

Constant Current LED Driver with PWM Control

■ GENERAL DESCRIPTION

The NJW4615 is a constant current LED with PWM control. 35V resisting constant current control and PWM control circuit can be offered with small package.

It can achieve luminance control multiple white or blue and red LEDs.It can contribute to the reliability improvement of the system because it has an overcurrent protection and thermal shutdown circuit.

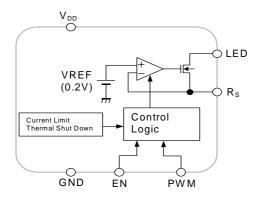
The NJW4615 is suit for an amusement, home audio,etc.

■ FEATURES

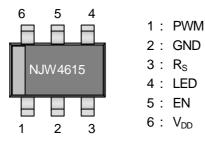
Operating Voltage Range
 LED Drive Voltage
 LED Output Current
 Current consumption
 2.5V to 5.5V
 V_{LED}= 35V(max.)
 100mA(max.)
 200µA

Output current accuracy ±1.2%

• To 8 of White LED can be operated.


With PWM Luminance Control

Internal overcurrent protection circuit


Internal thermal shutdown circuit

Package SOT-23-6

■ BLOCK DIAGRAM

PIN CONFIGRATION

■ PACKAGE OUTLINE

NJW4615F1

■ ABABSOLUTE MAXIMUM RATINGS

(Ta=25°C)

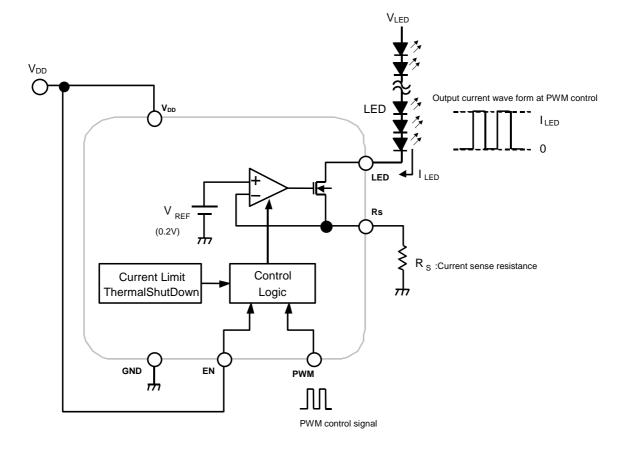
PARAMETERS	SYMBOL	RATINGS	UNIT
VDD Power Supply	V_{DD}	-0.3 to +6.0	V
Output voltage	V_{LED}	-0.3 to +40	V
Output Current	I _{LED}	100	mA
PWM Terminals Voltage	V_{PWM}	+6.0 (*1)	V
EN Terminals Voltage	V_{EN}	+6.0 (*1)	V
Power Consumption	P_{D}	510 (*2)	mW
Junction Temperature	Tj	-40 to +150	°C
Operating Temperature	Topr	-40 to +85	°C
Storage Temperature	Tstg	-40 to +150	°C

^{(*1):} When input voltage is less than +6V, the absolute maximum control voltage is equal to the input voltage.

■ RECOMMENDED OPERATING CONDITIONS

(Ta=25°C)

PARAMETERS	SYMBOL	CONDITIONS	MIN	TYP	MAX	Unit
Operating voltage	V_{DD}		2.5	-	5.5	V
Output voltage	V_{LED}		-	-	35	V


■ ELECTRICAL CHARACTERISTICS

(Unless otherwise noted, V_DD=3.0V, V_LED=1.0V, R_S=10 Ω , V_EN=V_PWM=V_DD, Ta=25°C)

PARAMETERS	SYMBOL	CONDITIONS	MIN	TYP	MAX	Unit
Operating Current	I _{DD}		-	200	320	μA
Operating Current at OFF state	I_{DD_OFF}	V _{EN} =GND	-	ı	0.1	μΑ
Output Current Accuracy	ΔI_LED		-1.2	-	+1.2	%
Output Terminal Leak Current	I _{LEAK1}	V_{EN} =GND, V_{DD} =5.5V, V_{LED} =35V	-	1	0.1	μΑ
Output Terminal Leak Current 2	I _{LEAK2}	V_{PWM} =GND V_{DD} =5.5V, V_{LED} =35V	-	ı	0.1	μΑ
EN Terminal ON Voltage	V_{EN_ON}	I _{LED} =OFF→ON	1.6	-	V_{DD}	V
EN Terminal OFF Voltage	V_{EN_OFF}	I _{LED} =ON→OFF	0	ı	0.3	V
PWM Terminal ON Voltage	V_{PWM_ON}	I _{LED} =OFF→ON	$0.7V_{DD}$	ı	V_{DD}	V
PWM Terminal OFF Voltage	V_{PWM_OFF}	I _{LED} =ON→OFF	0	-	$0.3V_{DD}$	V
EN Terminal Input Current	I _{EN}		-	1	0.1	μΑ
PWM Terminal Input Current	I _{PWM}		-	ı	0.1	μΑ
RS Terminal Leak Current	I _{LEAK RS}	V_{EN} =GND, V_{RS} = V_{LED} =3 V	-	-	0.1	μΑ
PWM Terminal ON Delay Time	t _{PWM_ON}	$V_{PWM}=L \rightarrow H$	-	3	-	μs
PWM Terminal OFF Delay Time	t _{PWM_OFF}	$V_{PWM}=H \rightarrow L$	-	1	-	μs
Maximum Output Current	I _{LED_MAX}	$R_S = 0\Omega$	100	170	-	mA

^{(*2):} Mounted on glass epoxy board based on EIA/JEDEC. (76.2 x 114.3 x 1.6mm : 2Layers)

■ TYPICAL APPLICATION

The Rs Resistance Setting formula :
$$R_{\rm S} = \frac{0.2(V)}{I_{\rm LED}}$$

[CAUTION]
The specifications on this databook are only The specifications on this databook are only given for information, without any guarantee as regards either mistakes or ornissions. The application circuits in this databook are described only to show representative usages of the product and not intended for the guarantee or permission of any right including the industrial rights.