

Single-phase DC Brushless Motor Driver IC

■ GENERAL DESCRIPTION

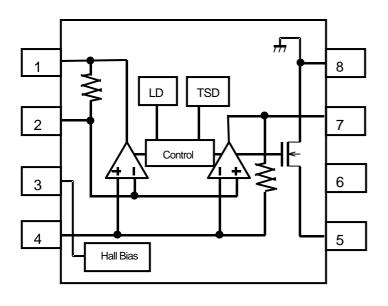
The NJU7356 is a single-phase DC brushless motor driver IC designed for small and high power fan-motor applications.

It provides a low operating current of 2mA (typ.) and low saturation output voltage at high output current operation, which offers a high efficiency motor driving. It also has a high output current capability of 1000mA (peak) and 400mA (continuous).

The NJU7356 has useful functions such as a FG (frequency generator) output useful for various control systems, lock detect, auto-release (c-less type), thermal shutdown and linear driving which offers low noise motor driving. The NJU7356 is available in a small and thin package of MSOP8 (TVSP8), which provides downsizing and thinning in motor applications.

■ PACKAGE OUTLINE

NJU7356RB1 (MSOP8 (TVSP8))


■ FEATURES

- Operating Voltage
 Low Operating Current
 1_{DD}=2mA
- Low Saturation Output Voltage

Vsat= ±0.2V @Io=±400mA

- Lock Detect / Auto Release Circuit
- Thermal Shutdown Circuit
- Frequency Generator Output
- Hall Bias Terminal
- CMOS Technology
- Package Outline
 MSOP8 (TVSP8)*
 *MEET JEDEC MO-187-DA/THIN TYPE

■ BLOCK DIAGRAM

■ PIN FUNCTION

1: OUT B

2: IN +

3: HB 4: IN -

5: FG

6: V_{DD}

7: OUT A

8: V_{SS}

■ ABSOLUTE MAXIMUM RATINGS

(Ta=25°C)

PARAMETER	RATINGS	SYMBOL (unit)	NOTE	
Supply Voltage	+7.0	V _{DD} (V)		
Input Voltage	-0.3 to V_{DD}	V _{ID} (V)		
Output Current (Continuance)	400	I _O (mA)	Note1	
Output Current (Peak)	1000	I _{O PEAK} (mA)	Note2	
Operating Temperature Range	-40 to +85	Topr (°C)		
Storage Temperature Range	-50 to +150	Tstg (°C)		
Power Dissipation	400	P _D (mW)	Device itself	
Junction Temperature	150	Tjmax(°C)		

Note1: This value is not to be over Pd.

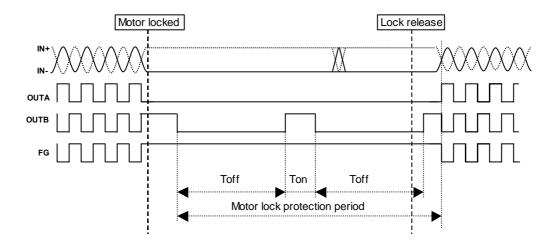
Note2: Input voltage is not to be over supply voltage to really use.

■ RECOMMENDED OPERATING CONDITIONS

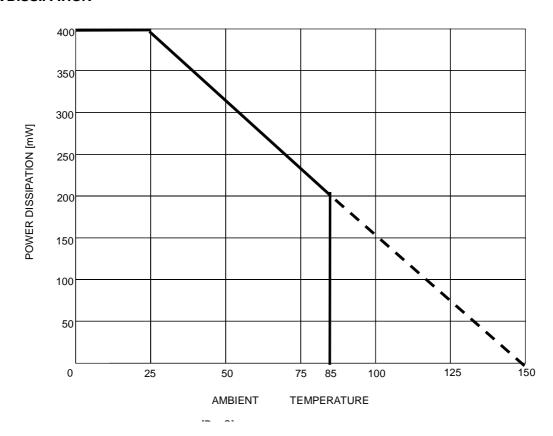
(Ta=25°C)

					,	
PARAMETER	SYMBOL	CONDITION	MIN.	TYP.	MAX.	UNIT
Supply Voltage	V_{DD}	Ct=0	2.2	5.0	5.5	V

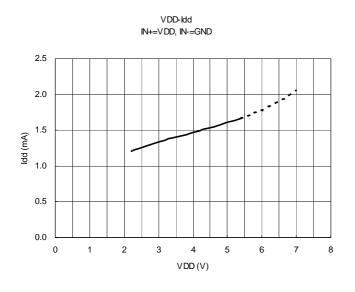
■ ELECTRICAL CHARACTERISTICS

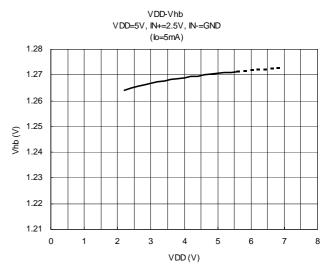

 $(V_{DD} = 5V, Ta = 25^{\circ}C)$

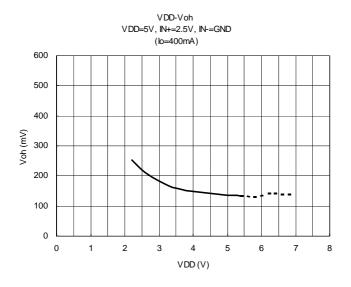
PARAMETER	SYMBOL	YMBOL CONDITION		TYP.	MAX.	UNIT		
General	-		1		ı	l		
Operating Current	I _{DD}	I _{DD} -		2.0	5.0	mA		
Thermal Shutdown Temperature	T _{TSD}	-	-	180	-	°C		
Thermal Shutdown Hysteresis	T _{HYS}	-		50	-	°C		
Hall Amplifier	Hall Amplifier							
Input Offset Voltage	V_{IO}	-	-10	-	10	mV		
Feedback Resistance	R_{F}	-	-	27.5	-	kΩ		
Open Loop Gain	A _V	-	-	70	-	dB		
Input Common Mode Voltage Range	V _{ICM}	-	0.4	-	4.0	V		
Output								
Maximum Output Voltage Range	V_{OH}	lo=+400mA	4.65	4.80	-	.,		
	V_{OL}	lo=-400mA	-	0.20	0.35	V		
Output Resistance	R _{ONH}	Io=+400mA	-	0.5	-			
	R _{ONL}	lo=-400mA	-	0.5	-	Ω		
FG L Output Voltage			-	1	0.3	V		
FG H Leak Current	I _{FG-LEAK} IN+=0V, IN-=5V, FG=5V		-	-	1.0	μA		
Lock Detect Circuit*								
Lock Protect ON Time Ton		-	-	0.5	-	sec		
Lock Protect OFF Time	T _{OFF}	-	-	3.5	-	sec		
Detect Protection ON/OFF Ratio	T _{RATIO}	-	-	1:7	-	-		
Hall Bias								
Hall Bias Voltage	V_{HB}	-	1.1	1.3	1.5	V		

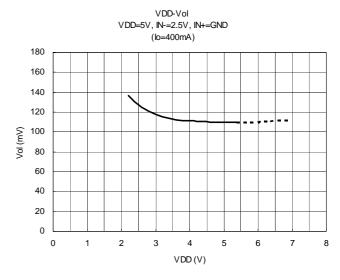

■ INPUT-OUTPUT TRUTH TABLE

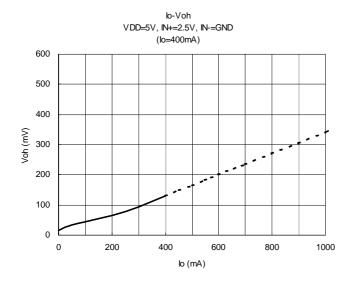
IN+	IN -	OUTA	OUTB	FG
Н	L	Н	L	L (Output Transistor ON)
L	Н	L	Н	Z (Output Transistor OFF)

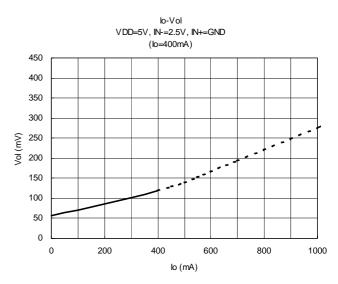

■ TIMING CHART

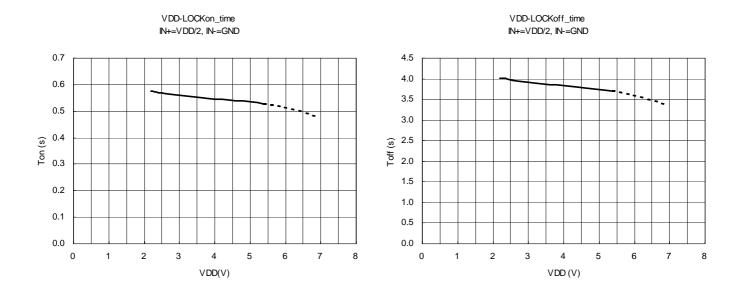



■ POWER DISSIPATION

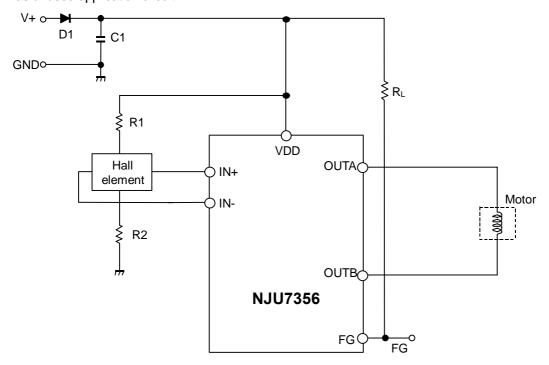



■ TYPICAL CHARACTERISTICS

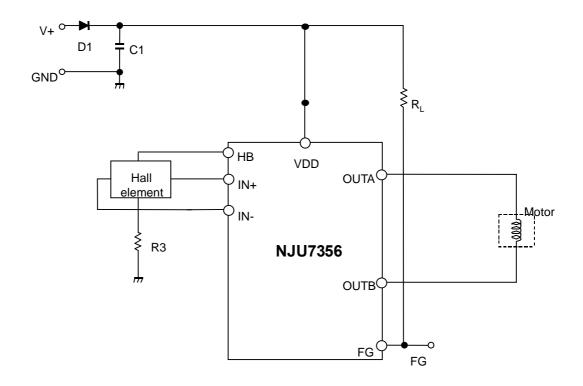




■ TYPICAL CHARACTERISTICS



■ APPLICATION NOTE


The NJU7356 is a single-phase DC brushless motor driver IC in small MSOP8 (TVSP8) package. With minimal external components, that can drive up to 400mA of motor current for small fan application.

[Application Circuit Example]

1) Hall Bias unused application circuit

2) Hall bias used application circuit

[Design Notes]

Above application example is designed for 5V operation with motor current of 400mA. It uses the following components:

Hall elements: HW101A (AKE)

1. Selection of C1 and D1:

C1 is used for a noise reduction purpose. A typical value is 0.1uF.

Optimize the value in actual operating conditions if necessary. D1 is a diode for protection against reverse voltage supply. Silicon rectifier diode (WO3C, 10D1 and equivalent) is appropriate.

2. Position Detection Circuit Hall Device

2-1. When using V_{DD} (**R1 and R2**)

Hall amplifier is a differential amplifier.

The common-mode input voltage is between 0.4V and VDD-1V and the input signal must be within the range. Non-excitation hall bias voltage is to be set at a half of VDD for effective use of common-mode input voltage range. Therefore the same value of hall bias resistors is selected for R1 and R2.

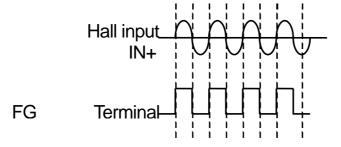
Given that the bias current is set to be 5mA by HW101A datasheet, R1 and R2 can be determined as follows:

$$R1 + R2 + Rin = \frac{VDD}{Ihbias} = \frac{5}{5 \times 10^{-3}} = 1.0k\Omega$$

$$R1 = R2 = 300\Omega$$

The output voltage of hall elements is influenced by the bias current and magnetic flux density of hall elements.

The optimum input voltage of NJU7356 is 100mVp-p and higher. With such input voltage, the highest efficiency can be obtained.


2-2. When using HB (R3 design)

By connecting a Hall device to the Hall bias terminal (HB), a constant Hall output amplitude that has good temperature characteristics is obtained, resulting in stable linear drive. If it is necessary to adjust the Hall output amplitude, perform adjustment with R3.

3. Design of FG output resistance (R_L)

FG Out (FG: Pin5) is an open drain output and R_L is a pull up register. A typical value of R_L is $10k\Omega$. The timing chart of FG Out is as follows.

Note that the pull up resistance shall be connected to below supply voltage.

The specifications on this data book are only given for information, without any guarantee as regards either mistakes or omissions. The application circuit in this data book are described only to show representative usages of the product and not intended for the guarantee or permission of any right including the industrial rights.