TFT COLOR LCD MODULE

NL10276BC30-34BD

38cm (15.0 Type) XGA LVDS interface (1port)

PRELIMINARY DATA SHEET 텾

DOD-PP-1566 (1st edition)

All information is subject to change without notice. Please confirm the sales representative before starting to design your system.

INTRODUCTION

The Copyright to this document belongs to NLT Technologies, Ltd. (hereinafter called "NLT"). No part of this document will be used, reproduced or copied without prior written consent of NLT.

NLT does and will not assume any liability for infringement of patents, copyrights or other intellectual property rights of any third party arising out of or in connection with application of the products described herein except for that directly attributable to mechanisms and workmanship thereof. No license, express or implied, is granted under any patent, copyright or other intellectual property right of NLT.

Some electronic products would fail or malfunction at a certain rate. In spite of every effort to enhance reliability of products by NLT, the possibility of failures and malfunction might not be avoided entirely. To prevent the risks of damage to death, human bodily injury or other property arising out thereof or in connection therewith, each customer is required to take sufficient measures in its safety designs and plans including, but not limited to, redundant system, fire-containment and anti-failure.

The products are classified into three grades: "Standard", "Special", and "Specific".

Each quality grade is designed for applications described below. Any customer who intends to use a product for application other than that of Standard is required to contact an NLT sales representative in advance.

The **Standard:** Applications as any failure, malfunction or error of the products are free from any damage to death, human bodily injury or other property (Products Safety Issue) and not related the safety of the public (Social Issues), like general electric devices.

Examples: Office equipment, audio and visual equipment, communication equipment, test and measurement equipment, personal electronic equipment, home electronic appliances, car navigation system (with no vehicle control functions), seat entertainment monitor for vehicles and airplanes, fish finder (except marine radar integrated type), PDA, etc.

The **Special:** Applications as any failure, malfunction or error of the products might directly cause any damage to death, human bodily injury or other property (Products Safety Issue) and the safety of the public (Social Issues) and required high level reliability by conventional wisdom.

Examples: Vehicle/train/ship control system, traffic signals system, traffic information control system, air traffic control system, surgery/operation equipment monitor, disaster/crime prevention system, etc.

The **Specific:** Applications as any failure, malfunction or error of the products might severe cause any damage to death, human bodily injury or other property (Products Safety Issue) and the safety of the public (Social Issues) and developed, designed and manufactured in accordance with the standards or quality assurance program designated by the customer who requires extremely high level reliability and quality.

Examples: Aerospace system (except seat entertainment monitor), nuclear control system, life support system, etc.

The quality grade of this product is the "Standard" unless otherwise specified in this document.

NL10276BC30-34BD

CONTENTS

INTRODUCTION	2
1. OUTLINE	4
1.1 STRUCTURE AND PRINCIPLE	
1.2 APPLICATION	
1.3 FEATURES	
2. GENERAL SPECIFICATIONS	
3. BLOCK DIAGRAM.	
4. DETAILED SPECIFICATIONS	
4.1 MECHANICAL SPECIFICATIONS	
4.2 ABSOLUTE MAXIMUM RATINGS	
4.3 ELECTRICAL CHARACTERISTICS	
4.3.1 LCD panel signal processing board	
4.3.2 Backlight lamp	
4.3.3 Power supply voltage ripple	
4.3.4 Fuse	
4.4 Touch panel specification	0
4.5 POWER SUPPLY VOLTAGE SEQUENCE	1
4.5.1 LCD panel signal processing board	
4.5.2 LED driver board	
4.6 CONNECTIONS AND FUNCTIONS FOR INTERFACE PINS	
4.6.1 LCD panel signal processing board	
4.6.2 Backlight lamp	
4.6.3 Touch panel	
4.6.4 Positions of plug and socket	
4.6.5 Connection between receiver and transmitter for LVDS	
4.7 DISPLAY COLORS AND INPUT DATA SIGNALS	
4.8 DISPLAY POSITIONS	
4.9 SCANNING DIRECTIONS	
4.10 INPUT SIGNAL TIMINGS	
4.10.1 Outline of input signal timings2	
4.10.2 Timing characteristics2	
4.10.3 Input signal timing chart2	
4.11 OPTICS	
4.11.1 Optical characteristics2	
4.11.2 Definition of contrast ratio2	
4.11.3 Definition of luminance uniformity2	
4.11.4 Definition of response times2	
4.11.5 Definition of viewing angles2	
5. ESTIMATED LUMINANCE LIFETIME	
6. RELIABILITY TESTS	6
7. PRECAUTIONS	
7.1 MEANING OF CAUTION SIGNS2	7
7.2 CAUTIONS	7
7.3 ATTENTIONS	7
7.3.1 Handling of the product	7
7.3.2 Environment	8
7.3.3 Characteristics	8
7.3.4 Others	8
8. OUTLINE DRAWINGS	9
8.1 FRONT VIEW	9
8.2 REAR VIEW	
REVISION HISTORY	1

1. OUTLINE

1.1 STRUCTURE AND PRINCIPLE

Color LCD module NL10276BC30-34BD is composed of the amorphous silicon thin film transistor liquid crystal display (a-Si TFT LCD) panel structure with driver LSIs for driving the TFT (Thin Film Transistor) array, touch panel (T/P) and a backlight.

The a-Si TFT LCD panel structure is injected liquid crystal material into a narrow gap between the TFT array glass substrate and a color-filter glass substrate.

Color (Red, Green, Blue) data signals from a host system (e.g. signal generator, etc.) are modulated into best form for active matrix system by a signal processing board, and sent to the driver LSIs which drive the individual TFT arrays.

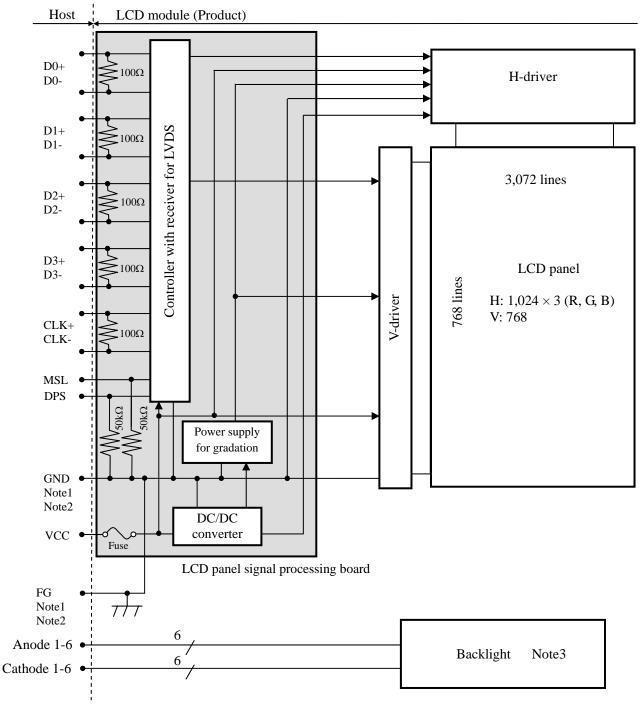
The TFT array as an electro-optical switch regulates the amount of transmitted light from the backlight assembly, when it is controlled by data signals. Color images are created by regulating the amount of transmitted light through the TFT array of red, green and blue dots.

1.2 APPLICATION

• For industrial use

1.3 FEATURES

- Projected capacitive touch panel (P-CAP T/P) attached
- Touch panel having cover glass
- Long life LED backlight type
- High luminance
- High contrast
- Wide viewing angle
- Fast response time
- LVDS interface
- Reversible-scan direction
- Selectable LVDS input map
- Small foot print
- Replaceable lamp for backlight


2. GENERAL SPECIFICATIONS

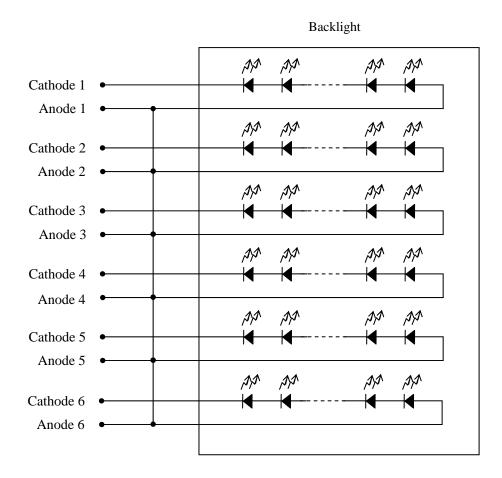
Display area	304.128 (H) × 228.096 (V) mm
Diagonal size of display	38cm (15.0 inches)
Drive system	a-Si TFT active matrix
Display color	16,777,216 colors (6bit+FRC)
Pixel	1,024 (H) × 768 (V) pixels
Pixel arrangement	RGB (Red dot, Green dot, Blue dot) vertical stripe
Dot pitch	$0.099 \text{ (H)} \times 0.297 \text{ (V) mm}$
Pixel pitch	$0.297 (H) \times 0.297 (V) mm$
Module size	$326.5 \text{ (W)} \times 253.5 \text{ (H)} \times (13.8) \text{ (D) mm (typ.)}$
Weight	TBD g (typ.)
Contrast ratio	TBD g (typ.)
	At the contrast ratio $\geq 10:1$
Viewing angle	 Horizontal: Right side (80)° (typ.), Left side (80)° (typ.) Vertical: Up side (80)° (typ.), Down side (80)° (typ.)
Designed viewing direction	 At DPS terminal= Low or Open: Normal scan Viewing direction without image reversal: Up side (12 o'clock) Viewing direction with contrast peak: Down side (6 o'clock) Viewing angle with optimum grayscale (γ≒2.2): Normal axis (perpendicular)
Touch panel type	Projected capacitive Recommended Touch panel controller board (Option) • Touch panel controller board: Type No. PTPW01
Touch panel surface	Antiglare
Touch panel pencil-hardness	(2H) (min.) [by JIS K5600]
Touch panel cover glass	0.7mm normal glass
Touch panel bonding method	Perimeter-bonding (with air gap)
Color gamut	At LCD panel center 50% (typ.) [against NTSC color space]
Response time	$Ton+Toff (10\% \leftrightarrow 90\%)$ 18ms (typ.)
Luminance	At IL = 50mA / One circuit (350)cd/m ² (typ.)
Signal system	LVDS 1port (Receiver: Equivalent of THC63LVDF84B, THine Electronics Inc.) [8-bit digital signals for data of RGB colors, Dot clock (CLK), Data enable (DE)]
Power supply voltage	LCD panel signal processing board: 3.3V
Backlight	LED Backlight type: (Replaceable part • Lamp holder set: Type No.:150LHS36 (Recommended LED driver board (Option) • LED driver board: Type No.:150PW02F • Corresponding wiring harness: Type No. 150CBL02
Power consumption	At IL= 50mA / One circuit, Checkered flag pattern 9.8W (typ.) (except for T/P)

NL10276BC30-34BD

3. BLOCK DIAGRAM

Note1: Relations between GND (Signal ground) and FG (Frame ground) in the LCD module is as follows.

	GND- FG				Cor	nnected		
~	CUID	1 50	. 1		1.		•	


Note2: GND and FG must be connected to customer equipment's ground, and it is recommended that GND and FG are connected together in customer equipment.

PRELIMINARY

NLT Technologies, Ltd.

NL10276BC30-34BD

Note3: Detail of backlight

4. DETAILED SPECIFICATIONS

4.1 MECHANICAL SPECIFICATIONS

Parameter	Specification		Unit
Module size	326.5 ± 0.5 (W) × 253.5 ± 0.5 (H) × (13.8) max. (D)	Note1	mm
Display area	304.128 (H) × 228.096 (V)	Note1	mm
Weight	TBD (typ.), TBD (max.)		g

Note1: See "8. OUTLINE DRAWINGS".

4.2 ABSOLUTE MAXIMUM RATINGS

Parameter				Rating	Unit	Remarks
Power supply voltage	LCD panel signal pr	ocessing board	VCC	-0.3 to +4.0	V	
Input voltage for	Display sig Note1		VD	-0.3 to VCC+0.3	v	-
signals	Function si Note2		VF	0.5 10 YEE 10.5	·	
Backlight	Forward cu	irrent	IL	60	mA	per one circuit
Touch	panel input voltage		Vtp	6.0	V	-
Sto	rage temperature		Tst	-20 to +80	°C	-
Operating to	mparatura	Front surface	TopF	-20 to +70	°C	Note3
Operating te	mperature	Rear surface	TopR	-20 to +70	°C	Note4
				≤ 95	%	$Ta \leq 40^{\circ}C$
Re	elative humidity		RH	≤ 85	%	$40 < Ta \leq 50^{\circ}C$
	Note5		KII	≤ 55	%	$50 < Ta \le 60^\circ C$
				≤ 36	%	$60 < Ta \le 70^{\circ}C$
Absolute humidity Note5			AH	≤70 Note6	g/m ³	$Ta > 70^{\circ}C$
Operating altitude			-	≤ 5,100	m	$-20^\circ C \leq Ta \leq 70^\circ C$
S	storage altitude	Storage altitude			m	$-20^{\circ}C \leq Ta \leq 80^{\circ}C$

Note1: D0+/-, D1+/-, D2+/-, D3+/-, CLK+/-

Note2: MSL, DPS

Note3: Measured at center of LCD panel surface (including self-heat)

Note4: Measured at center of LCD module's rear shield surface (including self-heat)

Note5: No condensation

Note6: Water amount at Ta= 70° C and RH= 36%

NL10276BC30-34BD

4.3 ELECTRICAL CHARACTERISTICS

4.3.1 LCD panel signal processing board

							(Ta= 25°C)	
Parameter		Symbol	min.	typ.	max.	Unit	Remarks	
Power supply voltage		VCC	3.0	3.3	3.6	V	-	
Power supply current		ICC	-	500 Note1	700 Note2	mA	at VCC= 3.3V	
Permissible ripple voltage		VRP	-	-	100	mVp-p	for VCC	
Differential input threshold	High	VTH	-	-	+100	mV	at VCM= 1.2V	
voltage for LVDS receiver	Low	VTL	-100	-	-	mV	Note3	
Input voltage swing for LVDS 1	receiver	Vi	0	-	2.4	V	-	
Terminating resistance		RT	-	100	-	Ω	-	
Input voltage for	High	VFH	2.0	-	VCC	V		
MSL and DPS signals	Low	VFL	0	-	0.8	V	-	
Input current for	High	IFH	-	-	300	μΑ		
MSL and DPS signals	Low	IFL	-300	-	-	μΑ	-	

Note1: Checkered flag pattern [by EIAJ ED-2522]

Note2: Pattern for maximum current

Note3: Common mode voltage for LVDS receiver

NL10276BC30-34BD

4.3.2 Backlight lamp

					$(Ta=25^\circ)$	^o C, Note1, Note2, Note3)
Parameter	Symbol	min.	typ.	max.	Unit	Remarks
Forward Current	IL	-	50	55	mA	-
Forward Voltage	VL	23.9	27.0	30.6	V	Ta= +25°C at IL= 50 mA/ One circuit
		21.42	-	-	V	Ta= +70°C at IL= 50 mA/ One circuit
		-	-	32.94	V	Ta= -20°C at IL= 50 mA/ One circuit
		-	-	33.21	V	Ta= -20°C at IL= 55 mA/ One circuit

Note1: Please drive with constant current.

Note2: The above specifications are for one LED circuit of the backlight.

Note3: The Luminance uniformity may be changed depending on the current variation between 6 circuits. It is recommended that the current value difference among the circuits be less than 5%.

4.3.3 Power supply voltage ripple

This product works if the ripple voltage levels are over the permissible values as the following table, but there might be noise on the display image.

ľ	Power sup	ply voltage	Ripple voltage Note1 (Measure at input terminal of power supply)	Unit
	VCC	3.3V	≤ 100	mVp-p

Note1: The permissible ripple voltage includes spike noise.

4.3.4 Fuse

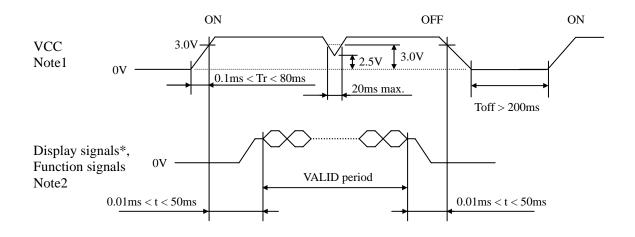
Daramatar	Fu	Rating	Fusing current	Remarks	
Faianietei	Parameter Type		Kaung		
VCC	FCC16202AB	KAMAYA ELECTRIC	2.0A	4.0A	Note1
vee	TCC10202AB	Co., Ltd	32V	4.0A	INOte1

Note1: The power supply's rated current must be more than the fusing current. If it is less than the fusing current, the fuse may not blow in a short time, and then nasty smell, smoke and so on may occur.

4.4 Touch panel specification

1 1							(Ta= 25°C)
Parameter		Symbol	min.	typ.	max.	Unit	Remarks
X drive voltage		XVDD	2.5	3.3	10.5	V	-
A	Center	Acrc	-	-	(1.5)	mm	Note1
Accuracy	Boarder	Acrb	-	-	(2.5)	mm	Note1
Number of touch		NUM	1	-	16	Point	Note2
Resolution	Х	-	-	-	4,096	-	Note2
	Y	-	-	-	4,096	-	Note2

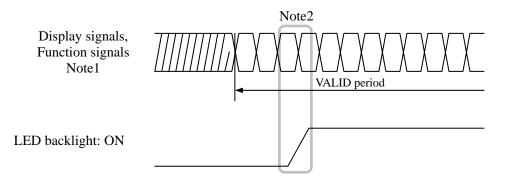
Note1: Input method is ϕ 8mm conductive stylus


Note2: Using the Touch panel controller board, which is a option parts.

Note3: See "8. OUTLINE DRAWINGS".

4.5 POWER SUPPLY VOLTAGE SEQUENCE

4.5.1 LCD panel signal processing board



* These signals should be measured at the terminal of 100Ω resistance.

- Note1: If there is a voltage variation (voltage drop) at the rising edge of VCC below 3.0V, there is a possibility that a product does not work due to a protection circuit.
- Note2: Display signals (D0+/-, D1+/-, D2+/-, D3+/-, CLK+/-) and function signals (MSL, DPS) must be set to Low or High impedance, except the VALID period (See above sequence diagram), in order to avoid the circuitry damage.

If some of display and function signals of this product are cut while this product is working, even if the signal input to it once again, it might not work normally. If a customer stops the display and function signals, VCC also must be shut down.

4.5.2 LED driver board

- Note1: These are the display and function signals for LCD panel signal processing board.
- Note2: The backlight should be turned on within the valid period of display and function signals, in order to avoid unstable data display.

4.6 CONNECTIONS AND FUNCTIONS FOR INTERFACE PINS

4.6.1 LCD panel signal processing board

CN1 socket (LCD module side): DF14H-20P-1.25H (Hirose Electric Co., Ltd. (HRS)) MSB240420HE (SIN SHENG TERMINAL & MACHINE INC. (STM)) Adaptable plug: DF14-20S-1 25C (Hirose Electric Co., Ltd. (HRS))

Adaptable	e plug:	DF14-20S-1.25C (Hirose Electric Co., Ltd. (HRS))					
Pin No.	Symbol	Signal	Remarks				
1	VCC	Power supply	Note1				
2	VCC	I ower suppry	Note1				
3	GND	Ground	Note1				
4	GND	Ground	note1				
5	D0-	Pixel data	Note2				
6	D0+		Note2				
7	GND	Ground	Note1				
8	D1-	Pixel data	Note2				
9	D1+		110102				
10	GND	Ground	Note1				
11	D2-	Pixel data	Note2				
12	D2+		NOIE2				
13	GND	Ground	Note1				
14	CLK-	Pixel clock	Note2				
15	CLK+	I IAH CIOCK	NOIE2				
16	GND	Ground	Note1				
17	D3-	Pixel data	Note2				
18	D3+		INOTE2				
19	DPS	Selection of scan direction	High:Reverse scanLow or Open:Normal scanNote3, Note5				
20	MSL	Selection of LVDS input map	High: Input map A Low or Open: Input map B Note4, Note5				

Note1: All GND and VCC terminals should be used without any non-connected lines.

Note2: Twist pair wires with 100Ω (Characteristic impedance) should be used between LCD panel signal processing board and LVDS transmitter.

Note3: See "4.9 SCANNING DIRECTIONS".

Note4: See "4.6.5 Connection between receiver and transmitter for LVDS".

Note5: This terminal is pulled-down in the product. (Pull-down resistance: $50k\Omega$)

NL10276BC30-34BD

4.6.2 Backlight lamp

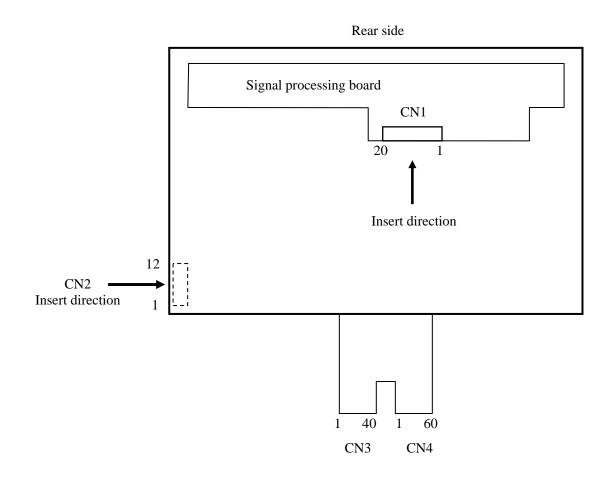
CN2 plug (LCD module side): Adaptable socket:		: SM12B-SRSS-TB SHR-12V-S	(J.S.T. Mfg. C (J.S.T. Mfg. C	
Pin No.	Symbol	Signal		Remarks
1	A1	Anode1		-
2	K1	Cathode1		-
3	A2	Anode2		-
4	K2	Cathode2		-
5	A3	Anode3		-
6	K3	Cathode3		-
7	A4	Anode4		-
8	K4	Cathode4		-
9	A5	Anode5		-
10	K5	Cathode5		-
11	A6	Anode6		-
12	K6	Cathode6		-

4.6.3 Touch panel

CN3 (FPC)

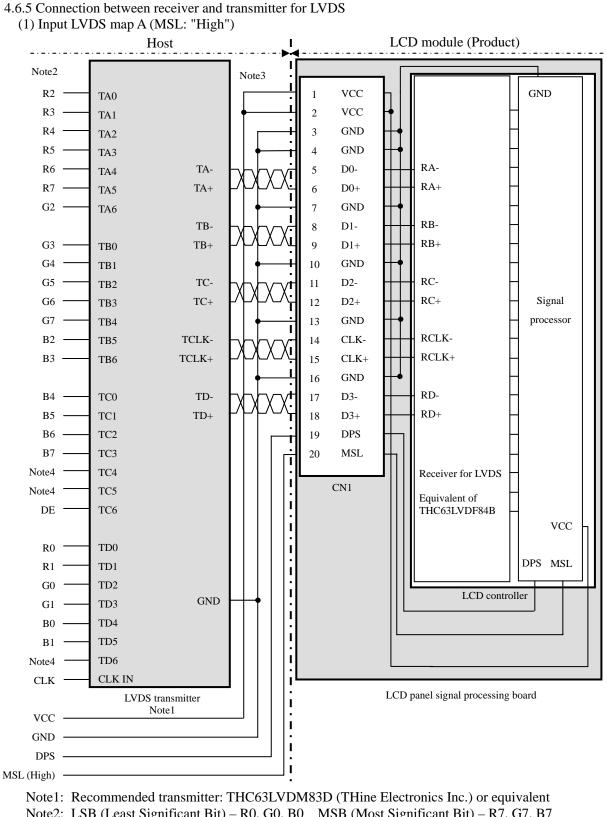
Adaptable	socket:	FH28	8-40S-0.5SI	H(05) (Hirose Electric Co., Ltd.(HRS))			
Pin No.	Symbol	Sig	nal	Pin No.	Symbol	S	ignal
1	GND	Ground	Note1	21	X13	X line termi	nal
2	GND	Ground	Note1	22	X12	X line termi	nal
3	X31	X line termin	nal	23	X11	X line termi	nal
4	X30	X line termin	nal	24	X10	X line termi	nal
5	X29	X line termin	nal	25	X9	X line termi	nal
6	X28	X line termin	nal	26	X8	X line termi	nal
7	X27	X line termin	nal	27	X7	X line termi	nal
8	X26	X line termin	nal	28	X6	X line termi	nal
9	X25	X line termin	nal	29	X5	X line termi	nal
10	X24	X line termin	nal	30	X4	X line termi	nal
11	X23	X line termin	nal	31	X3	X line termi	nal
12	X22	X line termin	nal	32	X2	X line termi	nal
13	X21	X line termin	nal	33	X1	X line termi	nal
14	X20	X line termin	nal	34	X0	X line termi	nal
15	X19	X line termin	nal	35	GND	Ground	Note1
16	X18	X line termin	nal	36	GND	Ground	Note1
17	X17	X line termin	nal	37	N. C.	(Keep this p	in open)
18	X16	X line termin	nal	38	N. C.	(Keep this p	in open)
19	X15	X line termin	nal	39	N. C.	(Keep this p	in open)
20	X14	X line termin	nal	40	N. C.	(Keep this p	in open)

Note1: All GND terminals should be used without any non-connected lines.

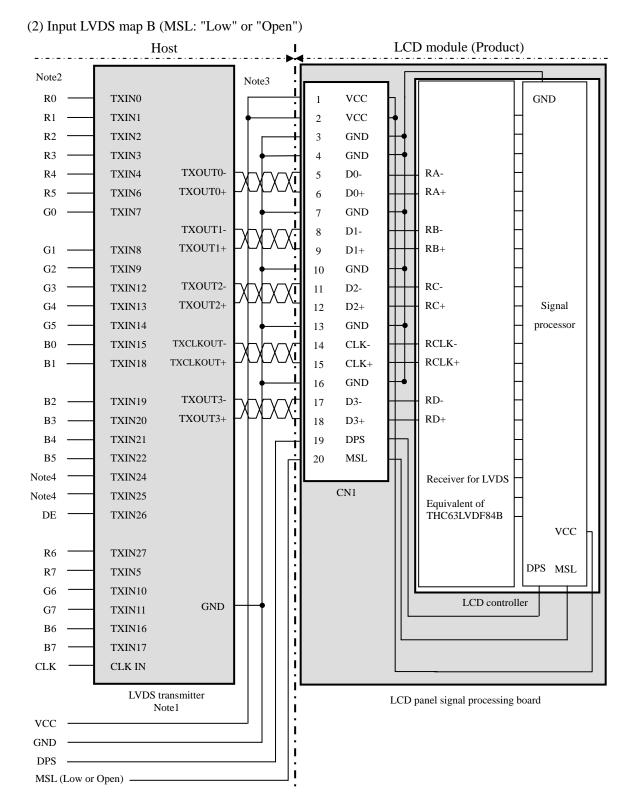

NL10276BC30-34BD

CN4 (FPC) Adaptable		FH28-6	50S-0.5SI	H(05) (Hiros	se Electric Co	., Ltd.(HRS))
Pin No.	Symbol	Signal	1	Pin No.	Symbol	Signal
1	GND	Ground	Note1	31	Y28	Y line terminal
2	GND	Ground	Note1	32	Y29	Y line terminal
3	Y0	Y line terminal		33	Y30	Y line terminal
4	Y1	Y line terminal		34	Y31	Y line terminal
5	Y2	Y line terminal		35	Y32	Y line terminal
6	Y3	Y line terminal		36	Y33	Y line terminal
7	Y4	Y line terminal		37	Y34	Y line terminal
8	Y5	Y line terminal		38	Y35	Y line terminal
9	Y6	Y line terminal		39	Y36	Y line terminal
10	Y7	Y line terminal		40	Y37	Y line terminal
11	Y8	Y line terminal		41	Y38	Y line terminal
12	Y9	Y line terminal		42	Y39	Y line terminal
13	Y10	Y line terminal		43	Y40	Y line terminal
14	Y11	Y line terminal		44	Y41	Y line terminal
15	Y12	Y line terminal		45	Y42	Y line terminal
16	Y13	Y line terminal		46	Y43	Y line terminal
17	Y14	Y line terminal		47	Y44	Y line terminal
18	Y15	Y line terminal		48	Y45	Y line terminal
19	Y16	Y line terminal		49	Y46	Y line terminal
20	Y17	Y line terminal		50	Y47	Y line terminal
21	Y18	Y line terminal		51	Y48	Y line terminal
22	Y19	Y line terminal		52	Y49	Y line terminal
23	Y20	Y line terminal		53	Y50	Y line terminal
24	Y21	Y line terminal		54	Y51	Y line terminal
25	Y22	Y line terminal		55	GND	Ground Note1
26	Y23	Y line terminal		56	GND	Ground Note1
27	Y24	Y line terminal		57	N. C.	(Keep this pin open)
28	Y25	Y line terminal		58	N. C.	(Keep this pin open)
29	Y26	Y line terminal		59	N. C.	(Keep this pin open)
30	Y27	Y line terminal		60	N. C.	(Keep this pin open)

Note1: All GND terminals should be used without any non-connected lines.



4.6.4 Positions of plug and socket

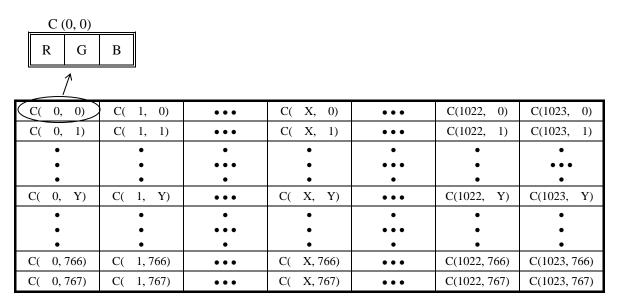

NL10276BC30-34BD

- Note2: LSB (Least Significant Bit) R0, G0, B0 MSB (Most Significant Bit) R7, G7, B7
- Note3: Twist pair wires with 100Ω (Characteristic impedance) should be used between LCD panel signal processing board and LVDS transmitter.
- Note4: Input signals to TC4, TC5 and TD6 are not used inside the product, but do not keep TC4, TC5 and TD6 open to avoid noise problem.

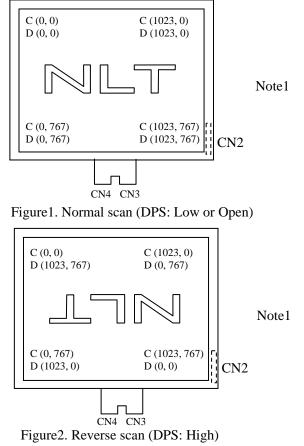
NL10276BC30-34BD

- Note1: Recommended transmitter: DS90C383 (National Semiconductor) or equivalent
- Note2: LSB (Least Significant Bit) R0, G0, B0 MSB (Most Significant Bit) R7, G7, B7
- Note3: Twist pair wires with 100Ω (Characteristic impedance) should be used between LCD panel signal processing board and LVDS transmitter.
- Note4: Input signals to TXIN24 and TXIN25 are not used inside the product, but do not keep TXIN24 and TXIN25 open to avoid noise problem.

4.7 DISPLAY COLORS AND INPUT DATA SIGNALS


This product can display 16,777,216 colors with 256 gray scales. Also the relation between display colors and input data signals is as follows.

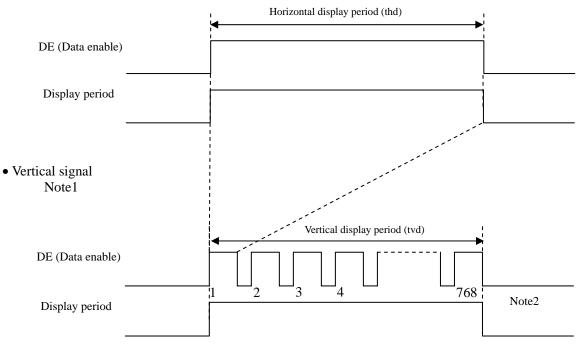
Display colors									Da	ta si	gnal	(0: I	Low	leve	el, 1:	Hig	gh lev	vel)							
Disp	lay colors	R7	R6	R5	R4	R3	R2	R1	R0	G7	G6	G5	G4	G3	G2	G1	G0	B7	B6	B5	B4	B3	B2	B1	B 0
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Blue	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
Basic Colors	Red	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Col	Magenta	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
sic	Green	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
Ba	Cyan	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Yellow	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
	White	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
e)		0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
scal	dark	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ay s	1				:	:								:								:			
Red gray scale	\downarrow				:									:								:			
Red	bright	1	1	1	1	1	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ale		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
SC:	dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
Green gray scale	↑				:	:								:								:			
en g	\downarrow				:									:								:			
jre(bright	0	0	0	0	0	0	0	0	1	1	1	1	1	1	0	1	0	0	0	0	0	0	0	0
\cup		0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0
	Green	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
le		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
sca	dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
Blue gray scale	Ť				:	:								:								:			
e gi	\downarrow				:									:								:			
Blu	bright	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	0	1
		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	0
	Blue	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1


4.8 DISPLAY POSITIONS

The following table is the coordinates per pixel (See "4.9 SCANNING DIRECTIONS".).

4.9 SCANNING DIRECTIONS

The following figures are seen from a front view.


Note1: Meaning of C (X, Y) and D (X, Y)
C (X, Y): The coordinates of the display position (See "4.8 DISPLAY POSITIONS".)
D (X, Y): The data number of input signal for LCD panel signal processing board

4.10 INPUT SIGNAL TIMINGS

- 4.10.1 Outline of input signal timings
 - Horizontal signal

Note1

Note1: This diagram indicates virtual signal for set up to timing. Note2: See "**4.10.3 Input signal timing chart**" for the pulse number.

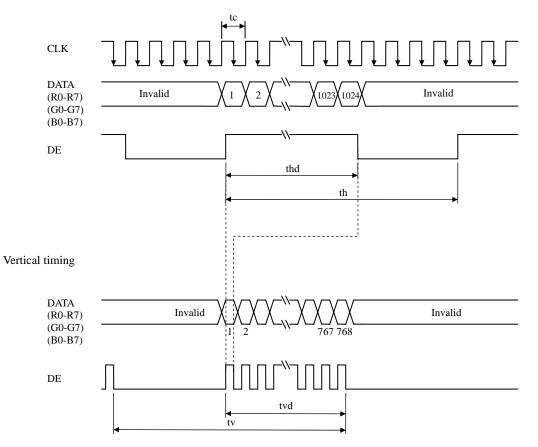
NL10276BC30-34BD

4.10.2 Timing characteristics

	5 entiracteristi						(Note1	, Note2, Note3)	
	Paramet	er	Symbol	min.	typ.	max.	Unit	Remarks	
	Fi	1/tc	50.0	65.0	80.0	MHz	15.384 ns (typ.)		
CLK		Duty	-				-		
	Rise ti	me, Fall time	-		-		ns	-	
	CLK-DATA	Setup time	-				ns		
DATA	CLK-DAIA	Hold time	-		-		ns	-	
	Rise ti	-				ns			
	Horizontal	Cycle	th	15.0	20.676	-	μs	48.363 kHz (typ.)	
		Cycle		1,050	1,344	1,800	CLK	40.305 KHZ (typ.)	
		Display period	thd		1,024		CLK	-	
	37 (* 1	Cycle	tv	13.1	16.666	20.0	ms	60.0 Hz (typ.)	
DE	Vertical (One frame)	Cycle	ιv	770	806	-	Н	00.0 Hz (typ.)	
	(one name)	Display period	tvd		768		Н	-	
	CLK-DE	Setup time	-				ns		
	CLK-DE	Hold time	-				ns	-	
	Rise ti	me, Fall time	-				ns		

Note1: Definition of parameters is as follows.

tc= 1CLK, th= 1H, Vf= 1/tv


Note2: See the data sheet of LVDS transmitter.

Note3: Vertical cycle (tv) should be specified in integral multiple of Horizontal cycle (th).

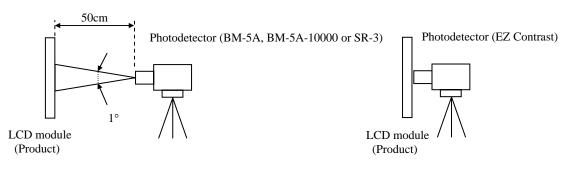
4.10.3 Input signal timing chart

Horizontal timing

NL10276BC30-34BD

4.11 OPTICS

4.11.1 Optical characteristics


								(Note1, 1	Note2)
Paramete	er	Condition	Symbol	min.	typ.	max.	Unit	Measuring instrument	Remarks
Luminand	ce	White at center $\theta R = 0^\circ, \ \theta L = 0^\circ, \ \theta U = 0^\circ, \ \theta D = 0^\circ$	L	TBD	(350)	-	cd/m ²	SR-3 or BM-5A	-
Contrast ra	ıtio	White/Black at center $\theta R = 0^\circ, \ \theta L = 0^\circ, \ \theta U = 0^\circ, \ \theta D = 0^\circ$	CR	TBD	TBD	-	-	SR-3 or BM-5A	Note3
Luminance uni	formity	White $\theta R = 0^\circ, \ \theta L = 0^\circ, \ \theta U = 0^\circ, \ \theta D = 0^\circ$	LU	-	1.2	1.35	-	BM-5A	Note4
	White	x coordinate	Wx	(0.263)	(0.313)	(0.363)	-		
	white	y coordinate	Wy	(0.279)	(0.329)	(0.379)	-		Note5
	Red	x coordinate	Rx	-	(0.599)	-	-		
Chromaticity		y coordinate	Ry	-	(0.354)	-	-		
Chromatienty	Green	x coordinate	Gx	-	(0.348)	-	-	SR-3	
	Ulteri	y coordinate	Gy	-	(0.579)	-	-	SK-5	Notes
	Blue	x coordinate	Bx	-	(0.152)	-	-		
	Diuc	y coordinate	By	-	(0.107)	-	-		
Color gam	nut	$\theta R = 0^{\circ}, \ \theta L = 0^{\circ}, \ \theta U = 0^{\circ}, \ \theta D = 0^{\circ}$ at center, against NTSC color space	С	40	50	-	%		
Response t	ima	White to Black	Ton	-	3	5	ms	BM-5A-	Note6
Kesponse t		Black to White	Toff	-	15	21	ms	10000	Note7
	Right	$\theta U=0^{\circ}, \ \theta D=0^{\circ}, \ CR\geq 10$	θR	(70)	(80)	-	0		
Viewing on ale	Left	$\theta U=0^{\circ}, \ \theta D=0^{\circ}, \ CR\geq 10$	θL	(70)	(80)	-	0	EZ	Note8
Viewing angle	Up	$\theta R = 0^{\circ}, \ \theta L = 0^{\circ}, \ CR \ge 10$	θU	(70)	(80)	-	0	Contrast	notes
	Down	$\theta R = 0^{\circ}, \ \theta L = 0^{\circ}, \ CR \ge 10$	θD	(70)	(80)	-	0		
	-	and initial characteristics		-	-				•

Note1: These are initial characteristics.

Note2: Measurement conditions are as follows.

Ta= 25°C, VCC= 3.3V, IL= 50mA / One circuit, Display mode: XGA, Horizontal cycle= 1/48.363kHz, Vertical cycle= 1/60.0Hz, DPS= Low or Open: Normal scan

Optical characteristics are measured at luminance saturation after 20minutes after the product works in the dark room. Also measurement methods are as follows.

- Note3: See "4.11.2 Definition of contrast ratio".
- Note4: See "4.11.3 Definition of luminance uniformity".
- Note5: These coordinates are found on CIE 1931 chromaticity diagram.
- Note6: Product surface temperature: TopF= 32 °C
- Note7: See "4.11.4 Definition of response times".
- Note8: See "4.11.5 Definition of viewing angles".

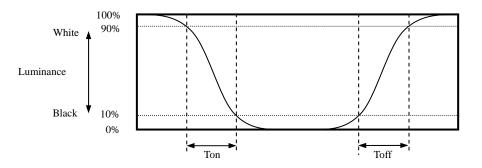
4.11.2 Definition of contrast ratio

The contrast ratio is calculated by using the following formula.

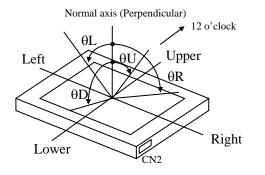
Contrast ratio (CR) = Luminance of white screen Luminance of black screen

4.11.3 Definition of luminance uniformity

The luminance uniformity is calculated by using following formula.


 $Luminance uniformity (LU) = \frac{Maximum luminance from (1) to (5)}{Minimum luminance from (1) to (5)}$

The luminance is measured at near the 5 points shown below.


	171	512	853
128	①		@
384			
640			5

4.11.4 Definition of response times

Response time is measured at the time when the luminance changes from "white" to "black", or "black" to "white" on the same screen point, by photo-detector. Ton is the time when the luminance changes from 90% down to 10%. Also Toff is the time when the luminance changes from 10% up to 90% (See the following diagram.).

4.11.5 Definition of viewing angles

5. ESTIMATED LUMINANCE LIFETIME

The luminance lifetime is the time from initial luminance to half-luminance.

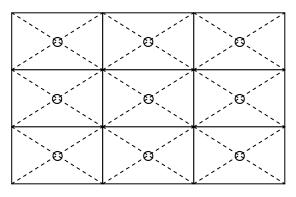
This lifetime is the estimated value, and is not guarantee value.

	Condition	Estimated luminance lifetime (Life time expectancy) Note1, Note2, Note3	Unit
LED	25°C (Ambient temperature of the product) Continuous operation, IL= 50mA/One circuit	70,000	h
elementary substance	70°C (Surface temperature at screen center) Continuous operation, IL= 50mA/One circuit	60,000	h

Note1: Life time expectancy is mean time to half-luminance.

Note2: Estimated luminance lifetime is not the value for an LCD module but the value for LED elementary substance.

Note3: By ambient temperature, the lifetime changes particularly. Especially, in case the product works under high temperature environment, the lifetime becomes short.



6. RELIABILITY TESTS

Test ite	em	Condition	Judgment	Note1		
High temperature (Operat		 60 ± 2°C, RH= 90%, 240hours Display data is black. 				
High temp (Operat						
Heat cy (Operat		 -20 ± 3°C1hour 70 ± 3°C1hour 50cycles, 4hours/cycle Display data is black. 				
Thermal shock (Non operation)		 -20 ± 3°C30minutes 80 ± 3°C30minutes 100cycles, 1hour/cycle Temperature transition time is within 5 minutes. 	No display malfunctions			
ESD (Operation)		 150pF, 150Ω, ±10kV 9 places on a panel surface Note2 10 times each places at 1 sec interval 				
Dus (Operat	-	 Sample dust: No. 15 (by JIS-Z8901) 15 seconds stir 8 times repeat at 1 hour interval 				
Vibrati (Non oper		 5 to 100Hz, 11.76m/s² 1 minute/cycle X, Y, Z directions 50 times each directions 	No display malfunctions			
Mechanical shock (Non operation)		 294m/s², 11ms ±X, ±Y, ±Z directions 3 times each directions 	No physical damages	No physical damages		
	Operation	 53.3kPa (Equivalent to altitude 5,100m) -20°C±3°C24 hours 70°C±3°C24 hours 				
Low pressure	Non-operation	 15kPa (Equivalent to altitude 13,600m) -20°C±3°C24 hours 80°C±3°C24 hours 	No display malfunctions			

Note1: Display and appearance are checked under environmental conditions equivalent to the inspection conditions of defect criteria.

Note2: See the following figure for discharge points.

7. PRECAUTIONS

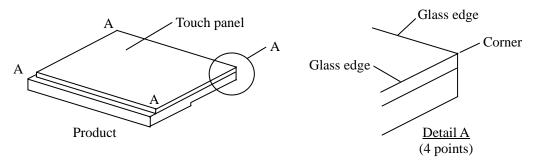
7.1 MEANING OF CAUTION SIGNS

wrong operations.

The following caution signs have very important meaning. **Be sure to read "7.2 CAUTIONS" and "7.3 ATTENTIONS"!**

 This sign has the meaning that a customer will be injured or the product will sustain damage if the customer practices wrong operations.

 This sign has the meaning that a customer will be injured if the customer practices


7.2 CAUTIONS

- * Be taken care when handling the touch panel. There is a danger of injury, because the touch panel has the glass edge and corner which are sharp.
- * Do not shock and press the LCD panel and the backlight! There is a danger of breaking, because they are made of glass. (Shock: Equal to or no greater than 294m/s² and equal to or no greater than 11ms, Pressure: Equal to or no greater than 19.6 N (\$\operptyle\$16mm jig))

7.3 ATTENTIONS

7.3.1 Handling of the product

① Use gloves or fingerstalls and do not touch glass edge of touch panel when handling it, because it has sharp glass edge.

- ② Take hold of both ends without touching the circuit board when the product (LCD module) is picked up from inner packing box to avoid broken down or misadjustment, because of stress to mounting parts on the circuit board.
- ③ When the product is put on the table temporarily, display surface must be placed downward.
- ④ When handling the product, take the measures of electrostatic discharge with such as earth band, ionic shower and so on, because the product may be damaged by electrostatic.
- (5) The torque for product mounting screws must never exceed 0.343 N·m. Higher torque might result in distortion of the bezel. And the length of product mounting screws must be ≤ 2.8 mm.
- (6) The product must be installed using mounting holes without undue stress such as bends or twist (See outline drawings). And do not add undue stress to any portion (such as bezel flat area). Bends or twist described above and undue stress to any portion may cause display mura.
- Do not hit or rub the surface of touch panel with hard materials, because it is easily scratched. (Touch panel pencil-hardness: (2H))

- (a) When cleaning the T/P surface, wipe it with a soft dry cloth.
- ③ Do not push or pull the interface connectors while the product is working.
- When handling the product, use of an original protection sheet on the product surface (polarizer) is recommended for protection of product surface. Adhesive type protection sheet may change color or characteristics of the polarizer.
- ① Usually liquid crystals don't leak through the breakage of glasses because of the surface tension of thin layer and the construction of LCD panel. But, if you contact with liquid crystal by any chance, please wash it away with soap and water.
- If the product is subjected to direct sunlight for a long time, touch panel transmission may be degraded.

7.3.2 Environment

- ① Do not operate or store in high temperature, high humidity, dewdrop atmosphere or corrosive gases. Keep the product in packing box with antistatic pouch in room temperature to avoid dusts and sunlight, when storing the product.
- ② In order to prevent dew condensation occurred by temperature difference, the product packing box must be opened after enough time being left under the environment of an unpacking room. Evaluate the storage time sufficiently because dew condensation affected is changed by the environmental temperature and humidity. (Recommended leaving time: 6 hours or more with the original packing state after a customer receives the package)
- ③ Do not operate in high magnetic field. If not, circuit boards may be broken.
- ④ This product is not designed as radiation hardened.

7.3.3 Characteristics

The following items are neither defects nor failures.

- ① Characteristics of the LCD (such as response time, luminance, color uniformity and so on) may be changed depending on ambient temperature. If the product is stored under condition of low temperature for a long time, it may cause display mura. In this case, the product should be operated after enough time being left under condition of operating temperature.
- ② Display mura, flickering, vertical streams or tiny spots may be observed depending on display patterns.
- ③ Do not display a fixed pattern for a long time because it may cause image sticking. Use a screen saver, if the fixed pattern is displayed on the screen.
- ④ The display color may be changed depending on viewing angle because of the use of condenser sheet in the backlight.
- ⑤ Optical characteristics may be changed depending on input signal timings.
- (6) Touch panel film has polarizing characteristic. And the polarizer characteristics differ among products. Therefore, when seeing the displays through the other polarizing material (for example polarizing sunglasses), some displays can not be seen and some displays look different color darker because of polarizer characteristic mismatching between touch panel film and the other polarizing material.

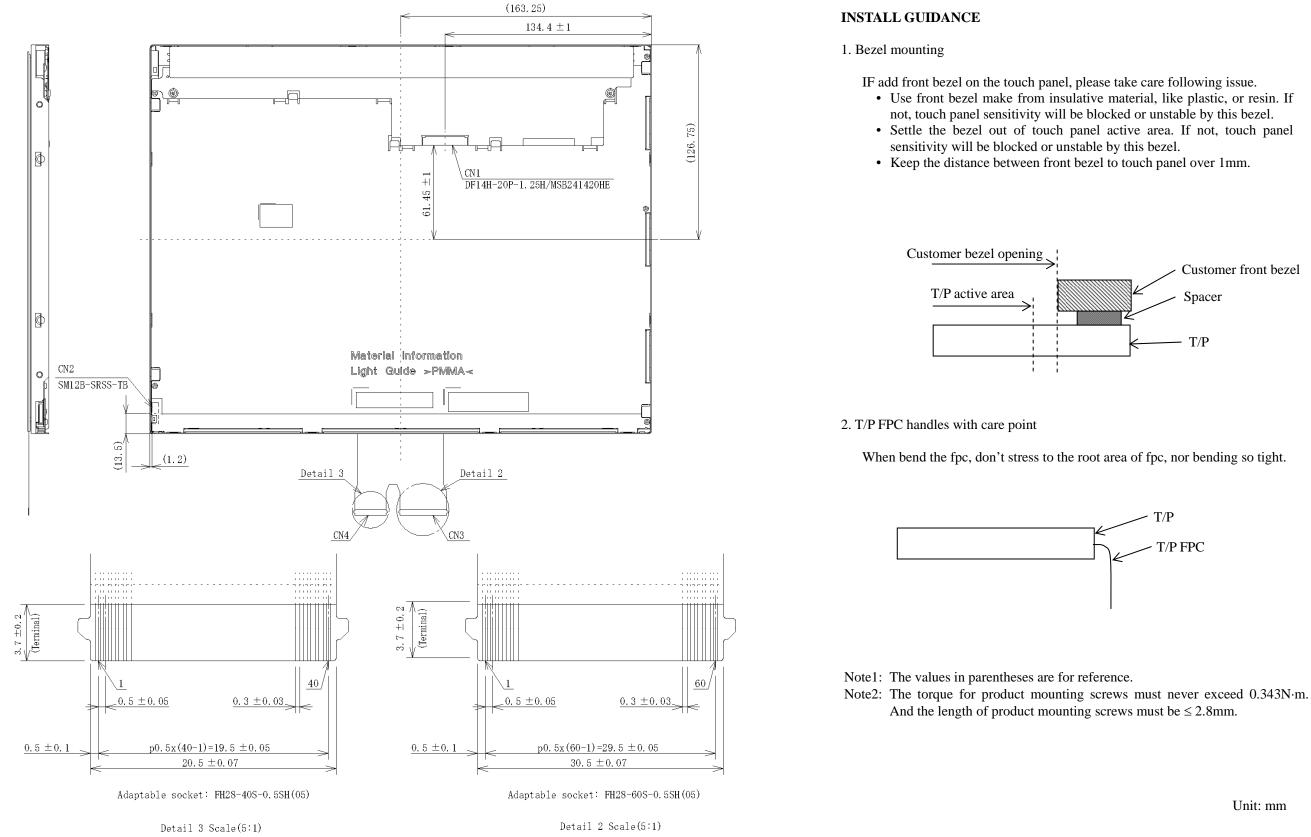

7.3.4 Others

- ① All GND and VCC terminals should be used without any non-connected lines.
- ② Do not disassemble a product or adjust variable resistors.
- ③ See "REPLACEMENT MANUAL FOR LAMP HOLDER SET", when replacing lamp holder set.
- ④ Pack the product with the original shipping package, in order to avoid any damages during transportation, when returning the product to NLT for repairing and so on.

8. OUTLINE DRAWINGS

8.1 FRONT VIEW

Note1: The values in parentheses are for reference.


Note2: The torque for product mounting screws must never exceed 0.343 N·m. And the length of product mounting screws must be ≤ 2.8 mm.

Unit: mm

PRELIMINARY

NLT Technologies, Ltd.

8.2 REAR VIEW

NL10276BC30-34BD

REVISION HISTORY

The inside of latest specifications is revised to the clerical error and the major improvement of previous edition. Only a changed part such as functions, characteristic value and so on that may affect a design of customers, are described especially below.

Edition	Document number	Prepared date		Revision contents and signate	ıre
1st edition	DOD-PP- 1566	Jan. 31, 2013	Revision contents		
eution	1500	2013	New issue		
			Signature of writer		
			Approved by	Checked by	Prepared by
			K. Frijimoto		A. Kumano
			K. FUJIMOTO		A. KUMANO