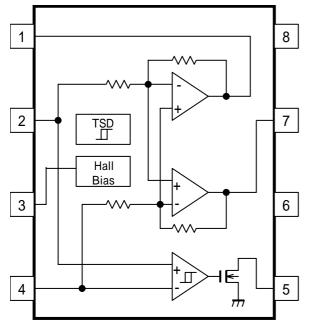
Single-phase DC Brushless Motor Driver IC

GENERAL DESCRIPTION


The NJU7360 is a single-phase DC brushless motor driver IC designed for small and high power fan-motor applications.

It provides a low operating current of 2mA (typ.) and low saturation output voltage at high output current operation, which offers a high efficiency motor driving. It also has a high output current capability of 1000mA (peak) and 400mA (continuous). The NJU7360 has a hall bias circuit and hall signal amplifier for output wave optimization, which offers a low noise motor driving. It also has useful functions such as a FG (frequency generator) output for speed detection and thermal shutdown. The NJU7360 is available in a small and thin package of MSOP8 (TVSP8), which provides downsizing and thinning in motor applications.

■ FEATURES

- Operating Voltage V_{DD} =2.2 to 5.5V
- Low Operating Current $I_{DD} = 2mA(typ.)$
- Low Saturation Output Voltage Vow=±0.30V @lo=±250mA
- Thermal Shutdown Circuit
- Frequency Generator Output
- Hall Bias Terminal
- C-MOS Technology
- Package outline MSOP8 (TVSP8)*
 *MEET JEDEC MO-187-DA/THIN TYPE

BLOCK DIAGRAM

PACKAGE OUTLINE

NJU7360RB1 (MSOP8 (TVSP8))

■ PIN FUNCTION

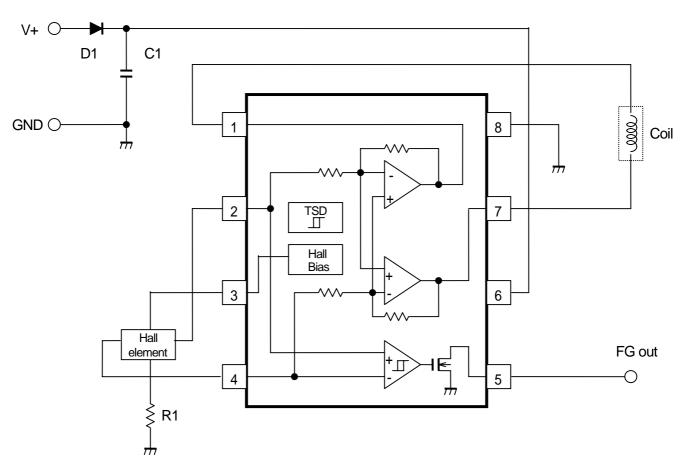
PIN no.	PIN NAME
1	OUT B
2	IN+
3	HB
4	IN-
5	FG
6	VDD
7	OUTA
8	GND

■ ABSOLUTE MAXIMUM RATIN	IGS		(Ta=25°C)
PARAMETER	RATINGS	SYMBOL (unit)	NOTE
Supply Voltage	+7.0	V _{DD} (V)	
Input Voltage	-0.3 to V_{DD}	V _{ID} (V)	1)
Output Current (Peak)	600	I _{OPEAK} (mA)	
FG Output Current	5	I _{FG} (mA)	
Operating Temperature Range	-40 to +85	Topr (°C)	
Storage Temperature Range	-50 to +150	Tstg (°C)	
Power Dissipation	400	P _D (mW)	Device itself
Junction Temperature	150	Tjmax (°C)	

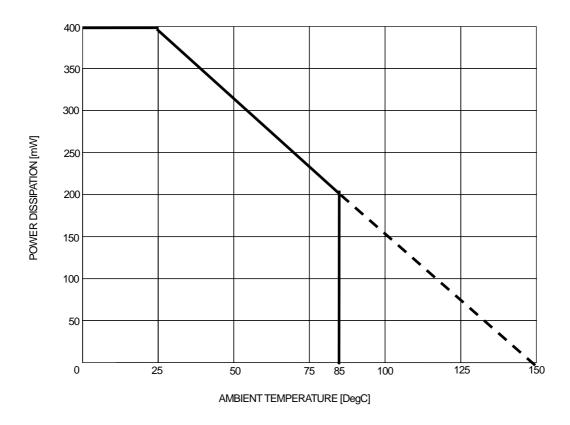
1): The Input Voltage (V_{ID}) never exceeds the Supply Voltage (V_{DD}) .

■ RECOMMENDED OPERATING CONDITIONS

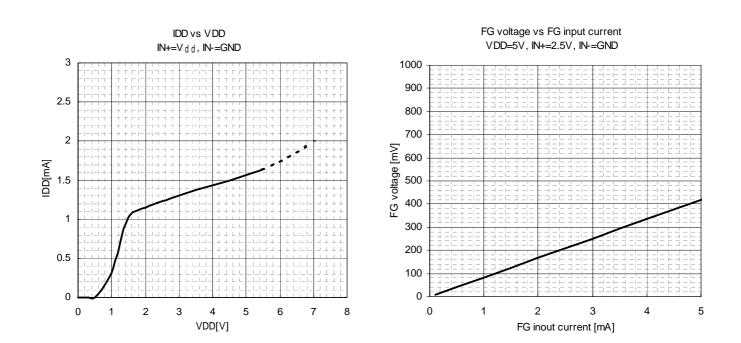
■ RECOMMENDED OPERATING CONDITIONS (Ta=25°C, V _{DD} =5V)						′ _{DD} =5V)
PARAMETER	SYMBOL	CONDITION	MIN.	TYP.	MAX.	UNIT
Supply Voltage	V_{DD}	-	2.2	5.0	5.5	V
Input Common Mode Voltage Range	V _{ICM}	-	0.4	-	4.0	V


■ ERECTRICAL CHARACTERISTICS

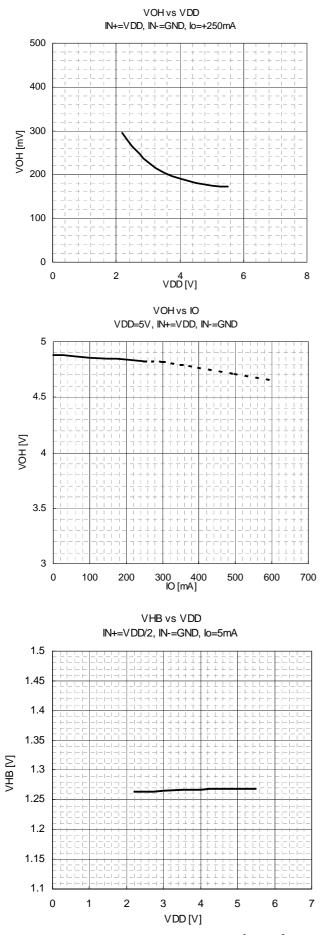
■ ERECTRICAL CHARACTERISTICS					(Ta=25°C, V _{DD} = 5V)		
PARAMETER	SYMBOL	CONDITION	MIN.	TYP.	MAX.	UNIT	
■ General	■ General						
Operating Current	l _{DD}	-	-	2.0	5.0	mA	
Thermal Shutdown Temperature	T _{TSD}	-	-	180	-	°C	
Thermal Shutdown Hysteresis	T _{HYS}	-	-	50	-	°C	
■ Hall Amplifier							
Close Loop Gain	Av	-	43	46	49	dB	
Input Offset Voltage	V _{IO}	-	-12	-	12	mV	
■ Output							
Maximum Output	V _{OH}	lo=250mA	4.55	4.70	-	V	
Voltage Range	V _{OL}	lo= -250mA	-	0.30	0.45	V	
FGL Output Voltage	V_{FG}	R _{FG} =10kΩ	-	-	0.3	V	
FGH Leak Current	I _{FG-LEAK}	-	-	-	5.0	μA	
■ Hall Bias							
Hall Bias Voltage	V _{HB}	-	1.1	1.3	1.5	V	

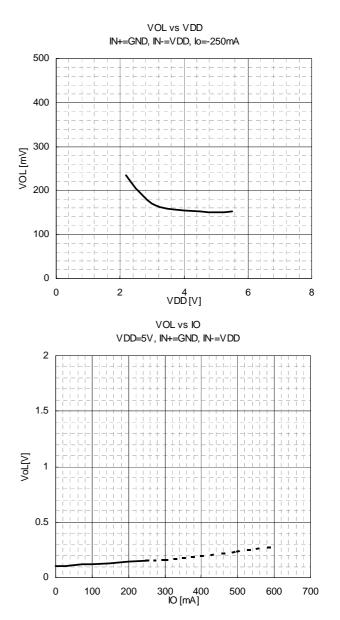

■ INPUT-OUTPUT TRUTH TABLE

IN+	IN-	OUTA	OUTB	FG
н	L	Н	L	L (Output TR : ON)
L	Н	L	Н	Z (Output TR : OFF)


■ APPLICATION CIRCUIT EXAMPLE

POWER DISSIPATION

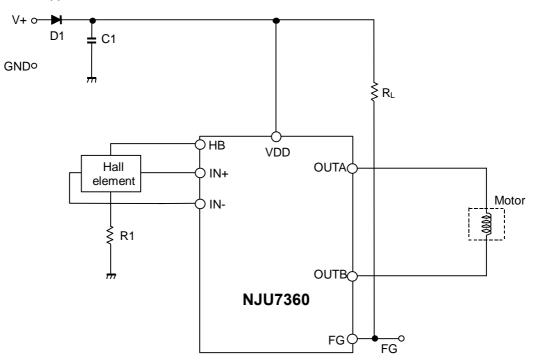



■ TYPICAL CHARACTERISTICS

NJU7360

■ TYPICAL CHARACTERISTICS

Ver.2012-07-18


New Japan Radio Co., Ltd.

■ APPLICATION NOTE

The NJU7360 is a single-phase DC brushless motor driver IC in a small MSOP8 (TVSP8) package. With minimal external components, that can drive up to 250mA of motor current for small fan application.

[Application Circuit Example]

1) Hall Bias unused application circuit

[Design Notes]

Above application example is designed for 5V operation with motor current of 250mA. It uses the following components:

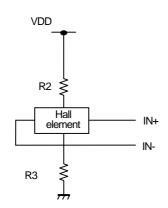
Hall elements: HW101A (AKE)

1. Selection of C1 and D1:

C1 is used for a noise reduction purpose. A typical value is 0.1uF.

Optimize the value in actual operating conditions if necessary. D1 is a diode for protection against reverse voltage supply. Silicon rectifier diode (WO3C, 10D1 and equivalent) is appropriate.

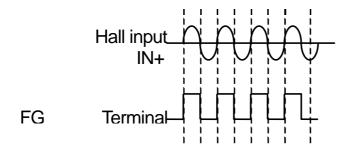
2. Position Detection Circuit Hall Device


2-1. When using HB (R1 design)

By connecting a Hall device to the Hall bias terminal (HB), a constant Hall output amplitude that has good temperature characteristics is obtained, resulting in stable linear drive. If it is necessary to adjust the Hall output amplitude, perform adjustment with R1.

2-2. When using V_{DD} (R2 and R3 design)

When it is necessary to increase the Hall bias current to increase the Hall output amplitude, obtain Hall bias from V_{DD} . The input bias voltage for the amplifier must be used within the Hall input common mode voltage (0.4 - V_{DD} -1 V) including the amplitude of the signal. It is recommended that the Hall bias voltage be one half of the power supply voltage, that is, $V_{DD}/2$.



3. Design of FG output resistance (RL)

FG Out (FG: Pin5) is an open drain output and R_L is a pull up register. A typical value of R_L is $10k\Omega$. The timing chart of FG Out is as follows.

Note that the pull up resistance shall be connected to below supply voltage.

[CAUTION]