Constant Current LED Driver with PWM Dimming Control

■ GENERAL DESCRIPTION

The NJW4615A is a constant current LED driver with PWM dimming control. Driving roads up to 100mA, the output current level can be adjusted via an external resistor. Because the withstand voltage of the LED pin is 35V, it can series-connect the LED depending on forward voltage of the LED. The LED brightness control can be regulated via PWM duty cycle. It suitable for back light, light source and so on.

■ PACKAGE OUTLINE

NJW4615AF1 (SOT-23-6-1)

■ FEATURES

- Supply Voltage Range
 2.5V to 35V
- Output Voltage
 V_{LED}=35V max.
- Output Current
 ILED=5mA to 100mA
- Output Current Accuracy ±1.2%
- To 10 of White LED can be operated. (at LED Vf=3.4V)
- Quiescent Current 370µA max.
- PWM Dimming Control
- ON/OFF Control
- Over Current Protection
- Thermal Shutdown Protection
- LED Short Protection
- Package

SOT-23-6-1

BLOCK DIAGRAM

PIN CONFIGRATION

New Japan Radio Co., Ltd.

ABSOLUTE MAXIMUM RATINGS			a=25°C)
PARAMETERS	SYMBOL	RATINGS	UNIT
Supply Voltage	V _{DD}	-0.3 to +40	V
Output voltage	V_{LED}	-0.3 to +40	V
EN Pin Voltage	V _{EN}	-0.3 to +40	V
PWM Pin Voltage	V _{PWM}	-0.3 to +6	V
Power Dissipation	P _D	510 (*1) 710 (*2)	mW
Junction Temperature Range	Tj	-40 to +150	°C
Operating Temperature Range	T _{opr}	-40 to +125	°C
Storage Temperature Range	T _{stg}	-50 to +150	°C

(*1): Mounted on glass epoxy board. (76.2×114.3×1.6mm: based on EIA/JEDEC standard, 2Layers)

(*2): Mounted on glass epoxy board. (76.2×114.3×1.6mm: based on EIA/JEDEC standard, 4Layers),

Internal Cu area: 74.2×74.2mm

EXAMPLED OPERATING CONDITIONS $(T_a=25^{\circ}C)$						
PARAMETERS	SYMBOL	CONDITIONS	MIN	TYP	MAX	Unit
Supply Voltage	V _{DD}		2.5	-	35	V
Output Current	I _{LED}		5	-	100	mA
Output Voltage	V _{LED}		-	-	35	V

■ ELECTRICAL CHARACTERISTICS

(Unless otherwise noted, $V_{DD} = V_{EN} = 12V$, $V_{LED} = 1V$, $R_{S} = 10\Omega$, $V_{PWM} = OPEN$, Ta=25°C)

PARAMETERS	SYMBOL	CONDITIONS	MIN	TYP	MAX	Unit
Quiescent Current	I _{DD}		-	260	370	μA
Quiescent Current at OFF State	I _{DD_OFF}	V _{EN} =GND	-	-	0.1	μA
Output Current Accuracy	ΔI_{LED}		-1.2	-	+1.2	%
Output Pin Leak Current 1	I _{LEAK} 1	V_{EN} =GND, V_{DD} =35V, V_{LED} =35V	-	-	0.1	μA
Output Pin Leak Current 2	I _{LEAK} 2	V_{PWM} =GND V_{DD} =35V, V_{LED} =35V	-	-	0.1	μA
EN Pin ON Voltage	V_{EN_ON}	I _{LED} =OFF→ON	1.6	-	V_{DD}	V
EN Pin OFF Voltage	V_{EN_OFF}	I _{LED} =ON→OFF	0	-	0.3	V
PWM Pin ON Voltage 1	V _{PWM_ON} 1	$V_{DD} < 5V, I_{LED} = OFF \rightarrow ON$	$0.7V_{DD}$	-	V _{DD}	V
PWM Pin OFF Voltage 1	V_{PWM_OFF} 1	$V_{DD} < 5V, I_{LED} = ON \rightarrow OFF$	0	-	$0.3V_{DD}$	V
PWM Pin ON Voltage 2	V _{PWM_ON} 2	$V_{DD} \ge 5V$, $I_{LED} = OFF \rightarrow ON$	3.5	-	5.5	V
PWM Pin OFF Voltage 2	$V_{PWM_OFF}2$	$V_{DD} \ge 5V$, $I_{LED} = ON \rightarrow OFF$	0	-	1.5	V
EN Pin Input Current	I _{EN}	$V_{EN} = 12V$	-	7	-	μA
PWM Pin Pull Up Resistance	R _{PWM}		-	1	-	MΩ
R _s Pin Output Current	I _{OUT_RS}	LED = OPEN	-	2.3	-	μA
PWM Pin ON Delay Time	t _{PWM_ON}	$V_{PWM} = L \rightarrow H, I_{LED} = OFF \rightarrow ON$	-	3	-	μs
PWM Pin OFF Delay Time	t _{PWM_OFF}	$V_{PWM} = H \rightarrow L, I_{LED} = ON \rightarrow OFF$	-	1	-	μs
LED Short Protection			17	20	23	V
Detect Voltage	V LED_SHORT		17	20	20	v
Maximum Output Current	ILED_MAX	$R_{\rm S} = 0 \Omega$	100	170	-	mA

■ TYPICAL APPLICATION

The R_s Resistance Setting formula:
$$R_{s}(\Omega) = \frac{0.2(V)}{I_{LED}(A)}$$

■ PIN DESCRIPTIONS

Pin No.	Pin Name	I/O	Function
1	PWM	I	PWM Signal input pin for Dimming Control. Not use Dimming Control, This pin is open.
2	GND	-	Ground
3	Rs	0	ILED Setting Resistor Connect Pin. The LED current can be set connecting resistance (R_s) between R_s pin and GND pin. $R_s [\Omega] = 0.2 [V] / I_{LED} [A]$
4	LED	0	Constant Current Circuit Output Pin Connect Cathode Pin of LED.
5	EN	I	Standby Control Pin Normal Operation at the time of High Level. Standby Mode at the time of Low Level.
6	V_{DD}	I	Power Supply

Ver.2014-09-11

-New Japan Radio Co.,Ltd.-

MEMO

[CAUTION] The specifications on this databook are only given for information, without any guarantee as regards either mistakes or omissions. The application circuits in this databook are described only to show representative usages of the product and not intended for the guarantee or permission of any right including the industrial rights.

-New Japan Radio Co.,Ltd.