Non-Inverting 3-State Buffer

The NL17SZ126 is a high performance single noninverting buffer operating from a 1.65 V to 5.5 V supply.

Features

- Extremely High Speed: t_{PD} 2.6 ns (typical) at $V_{CC} = 5.0 \text{ V}$
- Designed for 1.65 V to 5.5 V V_{CC} Operation
- Over Voltage Tolerant Inputs and Outputs
- \bullet LVTTL Compatible Interface Capability With 5.0 V TTL Logic with $V_{CC}=3.0~\text{V}$
- LVCMOS Compatible
- 24 mA Balanced Output Sink and Source Capability
- Near Zero Static Supply Current Substantially Reduces System Power Requirements
- 3-State OE Input is Active HIGH
- Replacement for NC7SZ126
- Chip Complexity = 36 FETs
- NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant

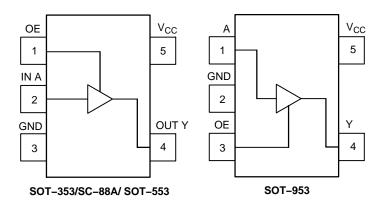


Figure 1. Pinout (Top View)

Figure 2. Logic Symbol

ON Semiconductor®

www.onsemi.com

SC-88A (SOT-353) DF SUFFIX CASE 419A

MARKING

SOT-553 XV5 SUFFIX CASE 463B

SOT-953 CASE 527AE

M2 or R = Specific Device Code (R with 180 degree clockwise rotation)

1 = Date Code

= Pb-Free Package

(Note: Microdot may be in either location)*Date Code orientation and/or position may vary depending upon manufacturing location.

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 6 of this data sheet.

PIN ASSIGNMENT (SOT-353/SC-88A/SOT-553/UDFN)

Pin	Function
1	OE
2	IN A
3	GND
4	OUT Y
5	V _{CC}

PIN ASSIGNMENT (SOT-953)

Pin	Function	
1	IN A	
2	GND	
3	OE	
4	OUT Y	
5	V _{CC}	

FUNCTION TABLE

Inp	Output	
OE	Α	Υ
Н	L	L
Н	Н	Н
L	Х	Z

X = Don't Care

MAXIMUM RATINGS

Symbol	Parameter		Value	Unit
V _{CC}	DC Supply Voltage		-0.5 to +7.0	V
V _{IN}	DC Input Voltage		-0.5 to +7.0	V
V _{OUT}	DC Output Voltage (SOT-353/SC-88A/SOT-55	3 Packages)	–0.5 to V _{CC} +0.5	V
V _{OUT}	DC Output Voltage (SOT–953 Package)	Output at High or Low State Power-Down Mode (V _{CC} = 0 V)	-0.5 to V _{CC} +0.5 -0.5 to +0.5	V
I _{IK}	DC Input Diode Current		- 50	mA
I _{OK}	DC Output Diode Current (SOT-353/SC-88A/SOT-553 Packages)	V _{OUT} < GND, V _{OUT} > V _{CC}	±50	mA
I _{OK}	DC Output Diode Current (SOT-953 Package)	V _{OUT} < GND	-50	mA
I _{OUT}	DC Output Sink Current		±50	mA
Icc	DC Supply Current per Supply Pin		±100	mA
T _{STG}	Storage Temperature Range		-65 to +150	°C
TL	Lead Temperature, 1 mm from Case for 10 Seco	inds	260	°C
TJ	Junction Temperature Under Bias		+150	°C
θ_{JA}	Thermal Resistance (Note 1)	SC-70/SC-88A	350	°C/W
P _D	Power Dissipation in Still Air at 85°C	SC-70/SC-88A	150	mW
MSL	Moisture Sensitivity		Level 1	
F _R	Flammability Rating	Oxygen Index: 28 to 34	UL 94 V-0 @ 0.125 in	
V _{ESD}	ESD Withstand Voltage	Human Body Model (Note 2) Machine Model (Note 3) Charged Device Model (Note 4)	>2000 >200 N/A	V
I _{LATCHUP}	Latchup Performance Above V _{CC} and Below GN	ID at 125°C (Note 5)	±100	mA

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

- 1. Measured with minimum pad spacing on an FR4 board, using 10 mm-by-1 inch, 2 ounce copper trace with no air flow.
- Tested to EIA/JESD22-A114-A.
 Tested to EIA/JESD22-A115-A.
- Tested to JESD22–C101–A.
 Tested to EIA/JESD78.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter			Max	Unit
V _{CC}	DC Supply Voltage	DC Supply Voltage		5.5	V
V _{IN}	DC Input Voltage		0	5.5	V
V _{OUT}	DC Output Voltage (SOT-353/SC-88A/SOT-553 Packages)		0	5.5	V
V _{OUT}	DC Output Voltage (SOT-953 Package)		0	V _{CC}	V
T _A	Operating Temperature Range		-40	+125	°C
t _r , t _f	V	$_{C}$ = 1.8 V ±0.15 V $_{CC}$ = 2.5 V ±0.2 V $_{CC}$ = 3.0 V ±0.3 V $_{CC}$ = 5.0 V ±0.5 V	0 0 0	20 20 10 5.0	ns/V

DEVICE JUNCTION TEMPERATURE VERSUS TIME TO 0.1% BOND FAILURES

Junction Temperature °C	Time, Hours	Time, Years
80	1,032,200	117.8
90	419,300	47.9
100	178,700	20.4
110	79,600	9.4
120	37,000	4.2
130	17,800	2.0
140	8,900	1.0

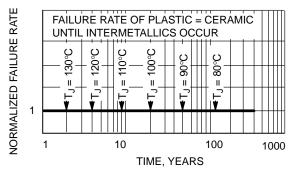


Figure 3. Failure Rate versus Time Junction Temperature

DC ELECTRICAL CHARACTERISTICS

			V _{CC}	T,	_Δ = 25°(C	-40°C ≤ 1	T _A ≤ 125°C	
Symbol	Parameter	Condition	(V)	Min	Тур	Max	Min	Max	Unit
V _{IH}	High-Level Input Voltage		1.65 to 1.95 2.3 to 5.5	0.75 V _{CC} 0.7 V _{CC}			0.75 V _{CC} 0.7 V _{CC}		V
V _{IL}	Low-Level Input Voltage		1.65 to 1.95 2.3 to 5.5			0.25 V _{CC} 0.3 V _{CC}		0.25 V _{CC} 0.3 V _{CC}	V
V _{OH}	High-Level Output Voltage V _{IN} = V _{IH}	I _{OH} = -100 μA	1.65 1.8 2.3 3.0 4.5	1.55 1.7 2.2 2.9 4.4	1.65 1.8 2.3 3.0 4.5		1.55 1.7 2.2 2.9 4.4		V
		I _{OH} = -4 mA I _{OH} = -8 mA I _{OH} = -16 mA I _{OH} = -24 mA I _{OH} = -32 mA	1.65 2.3 3.0 3.0 4.5	1.29 1.9 2.4 2.3 3.8	1.52 2.15 2.80 2.68 4.20		1.29 1.9 2.4 2.3 3.8		V
V _{OL}	Low-Level Output Voltage V _{IN} = V _{IL}	I _{OL} = 100 μA	1.65 1.8 2.3 3.0 4.5		0.0 0.0 0.0 0.0 0.0	0.1 0.1 0.1 0.1 0.1		0.1 0.1 0.1 0.1 0.1	V
		$\begin{aligned} I_{OL} &= 4 \text{ mA} \\ I_{OL} &= 8 \text{ mA} \\ I_{OL} &= 16 \text{ mA} \\ I_{OL} &= 24 \text{ mA} \\ I_{OL} &= 32 \text{ mA} \end{aligned}$	1.65 2.3 3.0 3.0 4.5		0.08 0.10 0.15 0.22 0.22	0.24 0.30 0.40 0.55 0.55		0.24 0.30 0.40 0.55 0.55	V
I _{IN}	Input Leakage Current	$V_{IN} = 5.5 \text{ V or GND}$	0 to 5.5			± 0.1		±1.0	μΑ
l _{OZ}	3-State Output Leakage	$V_{IN} = V_{IH} \text{ or } V_{IL}$ 0 V \le V_{OUT} \le 5.5 V	1.65 to 5.5			± 0.5		±5.0	μΑ
l _{OFF}	Power Off Leakage Current (SOT–353/ SC–88A/SOT–553 Packages)	V _{IN} = 5.5 V or V _{OUT} = 5.5 V	0			1.0		10	μА
I _{CC}	Quiescent Supply Current	V _{IN} = 5.5 V or GND	5.5			1.0		10	μΑ

AC ELECTRICAL CHARACTERISTICS ($t_R = t_F = 3.0 \text{ ns}$)

			V _{CC}	T	A = 25°	С	-40°C ≤ T	A ≤ 125°C	
Symbol	Parameter	Condition	(V)	Min	Тур	Max	Min	Max	Unit
t _{PLH}	Propagation Delay	$R_L = 1 \text{ M}\Omega$ $C_L = 15 \text{ pF}$	1.8 ± 0.15	2.0	9.5	12	2.0	12.5	ns
t _{PHL}	AN to YN (Figures 4, and 5,	$R_L = 1 \text{ M}\Omega$ $C_L = 15 \text{ pF}$	2.5 ± 0.2	1.0	3.4	7.5	1.0	8.0	
	Table 1)	$\begin{array}{ccc} R_L = 1 \ M\Omega & C_L = 15 \ pF \\ R_L = 500 \ \Omega & C_L = 50 \ pF \end{array}$	3.3 ± 0.3	0.8 1.2		5.2 5.7	0.8 1.2	5.5 6.0	
		$\begin{array}{ccc} R_L = 1 \text{ M}\Omega & C_L = 15 \text{ pF} \\ R_L = 500 \ \Omega & C_L = 50 \text{ pF} \end{array}$	5.0 ± 0.5	0.5 0.8		4.5 5.0	0.5 0.8	4.8 5.3	
t _{PZH}	Output Enable Time	$R_L = 250 \ \Omega$ $C_L = 50 \ pF$	1.8 ± 0.15	2.0	9.0	10.5	2.0	12.5	ns
t_{PZL}	(Figures 6, 7 and 8, Table 1)		2.5 ± 0.2	1.8		8.5	1.8	9.0	
			3.3 ± 0.3	1.2		6.2	1.2	6.5	
			5.0 ± 0.5	0.8		5.5	0.8	5.8	
t _{PHZ}	Output Disable Time	R_L and $R1=500~\Omega$ $C_L=50~pF$	2.5 ± 0.2	1.5		8.0	1.5	8.5	ns
t_{PLZ}	(Figures 6, 7 and 8, Table 1)		2.5 ± 0.2	1.5		8.0	1.5	8.5	
			3.3 ± 0.3	0.8		5.7	0.8	6.0	
			5.0 ± 0.5	0.3		4.7	0.3	5.0	

CAPACITIVE CHARACTERISTICS

Symbol	Parameter	Condition	Typical	Unit
C _{IN}	Input Capacitance	$V_{CC} = 5.5 \text{ V}, V_{I} = 0 \text{ V or } V_{CC}$	2.5	pF
C _{OUT}	Output Capacitance	$V_{CC} = 5.5 \text{ V}, V_{I} = 0 \text{ V or } V_{CC}$	2.5	pF
C _{PD}	Power Dissipation Capacitance (Note 6)	10 MHz, $V_{CC} = 3.3 \text{ V}$, $V_I = 0 \text{ V or } V_{CC}$ 10 MHz, $V_{CC} = 5.5 \text{ V}$, $V_I = 0 \text{ V or } V_{CC}$	9 11	pF

^{6.} CPD is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load. Average operating current can be obtained by the equation: $I_{CC(OPR)} = C_{PD} \bullet V_{CC} \bullet f_{in} + I_{CC}$. C_{PD} is used to determine the no–load dynamic power consumption; $P_D = C_{PD} \bullet V_{CC}^2 \bullet f_{in} + I_{CC} \bullet V_{CC}$.

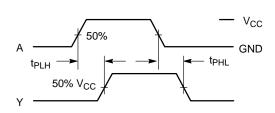
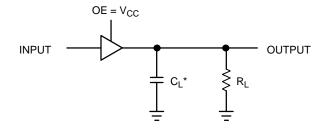
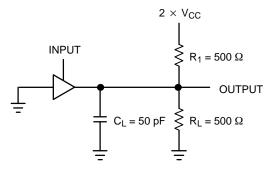
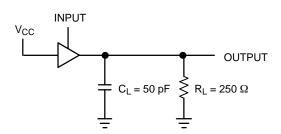




Figure 4. Switching Waveform



*Includes all probe and jig capacitance. A 1-MHz square input wave is recommended for propagation delay tests.

Figure 5. t_{PLH} or t_{PHL}

A 1-MHz square input wave is recommended for propagation delay tests.

A 1-MHz square input wave is recommended for propagation delay tests.

Figure 6. t_{PZL} or t_{PLZ}

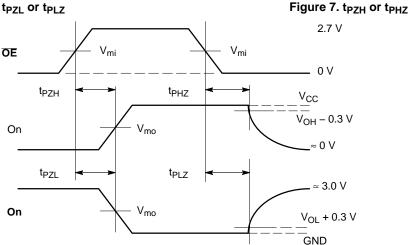


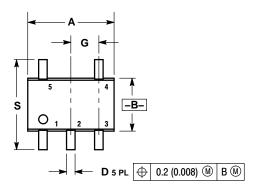
Figure 8. AC Output Enable and Disable Waveform

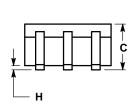
Table 1. Output Enable and Disable Times

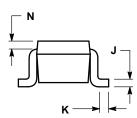
 $t_R = t_F = 2.5 \text{ ns}, 10\% \text{ to } 90\%; f = 1 \text{ MHz}; t_W = 500 \text{ ns}$

	V _{CC}				
Symbol	3.3 V ± 0.3 V	2.7 V	$2.5~V~\pm~0.2~V$		
V_{mi}	1.5 V	1.5 V	V _{CC/} 2		
V_{mo}	1.5 V	1.5 V	V _{CC/} 2		

DEVICE ORDERING INFORMATION

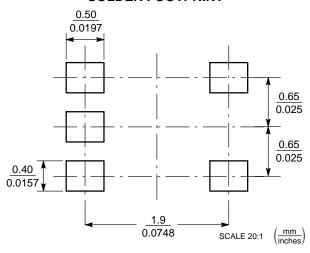

Device	Package Type	Shipping [†]
NL17SZ126DFT2G	SC70-5/SC-88A/SOT-353 (Pb-Free)	3000 / Tape & Reel
NLV17SZ126DFT2G*	SC70-5/SC-88A/SOT-353 (Pb-Free)	3000 / Tape & Reel
NL17SZ126XV5T2G	SOT-553 (Pb-Free)	4000 / Tape & Reel
NL17SZ126P5T5G	SOT-953 (Pb-Free)	8000 / Tape & Reel


[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.


^{*}NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable.

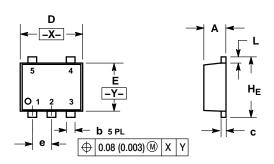
PACKAGE DIMENSIONS

SC-88A (SC-70-5/SOT-353) CASE 419A-02 ISSUE L



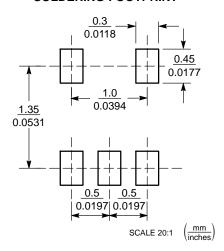
- NOTES:
 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
 2. CONTROLLING DIMENSION: INCH.
 3. 419A-01 OBSOLETE. NEW STANDARD 419A-02.
 4. DIMENSIONS A AND B DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS.

	INCHES		MILLIN	IETERS
DIM	MIN	MAX	MIN	MAX
Α	0.071	0.087	1.80	2.20
В	0.045	0.053	1.15	1.35
C	0.031	0.043	0.80	1.10
D	0.004	0.012	0.10	0.30
G	0.026	BSC	0.65 BSC	
Н		0.004		0.10
J	0.004	0.010	0.10	0.25
K	0.004	0.012	0.10	0.30
N	0.008	REF	0.20	REF
S	0.079	0.087	2 00	2 20


SOLDER FOOTPRINT*

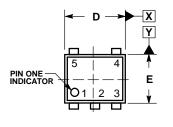
^{*}For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

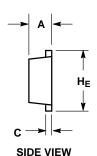
PACKAGE DIMENSIONS

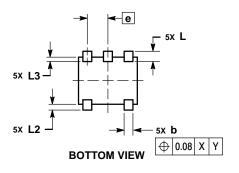

SOT-553, 5 LEAD CASE 463B ISSUE B

- NOTES:
 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
 2. CONTROLLING DIMENSION: MILLIMETERS
 3. MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH THICKNESS. MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF BASE MATERIAL.

	_					
	MILLIMETERS			INCHES		
DIM	MIN	NOM	MAX	MIN	NOM	MAX
Α	0.50	0.55	0.60	0.020	0.022	0.024
b	0.17	0.22	0.27	0.007	0.009	0.011
C	0.08	0.13	0.18	0.003	0.005	0.007
D	1.50	1.60	1.70	0.059	0.063	0.067
Е	1.10	1.20	1.30	0.043	0.047	0.051
Ф	0.50 BSC			0.020 BSC		
Г	0.10	0.20	0.30	0.004	0.008	0.012
HE	1.50	1 60	1 70	0.059	0.063	0.067

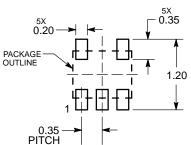

SOLDERING FOOTPRINT*


^{*}For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.


PACKAGE DIMENSIONS

SOT-953 CASE 527AE **ISSUE E**

TOP VIEW



NOTES

- DIMENSIONING AND TOLERANCING PER ASME
- Y14.5M, 1994.
 CONTROLLING DIMENSION: MILLIMETERS
 MAXIMUM LEAD THICKNESS INCLUDES LEAD
 FINISH. MINIMUM LEAD THICKNESS IS THE
- MINIMUM THICKNESS OF THE BASE MATERIAL. DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS.

	MILLIMETERS					
DIM	MIN	NOM	MAX			
Α	0.34	0.37	0.40			
b	0.10	0.15	0.20			
С	0.07	0.12	0.17			
D	0.95	1.00	1.05			
E	0.75	0.80	0.85			
е	0.35 BSC					
HE	0.95	1.00	1.05			
L	0.175 REF					
L2	0.05	0.10	0.15			
L3			0.15			

SOLDERING FOOTPRINT*

DIMENSIONS: MILLIMETERS

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor and in are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized and policition, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada

Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center

Phone: 81–3–5817–1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative