

Synchronous Buck Boost Switching Controller IC for USB Power Delivery

■ FEATURES

- AEC-Q100 Grade 1 qualification in progress
- Programmable output voltage control for USB PD
 5V, 9V, 15V, 20V (2bit logic input control)
- Wide input voltage range

4.8V to 36V (45V maximum ratings)

- Nch. MOSFET available for all external FETs
- Synchronous operation in all switching topologies
- High efficiency power conversion

90%

- Oscillation frequency
- 100kHz to 700kHz
- Discharge function at RESETX enable
- Adjustable soft start function
- Protection circuit
 - Over current protection
 - Under voltage lockout
 - Thermal shutdown circuit
- Package

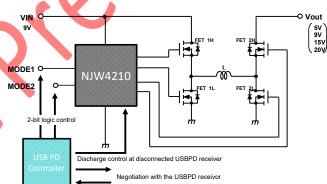
EQFN24-LE

■ APPLICATIONS

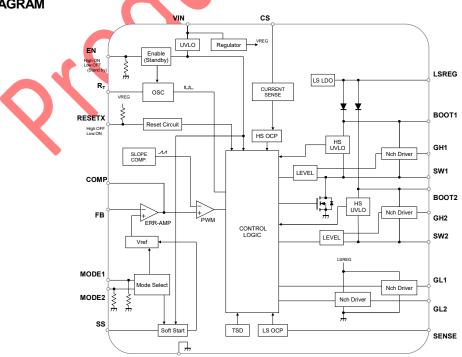
- USB PD power block
- * T1 grade is not recommend for Powertrain, Vehicle Electrification and Autonomous driving related application.

■ DESCRIPTION

The NJW4210 is a buck boost switching controller IC for USB Power Delivery (USB PD) with output voltage select function.

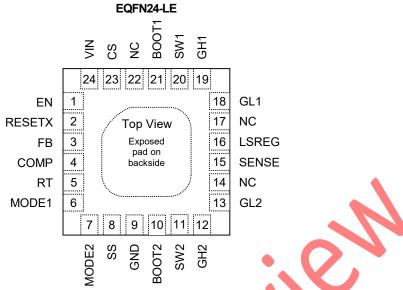

The NJW4210 built-in Nch. MOSFET driver and performs synchronous rectification operation in all switching topologies (boost, step-down, buck-boost).

The NJW4210 has output voltage select function with 2-bit logic input and is compatible with USB PB standard voltages 5V, 9V, 15V and 20V.

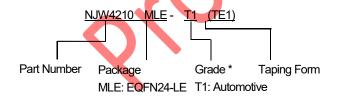

The NJW4210 has multiple protection circuits and mounted in a small leadless package EQFN24.

These features make the NJW4210 suitable for USB PD devices including automotive applications.

■ TYPICAL APPLICATION



■ BLOCK DIAGRAM



■ PIN CONFIGURATIONS

PIN NO.	SYMBOL	DESCRIPTION	PIN NO.	SYMBOL	DESCRIPTION
1	EN	Enable input	13	GL2	Low-side drive output 2
2	RESETX	Reset input (Enable High)	14	N.C.	N.C.
3	FB	Voltage feedback input	15	SENSE	Switching current sense input
4	COMP	Error amp output	16	LSREG	Internal regulator output
5	RT	Oscillation frequency setting(RT)	17	N.C.	N.C.
6	MODE1	Mode select 1 input	18	GL1	Low-side drive output 1
7	MODE2	Mode select 2 input	19	GH1	High-side drive output 1
8	SS	Soft start setting pin	20	SW1	Switching node voltage input 1
9	GND	Ground	21	BOOT1	Bootstrap input 1
10	BOOT2	Bootstrap input 2	22	N.C.	N.C.
11	SW2	Switching node voltage input 2	23	CS	Input current sense input
12	GH2	High-side drive output 2	24	VIN	Supply voltage input

■ PRODUCT NAME INFORMATION

^{*} The detail information of automotive grades and recommended applications are described in NJR Web site. (https://www.njr.com/electronic_device/semiconductor/application/automotive.html)

■ ORDERING INFORMATION

PRODUCT NAME	PACKAGE	RoHS	HALOGEN- FREE	TERMINAL FINISH	MARKING	WEIGHT (mg)	MOQ (pcs)
NJW4210MLE-T1 (TE1)	EQFN24-LE	yes	yes	yes	4210T	31	1000

■ ABSOLUTE MAXIMUM RATINGS

PARAMETER	SYMBOL	RAT	TNGS	UNIT
VIN pin voltage	VIN	-0.3	to +45	V
CS pin voltage	Vcs	-0.3	V	
VIN pin to CS pin voltage	V _{IN} -V _{CS}		7	V
BOOTx voltage	V _{BOOT1} V _{BOOT2}	-0.3	to +45	V
GHx pin voltage	Vgh1 Vgh2	-0.3	to +45	V
SWx pin voltage	Vsw1 Vsw2	-0.3	to +45	V
BOOTx pin to SWx pin voltage	VBOOT1-VSW1 VBOOT2-VSW2		+7	V
GHx pin to SWx pin voltage	VGH1-VSW1 VGH2-VSW2	+7		V
GLx pin voltage	V _{GL1} V _{GL2}	-0.3 to +7		V
LSREG pin voltage	VLSREG	-0.3	to +7	V
SENSE pin voltage	Vsense	-0.3 to +7		V
EN pin voltage	V _{EN}	-0.3 to +45		V
RESETX pin voltage	VRESETX	-0.3	to +45	V
RT pin voltage	V_{RT}	-0.3	to +7	V
FB pin Voltage	V _{FB}	-0.3	to +7	V
COMP pin voltage	VCOMP	-0.3 to +7		V
MODEx pin voltage	VMODE1 VMODE2	-0.3 to +7		V
SS pin Voltage	Vss	-0.3 to +7		V
Power Dissipation(Ta=25°C)	P _D	EQFN24-LE	1000 (1) 2400 (2)	mW
Junction Temperature	Ŧj	-40 to +150		°C
Storage Temperature	T _{stg}	-50 t	°C	

^{(1):} Mounted on glass epoxy board. (101.5×114.5×1.6mm;based on EIA/JEDEC standard,2layers, with Exposed Pad)

■ RECOMMENDED OPERATING CONDITIONS

PARAMETER	SYMBOL	VALUE	UNIT
Supply voltage	VIN	4.8 to 36	V
EN pin voltage	V _{EN}	0 to 40	V
RESETX pin voltage	VRESETX	0 to 5.5	V
MODEx pin voltage	VMODE1 VMODE2	0 to 5.5	V
Timing Resistor	R⊤	6.8 to 56	kΩ
Operating Frequency	fosc	100 to 700	kHz
CLSREG	C _{LSREG}	1	μF
CBOOT	Своот	0.1	μF
Operating Temperature	T _{opr}	-40 to +125	°C

^{(2):} Mounted on glass epoxy board. (101.5×114.5×1.6mm.based on EIA/JEDEC standard,4layers, with Exposed Pad)

⁽For 4Layers: Applying 99.5×99.5mm inner Cu area and a thermal via hole to a board based on JEDEC standard JESD51-5)

PRELIMINARY SPECIFICATIONS SUBJECT TO CHANGE

RESETX

PARAMETER	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
GENERAL CHARACTERISTIC	cs		•	•		
		Not Switching	_	3	4.5	
Quiescent Current	lQ	Not Switching Ta = -40°C to +125°C	-	_	6	mA
		V _{EN} = L	_	1	2	
Standby Current	I _{Q_STBY}	$V_{EN} = L$ Ta = -40°C to +125°C	_	_	3	μA
JNDER VOLTAGE LOCKOUT	Γ					
		$V_{IN} = L \rightarrow H$	4.5	4.65	4.8	
ON Threshold Voltage	V _{T_ON}	$V_{IN} = L \rightarrow H$ Ta = -40°C to +125°C	4.5	-	4.8	>
OFF Threshold Voltage		$V_{IN} = H \rightarrow L$	4.3	4.45	4.6	
	V _{T_OFF}	V_{IN} = H \rightarrow L Ta = -40°C to +125°C	4.3	-	4.6	V
Hysteresis Voltage	V _H ys		100	200	-	m۷
EN CONTROL (EN)			1			
		$V_{EN} = L \rightarrow H$	1.6	_	V _{IN}	
High Threshold Voltage	V _{THH_EN}	$V_{EN} = L \rightarrow H$ Ta = -40°C to +125°C	1.7	_	VIN	>
		$V_{EN} = H \rightarrow L$	0	_	0.5	
Low Threshold Voltage	V _{THL_EN}	$V_{EN} = H \rightarrow L$ $Ta = -40^{\circ}C \text{ to } +125^{\circ}C$	0	_	0.4	V
		V _{EN} = 5V	_	2	4.5	
Input Bias Current	l _{EN}	$V_{EN} = 5V$ Ta = -40°C to +125°C	_	_	6	μA
RESET CONTROL (RESETX)						
ON Threshold Voltage		V _{RESETX} = H→L	0	_	0.5	
	V _{THH_} RESETX	$V_{RESETX} = H \rightarrow L$ $Ta = -40^{\circ}C \text{ to } +125^{\circ}C$	0	_	0.4	V
		V _{RESETX} =L → H	2	_	5.5	_
OFF Threshold Voltage	V _{THL_} RESETX	V _{RESETX} =L → H Ta= -40°C to +125°C	2.1	_	5.5	V
		Vresetx =0V	_	-5	-8	

V_{RESETX} =0V Ta = -40°C to +125°C

Input Bias Current

μΑ

-10

PRELIMINARY SPECIFICATIONS SUBJECT TO CHANGE

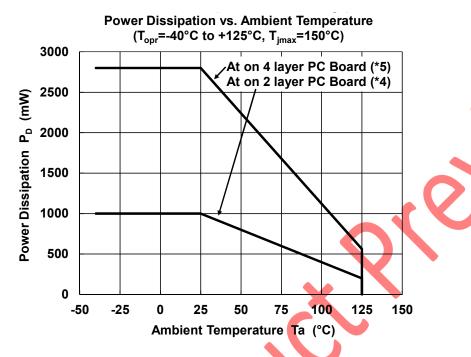
■ ELECTRICAL CHARACTERISTICS

(Unless otherwise noted, V_{IN}= 12V, V_{EN}=5V, V_{SENSE}=0V, R_T=10k Ω , Ta=25°C)

PARAMETER	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
ERROR AMP.	•		•			
		MODE1 = L, MODE2 = L	-1.0%	0.5	+1.0%	
Reference Voltage 1	V _{B1}	MODE1 = L, MODE2 = L Ta = -40°C to +125°C	-2.0%	_	+2.0%	V
Reference Voltage 2		MODE1 = H, MODE2 = L	-1.5%	0.9	+1.5%	
	V_{B2}	MODE1 = H, MODE2 = L Ta = -40°C to +125°C	-2.5%	_	+2.5%	V
		MODE1 = L, MODE2 = H	-1.5%	1.5	+1.5%	
Reference Voltage 3	V _{B3}	MODE1 = L, MODE2 = H Ta = -40°C to +125°C	-2.5%	-	+2.5%	V
D. C	.,	MODE1 = H, MODE2 = H	-1.5%	2	+1.5%	.,
Reference Voltage 4	V _{B4}	MODE1 = H, MODE2 = H Ta = -40°C to +125°C	-2.5%	-	+2.5%	V
Input Bias Current	I _{FB}		-0.1	-	0.1	μA
Input bias Guirent	IFB	Ta = -40°C to +125°C	-0.2		0.2	μΑ
SOFT START						
SS pin Output Current	lss		12	16	20	μΑ
33 piir Output Current		Ta = -40°C to +125°C	10	_	22	
CURRENT SENSE (SENSE)						
Threshold Voltage			100	130	160	m\/
Trileshold Vollage	VSENSE	Ta = -40°C to +125°C	80	_	180	mV
		Vsense = 5V	_	-	0.1	
Input Bias Current	Isense	V _{SENSE} = 5V Ta = -40°C to +125°C	_	-	0.2	μA
Cool Down Time	t _{COOL}		_	110	-	ms
CURRENT SENSE (CS)						
Three hold \ / altage			100	130	160	mV
Threshold Voltage	Vcs	Ta = -40°C to +125°C	80	_	180	
		V _{IN} - V _{CS} = 5V	_		0.1	
Input Bias Current	lcs	V _{IN} - V _{CS} = 5V Ta = -40°C to +125°C	_	_	0.2	μA
Cool Down Time	tcool			110		ms

■ ELECTRICAL CHARACTERISTICS

(Unless otherwise noted, V_{IN}= 12V, V_{EN}=5V, V_{SENSE}=0V, R_T=10k Ω , Ta=25°C)


PARAMETER	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
OSCILLATOR						
		$R_T = 56k\Omega$	90	100	110	
Oscillating Frequency 1	fosc1	R_T = 56kΩ T_A = -40°C to +125°C	85	_	115	kHz
		$R_T = 10k\Omega$	450	500	550	
Oscillating Frequency 2	fosc2	R_T = 10kΩ Ta = -40°C to +125°C	425	_	575	kHz
	_	$R_T = 6.8k\Omega$	630	700	770	
Oscillating Frequency 3	fosc3	R_T = 6.8k kΩ Ta = -40°C to +125°C	595	-	805	kHz
PWM COMPARATOR						
Minimum OFF Time	t _{OFF-min}		-	350	_	ns
Minimum ON Time	t _{ON-min}		• - (80	_	ns
LDO						
Output Voltage	VLSREG	V _{IN} = 12V	4.5	5.0	5.5	
		V _{IN} = 12V Ta = -40°C to +125°C	4.5	_	5.5	V
	Vdropout	I _{LSREG} = -50mA	300	400	500	mV
Dropout Voltage		I _{LSREG} = -50mA Ta = -40°C to +125°C	200	_	600	
GATE DRIVER						
	R _{GHH1}	I _{GxHx} = -50mA	_	3	4.5	
HS Output ON Resistance	R _{GHH2} Rglh1 Rglh2	I _{GxHx} = -50mA, Ta = -40°C to +125°C	_	_	7	Ω
	R _{GHL1}	I _{GxLx} = +50mA	_	3	4.5	
LS Output ON Resistance	RGHL2 RGLL1 RGLL2	l _{34x} = +50mA, Ta = -40℃ to +125℃	_	_	7	Ω
SW1 pin Shunt Switch ON Resistance	R _{ON-SW1}		_	35	_	Ω
MODE CONTROL (MODEx)						
	VTHH MODE1	$V_{THH_MODEx} = L \rightarrow H$	2	_	5.5	
ON Threshold Voltage	VTHH_MODE1 VTHH_MODE2	$V_{THH_MODEx} = L \rightarrow H$ Ta = -40°C to +125°C	2.1	-	5.5	V
	V _{THL_MODE1}	$V_{THL_MODEx} = H \rightarrow L$	0	_	0.5	
OFF Threshold Voltage	VTHL_MODE2	$V_{THL_MODEx} = H \rightarrow L$ Ta = -40°C to +125°C	0	-	0.4	V
1 15 0	I _{MODE1}	V _{THL_MODEx} = 5V	_	10	12	_
Input Bias Current	IMODE2	V _{THL_MODEx} = 5V Ta = -40°C to +125°C	_	-	14	μΑ

■ THERMAL CHARACTERISTICS

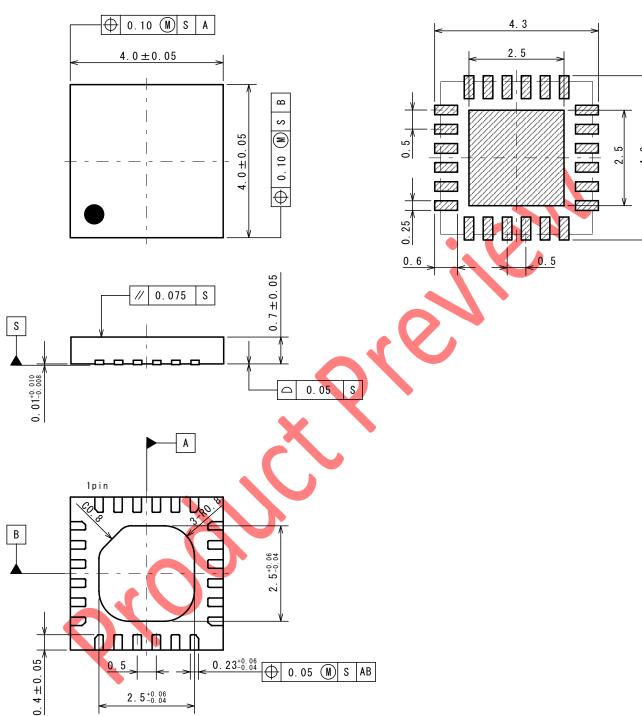
PARAMETER	SYMBOL	VALUE	UNIT
Junction-To-Ambient Thermal Resistance EQFN24-LE	θ _{ja}	2-Layer / 4-Layer 126 ⁽⁴⁾ / 45 ⁽⁵⁾	°C/W
Junction-To-Top of Package Characterization Parameter EQFN24-LE	Ψjt	2-Layer / 4-Layer / High Power 4-Layer 8.0 ⁽⁴⁾ / 2.8 ⁽⁵⁾	°C/W

■ POWER DISSIPATION vs. AMBIENT TEMPERATURE

(4): Mounted on glass epoxy board. (101.5×114.5×1.6mm:based on EIA/JEDEC standard,2layers, with Exposed Pad) (5): Mounted on glass epoxy board. (101.5×114.5×1.6mm:based on EIA/JEDEC standard,4layers, with Exposed Pad) (For 4Layers: Applying 99.5×99.5mm inner Cu area and a thermal via hole to a board based on JEDEC standard JESD51-5)

■ TYPICAL CHARACTERISTICS In preparation

■ APPLICATION NOTE In preparation

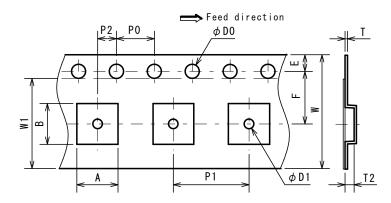


EQFN24-LE

Unit: mm

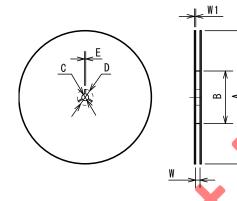
■ PACKAGE DIMENSIONS

■ EXAMPLE OF SOLDER PADS DIMENSIONS

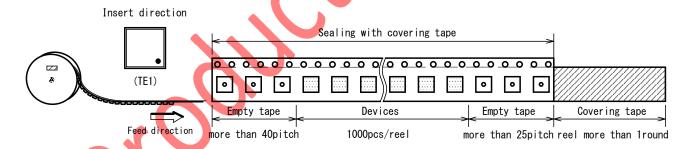


PRELIMINARY SPECIFICATIONS SUBJECT TO CHANGE

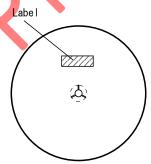
EQFN24-LE

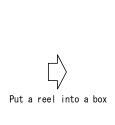

■ PACKING SPEC TAPING DIMENSIONS

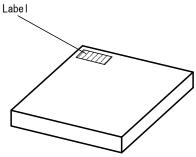
Unit: mm

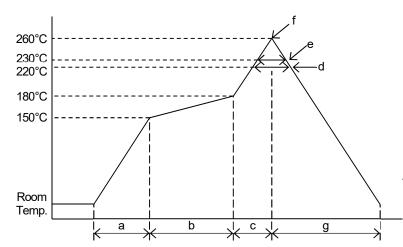

SYMBOL	DIMENSION	REMARKS
Α	4. 35±0. 05	BOTTOM DIMENSION
В	4.35±0.05	BOTTOM DIMENSION
D0	1.5 +0.1	
D1	1.0±0.1	
E	1.75±0.1	
F	5.5±0.05	
P0	4.0±0.1	
P1	8.0±0.1	
P2	2.0±0.1	
T	0.3 ± 0.05	
T2	1.3±0.05	
W	12.0±0.3	
W1	9.5	THICKNESS 0. 1max

REEL DIMENSIONS




DIMENSION
<i>ϕ</i> 180 ∮ ₅
ϕ 60 $^{+1}_{0}$
ϕ 13±0.2
φ 21±0.8
2±0.5
13 +1.0
1. 2


TAPING STATE



■ RECOMMENDED MOUNTING METHOD

INFRARED REFLOW SOLDERING PROFILE

а	Temperature ramping rate	1 to 4°C/s
h	Pre-heating temperature	150 to 180°C
b	Pre-heating time	60 to 120s
С	Temperature ramp rate	1 to 4°C/s
d	220°C or higher time	shorter than 60s
е	230°C or higher time	shorter than 40s
f	Peak temperature lower than 260°C	
g	Temperature ramping rate	1 to 6°C/s

The temperature indicates at the surface of mold package.

■ REVISION HISTORY

DATE	REVISION	CHANGES
March 31, 2021	Ver.0.8	Revised datasheet format Add AEC-Q100 qualification status, a precaution for recommended application and web link for the description of automotive grade.

PRELIMINARY SPECIFICATIONS SUBJECT TO CHANGE

[CAUTION]

- NJR strives to produce reliable and high quality semiconductors. NJR's semiconductors are intended for specific applications and require proper maintenance and handling. To enhance the performance and service of NJR's semiconductors, the devices, machinery or equipment into which they are integrated should undergo preventative maintenance and inspection at regularly scheduled intervals. Failure to properly maintain equipment and machinery incorporating these products can result in catastrophic system failures
- 2. The specifications on this datasheet are only given for information without any guarantee as regards either mistakes or omissions. The application circuits in this datasheet are described only to show representative usages of the product and not intended for the guarantee or permission of any right including the industrial property rights.
 All other trademarks mentioned herein are the property of their respective companies.
- To ensure the highest levels of reliability, NJR products must always be properly handled.
 The introduction of external contaminants (e.g. dust, oil or cosmetics) can result in failures of semiconductor products.
- NJR offers a variety of semiconductor products intended for particular applications. It is important that you select the proper component for your intended application. You may contact NJR's Sale's Office if you are uncertain about the products listed in this datasheet.
- 5. Special care is required in designing devices, machinery or equipment which demand high levels of reliability. This is particularly important when designing critical components or systems whose failure can foreseeably result in situations that could adversely affect health or safety. In designing such critical devices, equipment or machinery, careful consideration should be given to amongst other things, their safety design, fail-safe design, back-up and redundancy systems, and diffusion design.
- 6. The products listed in this datasheet may not be appropriate for use in certain equipment where reliability is critical or where the products may be subjected to extreme conditions. You should consult our sales office before using the products in any of the following types of equipment.
 - · Aerospace Equipment
 - · Equipment Used in the Deep Sea
 - · Power Generator Control Equipment (Nuclear, steam, hydraulic, etc.)
 - · Life Maintenance Medical Equipment
 - · Fire Alarms / Intruder Detectors
 - · Vehicle Control Equipment (Airplane, railroad, ship, etc.)
 - · Various Safety Devices
- 7. NJR's products have been designed and tested to function within controlled environmental conditions. Do not use products under conditions that deviate from methods or applications specified in this datasheet. Failure to employ the products in the proper applications can lead to deterioration, destruction or failure of the products. NJR shall not be responsible for any bodily injury, fires or accident, property damage or any consequential damages resulting from misuse or misapplication of the products. The products are sold without warranty of any kind, either express or implied, including but not limited to any implied warranty of merchantability or fitness for a particular purpose.
- 8. Warning for handling Gallium and Arsenic (GaAs) Products (Applying to GaAs MMIC, Photo Reflector). These products use Gallium (Ga) and Arsenic (As) which are specified as poisonous chemicals by law. For the prevention of a hazard, do not burn, destroy, or process chemically to make them as gas or power. When the product is disposed of, please follow the related regulation and do not mix this with general industrial waste or household waste.
- 9. The product specifications and descriptions listed in this datasheet are subject to change at any time, without notice.

