101A(AKE)

1 . SECTION of C1 and D1:

C1 used for a noise reduction purpose. A typical value is 0.1µF.

Optimize the value in actual operating condition if necessary. D1 is a diode for protection against reverse voltage supply. Silicon rectifier diode(WO3C, 10D1, and equivalent) is appropriate.

2 . Design of hall element bias resistance (R1 and R2)

Hall amplifier is a differential with hysteresis characterics(24mV typical).

The common-mode input voltage is between 0.4V and VDD-1V and the input signal must be within the range. Non-excitation hall bias is to be set at a half of VDD for effective use of common-mode input voltage range. Therefore the same value of hall bias resistors is selected for R1 and R2.

Given that the bias current is set to be 5mA by HW101A datasheet, R1 and R2 can be determined as

$$R1 + R2 + Rin = \frac{VDD}{Ihbias} = \frac{5}{5 \times 10^{-3}} = 1k\Omega$$

$$R1 = R2 = 300\Omega$$

follows:

The output voltage of hall elements is influnenced by the bias current and magnetic flux density of hall elements. The optimum input voltage of the NJU7332 is 100mVp-p and higher. With such input voltage, the highest efficiency can be obtained.

CAUTION

The specifications on this databook are only given for information, without any guarantee as regards either mistakes or omissions. The application circuits in this databook are described only to show representative usages of the product and not intended for the guarantee or permission of any right including the industrial rights.