

MOS FIELD EFFECT TRANSISTOR NP82N06MLG, NP82N06NLG

SWITCHING N-CHANNEL POWER MOS FET

DESCRIPTION

The NP82N06MLG and NP82N06NLG are N-channel MOS Field Effect Transistors designed for high current switching applications.

ORDERING INFORMATION

PART NUMBER	LEAD PLATING	PACKING	PACKAGE
NP82N06MLG-S18-AY Note	D (T:)	Tube	TO-220 (MP-25K) typ. 1.9 g
NP82N06NLG-S18-AY Note	Pure Sn (Tin)	50 p/tube	TO-262 (MP-25SK) typ. 1.8 g

Note Pb-free (This product does not contain Pb in the external electrode.)

FEATURES

- Logic level
- Built-in gate protection diode
- Super low on-state resistance

 $R_{DS(on)1}$ = 7.4 m Ω MAX. (VGS = 10 V, ID = 41 A)

 $R_{DS(on)2} = 9.7 \text{ m}\Omega \text{ MAX.} \text{ (Vgs} = 5 \text{ V, Ip} = 41 \text{ A)}$

High current rating

 $I_{D(DC)} = \pm 82 \text{ A}$

• Low input capacitance C_{iss} = 5700 pF TYP.

• Designed for automotive application and AEC-Q101 qualified

180

(TO-220)

ABSOLUTE MAXIMUM RATINGS (TA = 25°C)

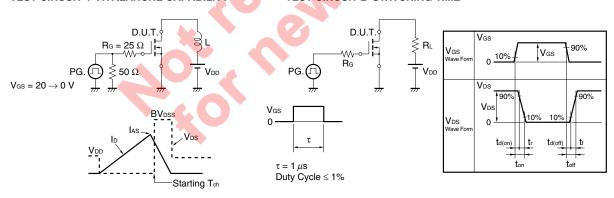
VDSS	60	V
Vgss	±20	V
ID(DC)	±82	Α
ID(pulse)	±270	Α
P _{T1}	143	W
P _{T2}	1.8	W
Tch	175	$^{\circ}\text{C}$
Tstg	-55 to +175	°C
IAR	37	Α
Ear	137	mJ
	VGSS ID(DC) ID(pulse) PT1 PT2 Tch Tstg IAR	VGSS ±20 ID(DC) ±82 ID(pulse) ±270 PT1 143 PT2 1.8 Tch 175 Tstg -55 to +175 IAR 37

Notes 1. PW \leq 10 μ s, Duty Cycle \leq 1% 2. T_{ch} \leq 150°C, R_G = 25 Ω

Channel to Case Thermal Resistance Rth(ch-C) 1.05 °C/W Channel to Ambient Thermal Resistance Rth(ch-A) 83.3 °C/W

The information in this document is subject to change without notice. Before using this document, please confirm that this is the latest version.

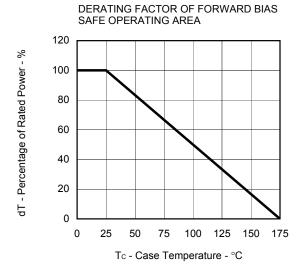
Not all products and/or types are available in every country. Please check with an NEC Electronics sales representative for availability and additional information.

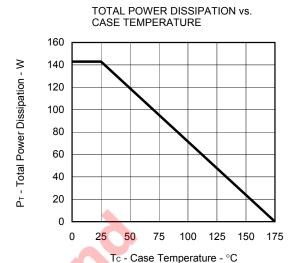

ELECTRICAL CHARACTERISTICS (TA = 25°C)

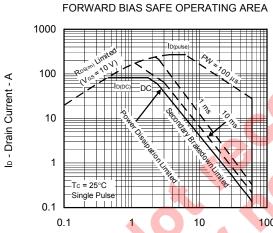
SYMBOL	TEST CONDITIONS	MIN.	TYP.	MAX.	UNIT
IDSS	V _{DS} = 60 V, V _{GS} = 0 V			1	μΑ
Igss	V _{GS} = ±20 V, V _{DS} = 0 V			±10	μΑ
V _{GS(th)}	V _{DS} = V _{GS} , I _D = 250 μA	1.5		2.5	٧
y _{fs}	V _{DS} = 5 V, I _D = 41 A	19	68		S
RDS(on)1	V _{GS} = 10 V, I _D = 41 A		5.9	7.4	mΩ
R _{DS(on)2}	V _{GS} = 5 V, I _D = 41 A		6.7	9.7	mΩ
Ciss	V _{DS} = 25 V,		5700	8550	pF
Coss	V _{GS} = 0 V,		420	630	pF
Crss	f = 1 MHz		275	500	pF
t _{d(on)}	V _{DD} = 20 V, I _D = 41 A,		28	70	ns
tr	V _{GS} = 10 V,		22	60	ns
t _{d(off)}	R _G = 0 Ω	>	79	160	ns
tf			9	30	ns
Q _G	V _{DD} = 48 V,		106	160	nC
Qgs	V _{GS} = 10 V,		29		nC
Q _{GD}	I _D = 82 A	5	35		nC
V _{F(S-D)}	I _F = 82 A, V _{GS} = 0 V		0.9	1.5	V
trr	IF = 82 A, VGS = 0 V,		43		ns
Qrr	di/dt = 100 A/μs		65		nC
	IDSS IGSS VGS(th) yfs RDS(on)1 RDS(on)2 Ciss Coss Crss td(on) tr td(off) tr QG QGS QGD VF(S-D) trr	IDSS VDS = 60 V, VGS = 0 V IGSS VGS = ± 20 V, VDS = 0 V VGS(th) VDS = VGS, ID = ± 250 μA Jyts VDS = 5 V, ID = ± 41 A RDS(on)1 VGS = ± 10 V, ID = ± 41 A RDS(on)2 VGS = ± 5 V, ID = ± 41 A Ciss VDS = ± 25 V, ID = ± 41 A Ciss VDS = ± 25 V, ID = ± 41 A Ciss VGS = 0 V, ID = ± 41 A Tr VGS = ± 10 V, ID = ± 41 A, IT VGS = ± 10 V, ID = ± 41 A, IT VGS = ± 10 V, ID = ± 41 A, IT VGS = ± 10 V, ID = ± 41 A, IT VGS = ± 10 V, ID = ± 41 A, IT VGS = ± 10 V, ID = ± 41 A, IT VGS = ± 10 V, ID = ± 41 A, IT VGS = ± 10 V, ID = ± 41 A, IT VGS = ± 10 V, IT VGS = ± 10 V, ID = ± 41 A, IT VGS = ± 10 V, IT VGS = ± 10 V, ID = ± 41 A, IT VGS = ± 10 V, ID = ± 10 A, IT VGS = ± 10 V, ID = ± 41 A, IT VGS = ± 10 V, ID = ± 41 A, IT VGS = ± 10 V, ID = ± 41 A, IT VGS = ± 10 V, ID = ± 41 A, IT VGS = ± 10 V, ID = ± 10 A, IT VGS = ± 10 V, ID = ± 10 A, IT VGS = ± 10 V, ID = ± 10 A, IT VGS = ± 10 V, ID = ± 10 A, IT VGS	IDSS	IDSS VDS = 60 V, VGS = 0 V IGSS VGS = ±20 V, VDS = 0 V VGS(th) VDS = VGS, ID = 250 μ A 1.5 I yIs VDS = 5 V, ID = 41 A 19 68 RDS(on)1 VGS = 10 V, ID = 41 A 6.7 Ciss VDS = 25 V, ID = 41 A 6.7 Coss VGS = 0 V, ID = 41 A 275 td(on) VDD = 20 V, ID = 41 A, ID = 41 A 28 tr VGS = 10 V, ID = 41 A, ID = 41 A 22 td(off) RG = 0 Ω 79 tr 9 9 QG VDD = 48 V, ID = 48 V, ID = 40 V, ID =	IDSS

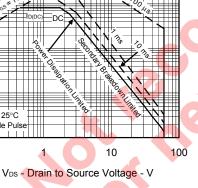
Note Pulsed test

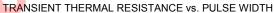
TEST CIRCUIT 1 AVALANCHE CAPABILITY

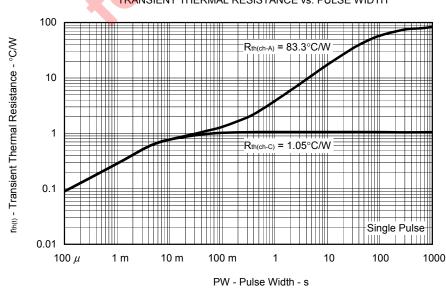

TEST CIRCUIT 2 SWITCHING TIME

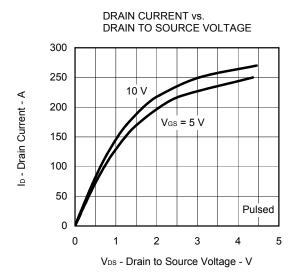


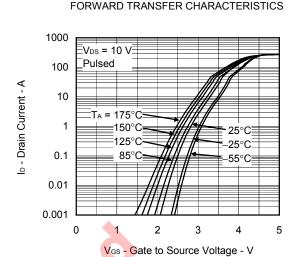

TEST CIRCUIT 3 GATE CHARGE

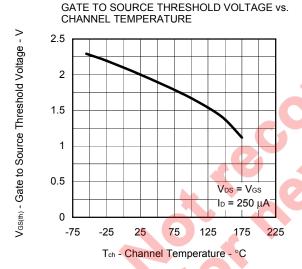

$$\begin{array}{c|c} D.U.T. \\ \hline \\ la = 2 \text{ mA} \\ \hline \\ PG. \\ \hline \\ \end{array} \begin{array}{c} SDU \\ \hline \\ \end{array} \begin{array}{c} D.U.T. \\ \hline \\ \hline \\ \end{array} \begin{array}{c} \\ \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \begin{array}{c}$$

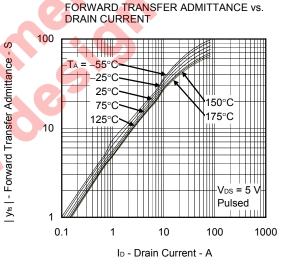

TYPICAL CHARACTERISTICS (TA = 25°C)

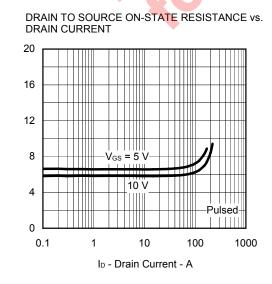


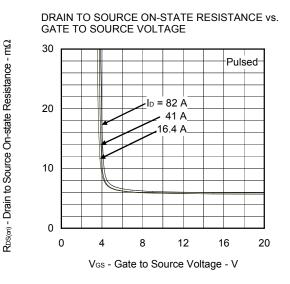


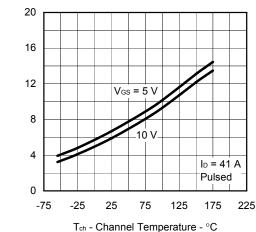


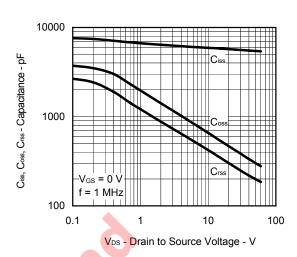




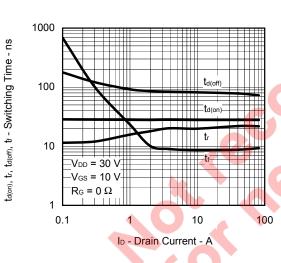


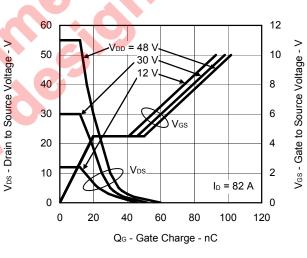


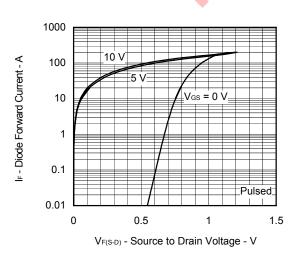


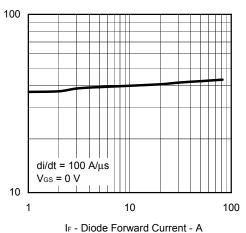

R_{DS(m)} - Drain to Source On-state Resistance - mΩ

RDS(on) - Drain to Source On-state Resistance - m\Omega

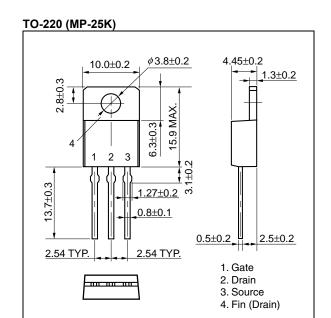


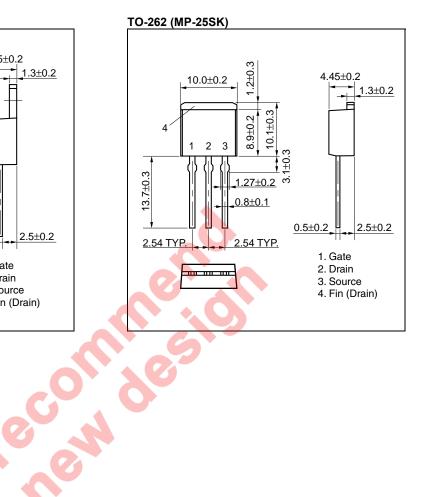

CAPACITANCE vs. DRAIN TO SOURCE VOLTAGE

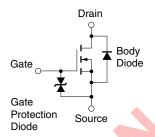

SWITCHING CHARACTERISTICS


DYNAMIC INPUT/OUTPUT CHARACTERISTICS

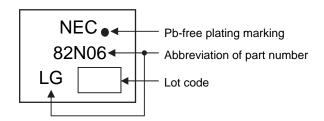
SOURCE TO DRAIN DIODE FORWARD VOLTAGE




REVERSE RECOVERY TIME vs. DIODE FORWARD CURRENT


tr - Reverse Recovery Time - ns

PACKAGE DRAWINGS (Unit: mm)


EQUIVALENT CIRCUIT

Remark The diode connected between the gate and source of the transistor serves as a protector against ESD. When this device actually used, an additional protection circuit is externally required if a voltage exceeding the rated voltage may be applied to this device.

MARKING INFORMATION

RECOMMENDED SOLDERING CONDITIONS

These products should be soldered and mounted under the following recommended conditions.

For soldering methods and conditions other than those recommended below, please contact an NEC Electronics sales representative.

For technical information, see the following website.

Semiconductor Device Mount Manual (http://www.necel.com/pkg/en/mount/index.html)

Soldering Method	Soldering Conditions	Recommended Condition Symbol
Wave soldering NP82N06MLG, NP82N06NLG	Maximum temperature (Solder temperature): 260°C or below Time: 10 seconds or less Maximum chlorine content of rosin flux: 0.2% (wt.) or less	THDWS
Partial heating NP82N06MLG, NP82N06NLG	Maximum temperature (Pin temperature): 350°C or below Time (per side of the device): 3 seconds or less Maximum chlorine content of rosin flux: 0.2% (wt.) or less	P350

Caution Do not use different soldering methods together (except for partial heating).

- The information in this document is current as of May, 2009. The information is subject to change
 without notice. For actual design-in, refer to the latest publications of NEC Electronics data sheets,
 etc., for the most up-to-date specifications of NEC Electronics products. Not all products and/or
 types are available in every country. Please check with an NEC Electronics sales representative for
 availability and additional information.
- No part of this document may be copied or reproduced in any form or by any means without the prior
 written consent of NEC Electronics. NEC Electronics assumes no responsibility for any errors that may
 appear in this document.
- NEC Electronics does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from the use of NEC Electronics products listed in this document or any other liability arising from the use of such products. No license, express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Electronics or others.
- Descriptions of circuits, software and other related information in this document are provided for illustrative purposes in semiconductor product operation and application examples. The incorporation of these circuits, software and information in the design of a customer's equipment shall be done under the full responsibility of the customer. NEC Electronics assumes no responsibility for any losses incurred by customers or third parties arising from the use of these circuits, software and information.
- While NEC Electronics endeavors to enhance the quality and safety of NEC Electronics products, customers agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. In addition, NEC Electronics products are not taken measures to prevent radioactive rays in the product design. When customers use NEC Electronics products with their products, customers shall, on their own responsibility, incorporate sufficient safety measures such as redundancy, fire-containment and anti-failure features to their products in order to avoid risks of the damages to property (including public or social property) or injury (including death) to persons, as the result of defects of NEC Electronics products.
- NEC Electronics products are classified into the following three quality grades: "Standard", "Special" and "Specific".
 - The "Specific" quality grade applies only to NEC Electronics products developed based on a customer-designated "quality assurance program" for a specific application. The recommended applications of an NEC Electronics product depend on its quality grade, as indicated below. Customers must check the quality grade of each NEC Electronics product before using it in a particular application.
 - "Standard": Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots.
 - "Special": Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support).
 - "Specific": Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems and medical equipment for life support, etc.

The quality grade of NEC Electronics products is "Standard" unless otherwise expressly specified in NEC Electronics data sheets or data books, etc. If customers wish to use NEC Electronics products in applications not intended by NEC Electronics, they must contact an NEC Electronics sales representative in advance to determine NEC Electronics' willingness to support a given application.

(Note)

- (1) "NEC Electronics" as used in this statement means NEC Electronics Corporation and also includes its majority-owned subsidiaries.
- (2) "NEC Electronics products" means any product developed or manufactured by or for NEC Electronics (as defined above).