16-Bit (Dual 8-Bit) Configurable Dual-Supply Translating Transceiver with 3-State Outputs

The NLA16T245 is a 16-bit (dual 8-bit) configurable dual-supply translating bidirectional transceiver with 3-state outputs. The A- and B-ports are designed to track two different power supply rails, $V_{\rm CCA}$ and $V_{\rm CCB}$ respectively. Both supply rails are configurable from 0.9 V to 4.5 V allowing universal bidirectional voltage translation between the A- and B-ports.

The Direction inputs, 1DIR and 2DIR, determine the direction of data flow. 1DIR and 2DIR are independent of each other. When 1DIR or 2DIR is High, data flows from 1An to 1Bn or 2An to 2Bn respectively. When 1DIR or 2DIR is Low, data flows from 1Bn to 1An or 2Bn to 2An respectively. The Output Enable inputs, and , when High, disables both A– and B–ports by putting them in 3–state. The 1DIR, 2DIR, and signals are all designed to track V_{CCA} .

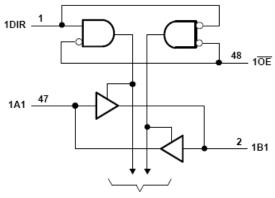
Features

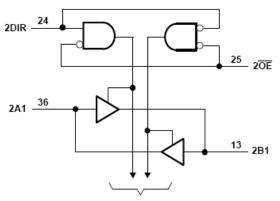
- Wide V_{CCA} and V_{CCB} Operating Range: 0.9 V to 4.5 V
- Output Noise Reduction through Dynamic Output Impedance Change
- Drive Capability: ±12 mA @ 3.0 V V_{CC}
- Input/Output Pins OVT to 5.5 V
- Control Inputs Track V_{CCA}
- Non-preferential V_{CC} Sequencing
- Outputs at 3-State until Active V_{CC} is reached
- Power-Off Protection
- Outputs Switch to 3-State with either V_{CC} at GND
- Pb-Free Packaging: TSSOP-48
- This is a Pb–Free Device

Typical Applications

• Mobile Phones, PDAs, Other Portable Devices

Important Information


• ESD Protection for All Pins: Human Body Model (HBM) > 2000 V Machine Model (MM) > 200 V



ORDERING INFORMATION

Device	Package	Shipping [†]
NLA16T245DTR2G	TSSOP-48 (Pb-Free)	2500 / Tape & Reel

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

To Seven Other Channels

To Seven Other Channels

Figure 1. Logic Diagram

			_	
1DIR	1	U	48	10E
1B1	2		47	1A1
1B2	3		46	1A2
GND	4		45	GND
1B3	5		44	1A3
1B4	6		43	1A4
V _{CCB}	7		42	V _{CCA}
1B5 [8		41	1A5
1B6 [9		40	1A6
GND	10		39	GND
1B7	11		38	1A7
1B8 [12		37	1A8
2B1	13		36	2A1
2B2	14		35	2A2
GND	15		34	GND
2B3	16		33	2A3
2B4 [17		32	2A4
V _{CCB}	18		31	V _{CCA}
2B5	19		30	2A5
2B6	20		29	2A6
GND	21		28	GND
2B7 [22		27	2A7
2B8 [23		26	2A8
2DIR	24		25	20E
				I

Figure 2. Pin Assignment

Pin Names

Pins	Description
V _{CCA}	A–Port DC Power Supply
V _{CCB}	B-Port DC Power Supply
GND	Ground
10E, 20E	Output Enable Pins
1DIR, 2DIR	Direction Select Pins
1A _n , 2A _n	A–Port I/O
1B _n , 2B _n	B-Port I/O

Function table

nOE	nDIR	Operating Mode
L	L	nB to nA
L	Н	nA to nB
Н	Х	nA and nB Ports at Hi-Z

MAXIMUM RATINGS

Symbol	Parameter	Value	Condition	Unit
V_{CCA}, V_{CCB}	DC Supply Voltage	-0.5 to +5.5		V
VI	Input Voltage nOE, nDIR, nA	-0.5 to +4.6	V _{CCA} = 0 V	V
		-0.5 to +5.5	$V_{CCA} \ge 0.9 V$	
	nB	-0.5 to +4.6	V _{CCB} = 0 V	
		-0.5 to +5.5	$V_{CCB} \ge 0.9 V$	
Vo	Output Voltage (Power-Off Mode) nA, nB	-0.5 to +5.5	V_{CCA} or $V_{CCB} = 0$	V
	(3-State Mode) nA, nB	-0.5 to +5.5	$V_{CCA}, V_{CCB} \ge 0.9 \text{ V}$	
	(Active Mode – High or Low State) nA	–0.5 to V _{CCA} + 0.5	$V_{CCA}, V_{CCB} \ge 0.9 \text{ V}$	
	(Active Mode – High or Low State) nB	–0.5 to V _{CCB} + 0.5		
I _{IK}	DC Input Diode Current nOE, nDIR	-50	V _I < GND	mA
I _{OK}	DC Output Diode Current	-50	V _O < GND	mA
Ι _Ο	DC Output Source/Sink Current	±50		mA
I _{CC}	DC Supply Current Per Supply Pin	±100		mA
I _{GND}	DC Ground Current per Ground Pin	±100		mA
T _{STG}	Storage Temperature	-65 to +125		°C

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Min	Мах	Unit
V_{CCA}, V_{CCB}	Positive DC Supply Voltage	0.9	4.5	V
VI	Input Voltage	GND	4.5	V
Vo	Output Voltage (Power Down) nA, nB	GND	4.5	V
	(3-State Mode) nA, nB	GND	4.5	
	(Active Mode – High or Low State) nA	GND	V _{CCA}	
	(Active Mode – High or Low State) nB	GND	V _{CCB}	
T _A	Operating Temperature Range	-55	+115	°C
$\Delta t/\Delta V$	Input Transition Rise or Rate V _I , V _{IO} from 30% to 70% of V _{CC} ; V _{CC} =3.3 V \pm 0.3 V	0	10	nS

	Barrantan		V _{CCI} (Note 1)	V _{CCO} (Note 2)	–55°C to	o +115°C	
Symbol	Parameter	Test Conditions	(V)	(V)	Min	Max	Unit
V_{IH}			3.6 – 4.5	0.9 – 4.5	2.2		V
			2.7 – 3.6		2.0		
	Input HIGH Voltage, Data Inputs		1.95 – 2.7		1.7		
			1.2 – 1.95		0.65 * V _{CCI}		
			0.9 – 1.2		0.9 * V _{CCI}		
			3.6 – 4.5			0.8	
			2.7 – 3.6			0.8	
VIL	Input LOW Voltage, Data Inputs		1.95 – 2.7	0.9 – 4.5		0.7	V
			1.2 – 1.95			0.35 * V _{CCI}	
			0.9 – 1.2			0.1 * V _{CCI}	
			3.6 – 4.5		2.2		
			2.7 – 3.6		2.0		
V_{IH}	Input HIGH Voltage, Control Inputs	Referenced to V_{CCA}	1.95 – 2.7		1.6		V
			1.2 – 1.95		0.65 * V _{CCA}		
			0.9 – 1.2		0.9 * V _{CCA}		
			3.6 – 4.5			0.8	
			2.7 – 3.6			0.8	
VIL	Input LOW Voltage, Control Inputs	Referenced to V_{CCA}	1.95 – 2.7			0.7	V
			1.2 – 1.95			0.35 * V _{CCA}	
			0.9 – 1.2]		0.1 * V _{CCA}	

DC ELECTRICAL CHARACTERISTICS (INPUT)

NOTE: Connect ground before applying supply voltage V_{CCA} or V_{CCB}. This device is designed with the feature that the power-up sequence of V_{CCA} and V_{CCB} will not damage the IC.
1. V_{CCI} is the V_{CC} associated with the input port.
2. V_{CCO} is the V_{CC} associated with the output port.

V

V

-55°C to +115°C Symbol Parameter **Test Conditions** Min Max Unit V_{CCA} (V) V_{CCB} (V) $I_{OH} = -100 \ \mu A; V_I = V_{IH}$ 0.9 - 4.5 0.9 - 4.5 V_{CCO} – 0.2 0.75 * V_{CCO} $I_{OH} = -0.5 \text{ mA}; V_{I} = V_{IH}$ 0.9 0.9 1.4 1.4 1.05 $I_{OH} = -2 \text{ mA}; V_I = V_{IH}$ V_{OH} 1.65 1.65 $I_{OH} = -4 \text{ mA}; V_I = V_{IH}$ 1.2 Output HIGH Voltage 2.3 2.3 1.75 $I_{OH} = -8 \text{ mA}; \text{ V}_{I} = \text{V}_{IH}$ $I_{OH} = -12 \text{ mA}; V_I = V_{IH}$ 3.0 3.0 2.3 4.5 4.5 4.0 $I_{OH} = -12 \text{ mA}; V_I = V_{IH}$ 0.9 - 4.5 0.9 - 4.5 0.2 $I_{OL} = 100 \ \mu A; V_I = V_{IL}$ 0.25 * V_{CCO} $I_{OL} = 0.5 \text{ mA}; V_I = V_{IL}$ 0.9 0.9 1.4 1.4 0.35 $I_{OL} = 2 \text{ mA}; V_I = V_{IL}$ V_{OL} Output LOW Voltage $I_{OL} = 4 \text{ mA}; V_I = V_{IL}$ 1.65 1.65 0.45 $I_{OL} = 8 \text{ mA}; V_{I} = V_{IL}$ 2.3 2.3 0.55 $I_{OL} = 12 \text{ mA}; V_I = V_{IL}$ 3.0 3.0 0.7 $I_{OL} = 12 \text{ mA}; V_I = V_{IL}$ 4.5 4.5 0.75 $V_I = V_{CCA}$ or GND nOE 0.9 – 4.5 ±2.5 h Input Leakage Current 0.9 - 4.5 μA 0 - 4.5 ±10.0 **I**OFF nA 0 Power-Off Leakage V_{I} or V_{O} = 0 to 4.5 V, uА Current nΒ 0 - 4.5 0 ±10.0 nA, nB 3.6 3.6 ±12.5 $I_{OZ}^{(3)}$ 3-State Output μA Leakage Current 3.6 0 ±12.5 nA $V_I = V_{IH} \text{ or } V_{IL}, V_O = V_{CCO}$ or GND, $\overline{nOE} = \text{don't care}$ nΒ 0 3.6 ±12.5 0.9 0.9 20 1.6 1.6 20 1.95 1.95 20 2.7 2.7 30 0 3.6 -40 Quiescent Supply $V_I = V_{CCI}$ or GND; $I_O = 0$ μA ICCA Current 3.6 0 40 3.6 3.6 40 0 4.5 -40 4.5 0 40 4.5 4.5 40 0.9 0.9 20 1.6 1.6 20 1.95 1.95 20 2.7 2.7 30 0 3.6 -40 Quiescent Supply **I**CCB $V_I = V_{CCI}$ or GND; $I_O = 0$ μΑ Current 3.6 0 40 40 3.6 3.6 0 4.5 -40

DC ELECTRICAL CHARACTERISTICS (continued)

NOTE: Connect ground before applying supply voltage V_{CCA} or V_{CCB} . This device is designed with the feature that the power-up sequence of V_{CCA} and V_{CCB} will not damage the IC.

3. V_{CCI} is the V_{CC} associated with the input port.

4. V_{CCO} is the V_{CC} associated with the output port.

5. For I/O ports, the parameter IOZ includes the input leakage current.

4.5

4.5

0

4.5

40

40

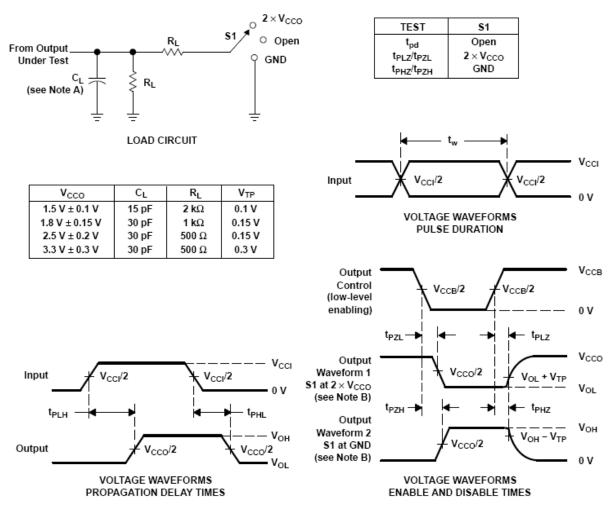
AC ELECTRICAL CHARACTERISTICS – See Figure 3

				–55°C to +115°C										
								Vcc	в (V)					1
				4.0	- 4.5	3.0	- 3.6	2.3	- 2.7	1.65	- 1.95	1.4	- 1.6	1
Symbol	Parameter	From	То	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Unit
V _{CCA} = 4.0) – 4.5 V													
t _{PD}	Propagation	А	В	0.5	3.2	0.3	3.2	0.7	3.5	0.8	4.2	0.4	4	ns
	Delay	В	А	0.3	4.5	0.5	5.8	0.5	6	0.7	6.3	1.2	6.8	
	Output Enchlo		А	0.2	9.5	1.0	7.7	0.9	8	1.0	9	0.8	8.5	
t _{EN}	Output Enable		В	0.8	4.5	1.2	4.8	1.4	6.7	1.8	7	1.6	7.5	ns
taua	Output Disable		А	0.8	5.6	1.0	5.6	1.1	5.6	1.1	5.7	1.2	5.7	ns
t _{DIS}	Output Disable		В	1.2	6	1.2	6.1	1.1	6	2.6	9.2	2.3	9.6	115
t _{OSK}	Output to Out- put Skew				0.15		0.15		0.15		0.15		0.15	ns
V _{CCA} = 3.0) – 3.6 V													
t	Propagation	А	В	0.5	3.5	0.5	3.1	0.5	3.7	0.7	5.4	0.5	5.9	ns
t _{PD}	Delay	В	А	0.6	5.5	0.4	5.5	0.7	5.5	0.7	5.8	1.0	6.5	115
t	Output Enable		А	0.8	10	1.0	8	1.3	8.0	1.4	9.2	1.3	8.7	ns
t _{EN}	Output Enable		В	1.0	5	1.9	4.9	2.0	5.4	1.9	6.7	0.8	7.4	115
tava	Output Disable		А	1.5	6	1.5	5.4	1.2	5.8	1.6	5.2	1.4	5.4	ns
t _{DIS}	Output Disable		В	1.7	6.4	1.5	6.1	1.1	5.8	1.7	8.5	1.2	8.8	115
t _{OSK}	Output to Out- put Skew				0.15		0.15		0.15		0.15		0.15	ns
V _{CCA} = 2.3	3 – 2.7 V													
+	Propagation	А	В	0.7	4	0.5	3.4	0.4	4.0	0.7	5.6	0.2	6.0	20
t _{PD}	Delay	В	А	0.6	4.7	0.5	5.3	0.6	5.0	1.2	5.8	1.0	6.1	ns
t	Output Enable		А	0.9	12	2.0	9.0	1.7	7.0	1.6	7.9	1.6	8.0	ns
t _{EN}	Output Enable		В	0.7	5.7	1.5	5.3	2.2	6.1	2.2	7.0	1.2	7.8	115
tava	Output Disable		А	2	6.8	1.6	6.2	0.7	6.5	1.5	6.0	2.0	6.5	ns
t _{DIS}	Output Disable		В	1.2	6	1.4	6.0	1.0	5.6	1.7	8.2	0.9	9.0	115
t _{OSK}	Output to Out- put Skew				0.15		0.15		0.15		0.15		0.15	ns
V _{CCA} = 1.6	65 – 1.95 V			-				-				-	-	-
	Propagation	А	В	1.1	4.2	0.8	4.3	0.9	4.7	1.0	6.0	0.6	6.4	
t _{PD}	Delay	В	А	1.2	4.5	1.3	5.5	0.9	5.8	1.8	6.7	1.4	6.5	ns
+	Output Enable		А	2.2	9.7	2.0	8.5	2.2	8.9	2.1	9.5	2.5	10.0	20
t _{EN}			В	0.5	8.2	2.7	8.1	2.7	8.1	2.7	8.3	1.8	9.0	ns
tore	Output Disable		А	2	9.3	1.8	8.0	1.5	8.0	2.5	8.8	2.1	8.6	ns
t _{DIS}			В	1.8	6.2	2.0	6.1	1.0	5.5	2.5	8.3	2.1	8.8	115
t _{OSK}	Output to Out- put Skew				0.15		0.15		0.15		0.15		0.15	ns
V _{CCA} = 1.4	I – 1.6 V													
t _{PD}	Propagation Delay	A	B	1.2	5	1.3	5.8	1.0	5.5	1.5	6.3	1.7	6.7	ns
	Doidy	В	A	1	5.5	0.7	7.3	0.9	7.6	1.5	7.4	1.8	6.8	

AC ELECTRICAL CHARACTERISTICS – See Figure 3

							-	-55°C to	o +115°C	;				
					V _{CCB} (V)									
				4.0	4.0 - 4.5		3.0 - 3.6		2.3 – 2.7		7 1.65 – 1.95		1.4 – 1.6	
Symbol	Parameter	From	То	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Unit

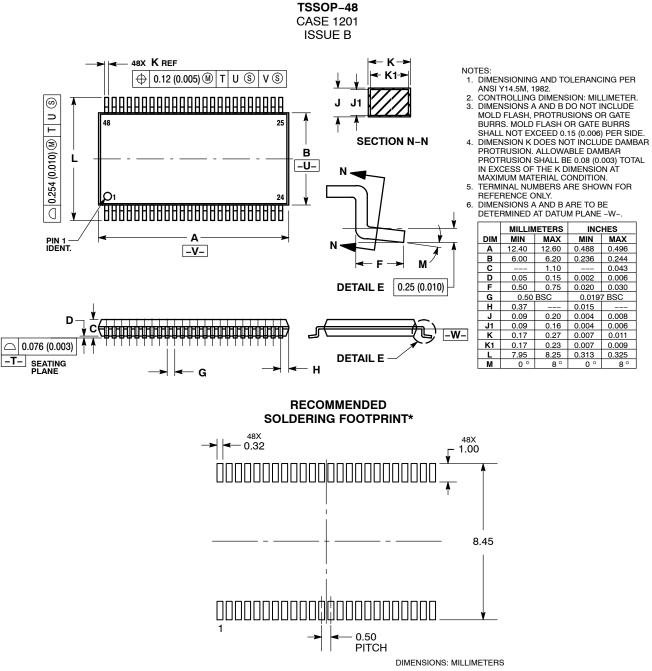
V_{CCA} = 1.4 – 1.6 V


t _{EN}	Output Enable	А	3	11.5	2.1	10.5	2.3	10.5	2.7	12.0	2.6	12.8	2
		В	2	10	3.2	10.7	3.2	10.8	3.2	10.2	2.7	10.6	ns
t _{DIS}	Output Disable	А	3	12	2.0	10.5	1.7	10.5	2.5	9.5	2.1	9.7	
		В	1.2	6	1.3	6.4	1.1	6.5	2.5	8.5	2.1	8.8	ns
^t osĸ	Output to Out- put Skew			0.15		0.15		0.15		0.15		0.15	ns

CAPACITANCES

Symbol	Parameter	Output State	Test Conditions	Typ (Note 6)	Unit
C _{IN}	Control Pin Input Capacitance		V _I = 3.3 V or GND	3.5	pF
C _{I/O}	I/O Pin Input Capacitance		$V_{O} = 3.3 \text{ V or GND}$	5.0	pF
	Power Dissipation Capacitance per	Enabled		14.0	
C _{PDA}	Transceiver, A-Port Input, B-Port Output	Disabled		7.0	pF
(Note 7)	Power Dissipation Capacitance per	Enabled	C _L = 0 pF, f = 10 MHz	20.0	
	Transceiver, B-Port Input, A-Port Output	Disabled		7.0	
	Power Dissipation Capacitance per	Enabled		7.0 20.0	
CPDB	Transceiver, A-Port Input, B-Port Output	Disabled		7.0	- 5
(Note 7)	Power Dissipation Capacitance per	Enabled	C _L = 0 pF, f = 10 MHz	20.0	pF
	Transceiver, B-Port Input, A-Port Output	Disabled		7.0	

6. Typical values are at $V_{CCA} = V_{CCB} = 3.3 \text{ V}$, $T_A = +25^{\circ}\text{C}$. 7. C_{PD} is defined as the value of the IC's equivalent capacitance from which the operating current can be calculated from: I_{CC} (operating) $\approx C_{PD} \times V_{CC} \times f_{IN} \times N_{SW}$ where $I_{CC} = I_{CCA} + I_{CCB}$ and N_{SW} = total number of outputs switching.



- NOTES: A. CL includes probe and jig capacitance.
 - B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.
 - C. All input pulses are supplied by generators having the following characteristics: PRR≤ 10 MHz, Z_O = 50 Ω, dv/dt ≥ 1 V/ns. D. The outputs are measured one at a time, with one transition per measurement.

 - E. tPLZ and tPHZ are the same as tdis.
 - F. t_{PZL} and t_{PZH} are the same as t_{en}.
 - G. tPLH and tPHL are the same as tpd.
 - H. V_{CCI} is the V_{CC} associated with the input port.
 - I. V_{CCO} is the V_{CC} associated with the output port.

Figure 3. Load Circuit and Voltage Waveforms

PACKAGE DIMENSIONS

*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor and **()** are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without further notice to any product for the application or use of any product or circuit, and specifically disclaims any and bury in different applications and actual performance may vary over time. All operating parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended to surport or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death massociated with such unintended or unauthorized use, even if such claim alleges that SCILLC is an Equal Opportunity/Affirmative Acti

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support:

Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81–3–5817–1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

NLA16T245/D

ON Semiconductor and **()** are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without further notice to any product for the application or use of any product or circuit, and specifically disclaims any and bury in different applications and actual performance may vary over time. All operating parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended to surport or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death massociated with such unintended or unauthorized use, even if such claim alleges that SCILLC is an Equal Opportunity/Affirmative Acti

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support:

Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81–3–5817–1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

NLA16T245/D