

NPS3005

0.5 V to 5.5 V, 6 A, 15 m Ω , single channel load switch with soft start

Rev. 1.1 — 10 June 2025

Product data sheet

1. General description

NPS3005 is a single channel load switch with an adjustable soft start. It contains a 6 A continuous current rated N-channel MOSFET that can operate over an input voltage range of 0.5 V to 5.5 V.

NPS3005 is controlled by an EN pin which supports down to 1.2 V control voltage.

NPS3005 provides stable On-resistance with an extra BIAS pin operating from 1.5 V to 5.5 V.

NPS3005 integrates over temperature protection. The internal MOSFET will be turned off when the junction temperature exceeds 160 °C and will be turned on automatically when the junction temperature drops by 20 °C.

NPS3005 integrates an 230 Ω on-chip resistor between output and ground pin for Quick Output Discharge (QOD) when the switch is turned off.

The NPS3005 is offered 8 pin 2 mm x 2 mm HWSON8 package with thermal pad for better thermal conductivity. this product family is characterized for operation over a -40 °C to +105 °C ambient temperature range.

2. Features and benefits

- Bias voltage range: 1.5 V to 5.5 V
- Input voltage range: 0.5 V to 5.5 V
- Maximum continuous current (I_{MAX}) : 6 A
- 15 mΩ (typical) on-resistance
- 1.2 V control logic compatible
- Adjustable soft start
- Quick output discharge
- Thermal shutdown
- ESD protection:
 - HBM ANSI/ESDA/JEDEC JS-001 exceeds 2000 V
 - CDM ANSI/ESDA/JEDEC JS-002 exceeds 1000 V
- SOT8067-1 (HWSON8) with thermal pad (plastic thermal enhanced very very thin Small Outline packages, no leads; 8 terminals; 0.5 mm pitch; 2.0 mm x 2.0 mm x 0.75 mm body)
- Specified from -40 °C to +105 °C

3. Applications

- Solid State Drive (SSD)
- Notebooks and Netbooks
- Tablet PC
- Telecom/Networking/Datacom
- Set-top box
- Optical Module
- Consumer Electronic

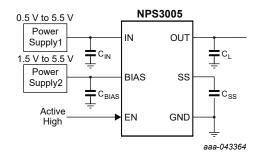


Fig. 1. Typical application circuit

ne<mark>x</mark>peria

4. Ordering information

Table 1. Ordering information							
Type number	Package						
	Temperature range	Name	Description	Version			
NPS3005GP	-40 °C to +105 °C	HWSON8	Plastic thermal enhanced very very thin small outline package; no leads; 8 terminals; 0.5 mm pitch, 2.0 × 2.0 × 0.75 mm body	<u>SOT8067-1</u>			

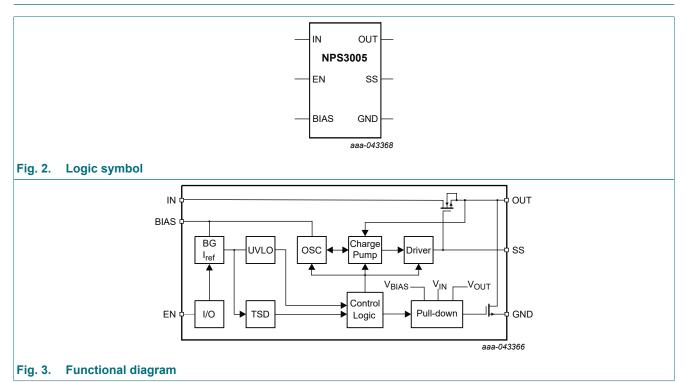
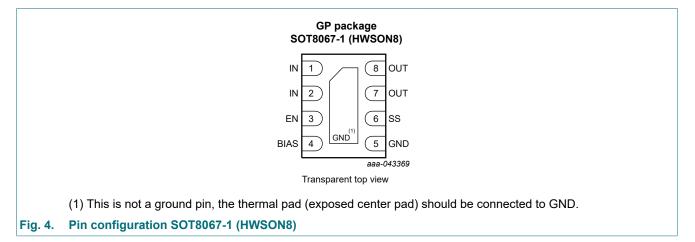

5. Marking

Table 2. Marking	
Type number	Marking code
NPS3005GP	s35

6. Selection guide

Table 3. Selection guide					
Type number	Enable	R _{ON}	I _{MAX}	QOD	
NPS3005GP	Active high	15 mΩ	6 A	YES	


7. Functional diagram

NPS3005

8. Pinning information

8.1. Pinning

8.2. Pin description

Table 4. Pi	n descript	ion	
Symbol	Pin	IO	Description
IN	1, 2	I	Input power supply. At least 1 μF input bypass ceramic capacitor recommended for minimizing V_{IN} dip.
EN	3	I	Enable input of switch. Active High to enable NPS3005. Do not leave floating.
BIAS	4	I	Supply voltage to internal control circuit.
GND	5		Ground pin of the circuitry. All voltage levels are measured with respect to this pin. Connect externally to Power PAD
SS	6	0	Soft start control of switch. A capacitor from this pin to ground sets the V_{OUT} rise slew rate.
OUT	7, 8	0	Output to the load.
PAD	-	PAD	Connect Thermal PAD to ground externally to have better thermal performance.

ent feed

9. Limiting values

Table 5. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to GND (ground = 0 V).[1]

Symbol	Parameter	Conditions	Min	Max	Unit
V _{IN}	input voltage		-0.3	6	V
V _{OUT}	output voltage		-0.3	6	V
V _{BIAS}	bias voltage		-0.3	6	V
V _{EN}	enable voltage		-0.3	6	V
I _{MAX}	maximum continuous switch current		-	6	A
I _{PLS}	maximum pulsed switch current	pulse <300 µs; 2% duty cycle	-	8	A
Tj	junction temperature		-	150	°C
T _{stg}	storage temperature		-65	150	°C

[1] Stresses beyond those listed under Limiting values may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

10. ESD ratings

Table 6. ESD ratings

Symbol	Parameter	Conditions	Value	Unit
V	V _{ESD} electrostatic discharge voltage	HBM: ANSI/ESDA/JEDEC JS-001 class 2	±2000	V
V ESD		CDM: ANSI/ESDA/JEDEC JS-002 class C3	±1000	V

11. Recommended operating conditions

Table 7. Recommended operating conditions

Symbol	Parameter	Conditions	Min	Max	Unit
V _{IN}	input voltage		0.5	V _{BIAS}	V
V _{BIAS}	bias voltage		1.5	5.5	V
V _{EN}	enable voltage		0	5.5	V
V _{OUT}	output voltage		-	V _{IN}	V
V _{IH}	HIGH level input voltage	EN pin	1	5.5	V
V _{IL}	LOW level input voltage	EN pin	0	0.4	V
T _{amb}	ambient temperature		-40	105	°C

12. Recommended components

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
C _{IN}	capacitor on pin IN		-	1	-	μF
C _{OUT}	capacitor on pin OUT		-	0.1	-	μF
C _{BIAS}	capacitor on pin BIAS		-	1	-	μF
C _{SS}	capacitor on pin SS		0	-	100	nF

ent feedt

13. Static characteristics

Table 9. Static characteristics

At recommended operating conditions; voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	T _{amb}	Min	Тур	Max	Unit
Power su	pply and current,	V _{BIAS} = 5 V			1		-
I _{Q(BIAS)}	quiescent current	BIAS pin; no load; $V_{IN} = V_{EN} = 5 V$	–40 °C to +105 °C	-	37	45	μA
I _{SD(BIAS)}	shutdown current	BIAS pin; V _{EN} = V _{OUT} = 0 V	–40 °C to +105 °C	-	0.5	2.3	μA
I _{SD(IN)}	off-state supply	IN pin; V _{EN} = V _{OUT} = 0 V					
	current	V _{IN} = 5 V	–40 °C to +85 °C	-	0.87	6.9	μA
			–40 °C to +105 °C	-	7.3	22	μA
		V _{IN} = 3.3 V	–40 °C to +85 °C	-	0.6	4.5	μA
			–40 °C to +105 °C	-	5.2	15	μA
		V _{IN} = 1.8 V	–40 °C to +85 °C	-	0.44	2.5	μA
			–40 °C to +105 °C	-	4.2	8.5	μA
		V _{IN} = 0.5 V	–40 °C to +85 °C	-	0.33	2	μA
			–40 °C to +105 °C	-	3.3	7	μA
I _{EN}	input leakage current	EN pin; V _{EN} = 5.5 V	–40 °C to +105 °C	-	-	0.1	μA
V _{EN(hys)}	input hysteresis voltage	EN pin; V _{IN} = 5 V	25 °C	-	120	-	mV
R _{PD}	output pull-down resistance	V _{IN} = 5 V, V _{EN} = 0 V	–40 °C to +105 °C	-	230	320	Ω
T _{SD}	thermal shutdown	junction temperature rising	-	-	160	-	°C
T _{SD(hys)}	thermal shutdown hysteresis	junction temperature falling	-	-	20	-	°C

NPS3005

Symbol	Parameter	Conditions	T _{amb}	Min	Тур	Max	Unit
Power su	pply and current,	V _{BIAS} = 2.5 V	1				-
I _{Q(BIAS)}	quiescent current	BIAS pin; no load; V_{IN} = V_{EN} = 2.5 V	25 °C	-	18	27	μA
		–40 °C to +105 °C	-	23	32	μA	
I _{SD(BIAS)}	shutdown current	BIAS pin; V _{EN} = V _{OUT} = 0 V	25 °C	-	0.2	0.6	μA
			–40 °C to +105 °C		0.3	1	μA
I _{SD(IN)} off-state supply		IN pin; V _{EN} = V _{OUT} = 0 V					
	current $V_{IN} = 2.5 V$ $V_{IN} = 1.8 V$ $V_{IN} = 0.5 V$	V _{IN} = 2.5 V	–40 °C to +85 °C	-	0.51	2.9	μA
			–40 °C to +105 °C	-	4.6	9.5	μA
		V _{IN} = 1.8 V	–40 °C to +85 °C	-	0.44	2.5	μA
			–40 °C to +105 °C	-	4.2	8.5	μA
		V _{IN} = 0.5 V	–40 °C to +85 °C	-	0.33	2	μA
			–40 °C to +105 °C	-	3.2	7	μA
I _{EN}	input leakage current	EN pin; V _{EN} = 5.5 V	–40 °C to +105 °C	-	-	0.1	μA
V _{EN(hys)}	input hysteresis voltage	EN pin; V _{IN} = 2.5 V	25 °C	-	85	-	mV
R _{PD}	output pull-down resistance	V _{IN} = 2.5 V, V _{EN} = 0 V	–40 °C to +105 °C	-	230	340	Ω
T _{SD}	thermal shutdown	junction temperature rising	-	-	160	-	°C
T _{SD(hys)}	thermal shutdown hysteresis	junction temperature falling	-	-	20	-	°C

0.5~V to 5.5 V, 6 A, 15 m $\Omega,$ single channel load switch with soft start

NPS3005 Submit document feedback

NPS3005

0.5 V to 5.5 V, 6 A	, 15 mΩ, single channel loa	d switch with soft start
---------------------	-----------------------------	--------------------------

Symbol	Parameter	Conditions	T _{amb}	Min	Тур	Max	Unit
Power su	pply and current,	V _{BIAS} = 2 V					
I _{Q(BIAS)}	quiescent current	BIAS pin; no load; V_{IN} = V_{EN} = 2 V	25 °C	-	18	25	μA
			–40 °C to +105 °C	-	22	30	μA
I _{SD(BIAS)}	shutdown current	BIAS pin; V _{EN} = V _{OUT} = 0 V	25 °C	-	0.2	0.6	μA
			–40 °C to +105 °C	-	0.3	1	μA
I _{SD(IN)}	off-state supply	IN pin; V _{EN} = V _{OUT} = 0 V					+
. ,	current	V _{IN} = 2 V	–40 °C to +85 °C	-	0.46	2.8	μA
			–40 °C to +105 °C	-	4.3	9.5	μA
		V _{IN} = 1.8 V	–40 °C to +85 °C	-	0.44	2.5	μA
			–40 °C to +105 °C	-	4.2	8.5	μA
		V _{IN} = 1.2 V	–40 °C to +85 °C	-	0.39	2.3	μA
			–40 °C to +105 °C	-	3.8	8	μΑ
		V _{IN} = 0.5 V	–40 °C to +85 °C	-	0.33	2	μA
			–40 °C to +105 °C	-	3.3	7	μΑ
I _{EN}	input leakage current	EN pin; V _{EN} = 5.5 V	–40 °C to +105 °C	-	-	0.1	μA
V _{EN(hys)}	input hysteresis voltage	EN pin; V _{IN} = 2 V	25 °C	-	80	-	mV
R _{PD}	output pull-down resistance	V _{IN} = 2 V, V _{EN} = 0 V	–40 °C to +125 °C	-	230	360	Ω
T _{SD}	thermal shutdown	junction temperature rising	-	-	160	-	°C
T _{SD(hys)}	thermal shutdown hysteresis	junction temperature falling	-	-	20	-	°C
Power su	pply and current, '	V _{BIAS} = 1.5 V			1		
I _{Q(BIAS)}	quiescent current	BIAS pin; no load; $V_{IN} = V_{EN} = 1.5 V$	25 °C	-	57	70	μA
. ,			–40 °C to +105 °C	-	70	85	μA
I _{SD(BIAS)}	shutdown current	BIAS pin; V _{EN} = V _{OUT} = 0 V	25 °C	-	0.15	0.5	μA
. ,			–40 °C to +105 °C	-	0.2	1	μA
I _{SD(IN)}	off-state supply	IN pin; V _{EN} = V _{OUT} = 0 V					-
. ,	current	V _{IN} = 1.5 V	–40 °C to +85 °C	-	0.42	2.5	μA
			–40 °C to +105 °C	-	4	8.5	μA
		V _{IN} = 0.5 V	–40 °C to +85 °C	-	0.33	2	μA
			–40 °C to +105 °C	-	3.3	7	μA
I _{EN}	input leakage current	EN pin; V _{EN} = 5.5 V	–40 °C to +105 °C	-	-	0.1	μA
V _{EN(hys)}	input hysteresis voltage	EN pin; V _{IN} = 1.5 V	25 °C	-	70	-	mV
R _{PD}	output pull-down resistance	V _{IN} = 1.5 V, V _{EN} = 0 V	–40 °C to +125 °C	-	230	440	Ω
T _{SD}	thermal shutdown	junction temperature rising	-	-	160	-	°C
T _{SD(hys)}	thermal shutdown hysteresis	junction temperature falling	-	-	20	-	°C

Symbol	Parameter	Conditions	T _{amb}	Min	Тур	Max	Unit
ON resist	tance (R _{ON}), V _{BIAS}	; = 5 V	· · · · ·			•	_
R _{ON}	ON resistance	I _{OUT} = –200 mA, V _{BIAS} = 5 V					
		V _{IN} = 5 V	25 °C	-	15	19	mΩ
			–40 °C to +85 °C	-	-	23	mΩ
			–40 °C to +105 °C	-	-	25	mΩ
		V _{IN} = 3.3 V	25 °C	-	15	19	mΩ
			–40 °C to +85 °C	-	-	23	mΩ
			–40 °C to +105 °C	-	-	25	mΩ
		V _{IN} = 2.5 V	25 °C	-	15	19	mΩ
			–40 °C to +85 °C	-	-	23	mΩ
			–40 °C to +105 °C	-	-	25	mΩ
		V _{IN} = 1.8 V	25 °C	-	15	19	mΩ
			–40 °C to +85 °C	-	-	23	mΩ
			–40 °C to +105 °C	-	-	25	mΩ
		V _{IN} = 1.5 V	25 °C	-	15	19	mΩ
			–40 °C to +85 °C	-	-	23	mΩ
			–40 °C to +105 °C	-	-	25	mΩ
		V _{IN} = 1.2 V	25 °C	-	15	19	mΩ
			–40 °C to +85 °C	-	-	23	mΩ
			–40 °C to +105 °C	-	-	25	mΩ
		V _{IN} = 0.5 V	25 °C	-	15	19	mΩ
			–40 °C to +85 °C	-	-	23	mΩ
			–40 °C to +105 °C	-	-	25	mΩ
ON resist	tance (R _{ON}); V _{BIAS}	s = 2.5 V				•	
R _{ON}	ON resistance	I _{OUT} = –200 mA, V _{BIAS} = 2.5 V					
		V _{IN} = 2.5 V	25 °C	-	20	26	mΩ
			–40 °C to +85 °C	-	-	32	mΩ
			–40 °C to +105 °C	-	-	34	mΩ
		V _{IN} = 1.8 V	25 °C	-	18	23	mΩ
			–40 °C to +85 °C	-	-	29	mΩ
			–40 °C to +105 °C	-	-	31	mΩ
		V _{IN} = 1.5 V	25 °C	-	18	22	mΩ
			–40 °C to +85 °C	-	-	28	mΩ
			–40 °C to +105 °C	-	-	30	mΩ
		V _{IN} = 1.2 V	25 °C	-	18	22	mΩ
			–40 °C to +85 °C	-	-	27	mΩ
			–40 °C to +105 °C	-	-	29	mΩ
		V _{IN} = 0.5 V	25 °C	-	17	21	mΩ
			–40 °C to +85 °C	-	-	26	mΩ
			–40 °C to +105 °C	-	-	27	mΩ

NPS3005

22

-

-

mΩ

mΩ

mΩ

-

-

36

-

-

-

Symbol	Parameter	Conditions	T _{amb}	Min	Тур	Max	Unit
ON resis	tance (R _{ON}); V _{BIAS}	₅ = 2 V				•	_
R _{ON}	ON resistance	I _{OUT} = –200 mA, V _{BIAS} = 2 V					
		V _{IN} = 1.8 V	25 °C	-	20	-	mΩ
			–40 °C to +85 °C	-	-	-	mΩ
			–40 °C to +105 °C	-	-	35	mΩ
		V _{IN} = 1.2 V	25 °C	-	20	-	mΩ
			–40 °C to +85 °C	-	-	-	mΩ
			–40 °C to +105 °C	-	-	35	mΩ
		V _{IN} = 0.5 V	25 °C	-	20	-	mΩ
			–40 °C to +85 °C	-	-	-	mΩ
			–40 °C to +105 °C	-	-	35	mΩ
ON resis	tance (R _{ON}); V _{BIAS}	_S = 1.5 V			1	1	
R _{ON}	ON resistance	I _{OUT} = –200 mA, V _{BIAS} = 1.5 V					
		V _{IN} = 1.5 V	25 °C	-	22	-	mΩ
			–40 °C to +85 °C	-	-	-	mΩ
			–40 °C to +105 °C	-	-	36	mΩ
		V _{IN} = 1.2 V	25 °C	-	22	-	mΩ
			–40 °C to +85 °C	-	-	-	mΩ
			–40 °C to +105 °C	-	-	36	mΩ

25 °C

–40 °C to +85 °C

–40 °C to +105 °C

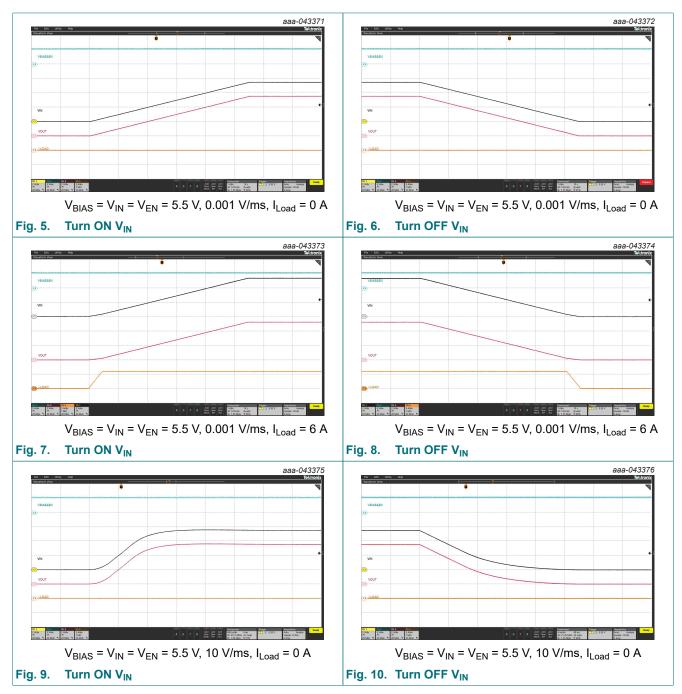
0.5 V to 5.5 V, 6 A, 15 m Ω , single channel load switch with soft start

14. Dynamic characteristics

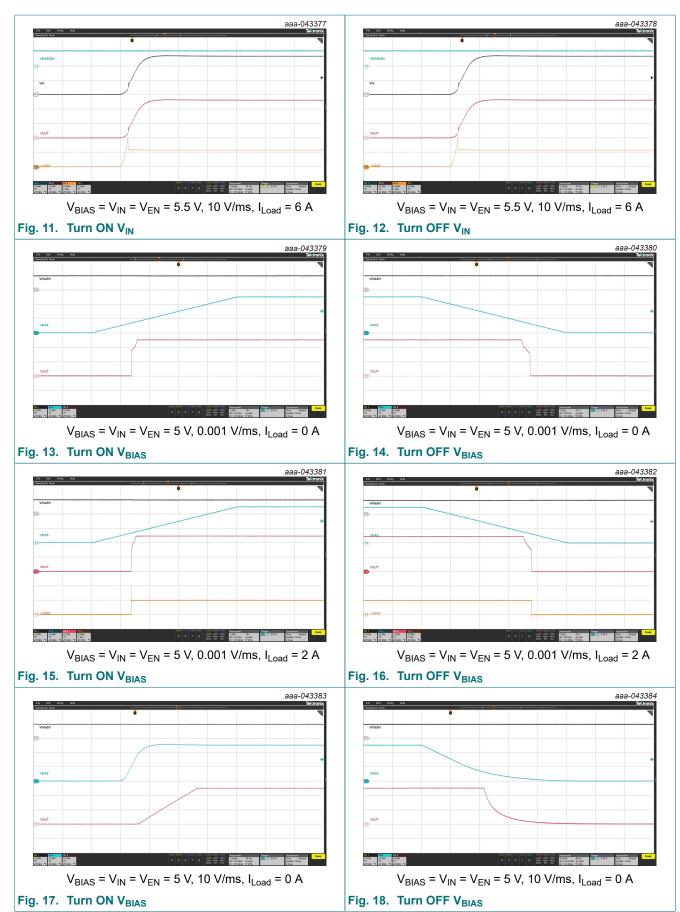
Table 10. Dynamic characteristics

At recommended operating conditions; voltages are referenced to GND (ground = 0 V);

V_{IN} = 0.5 V

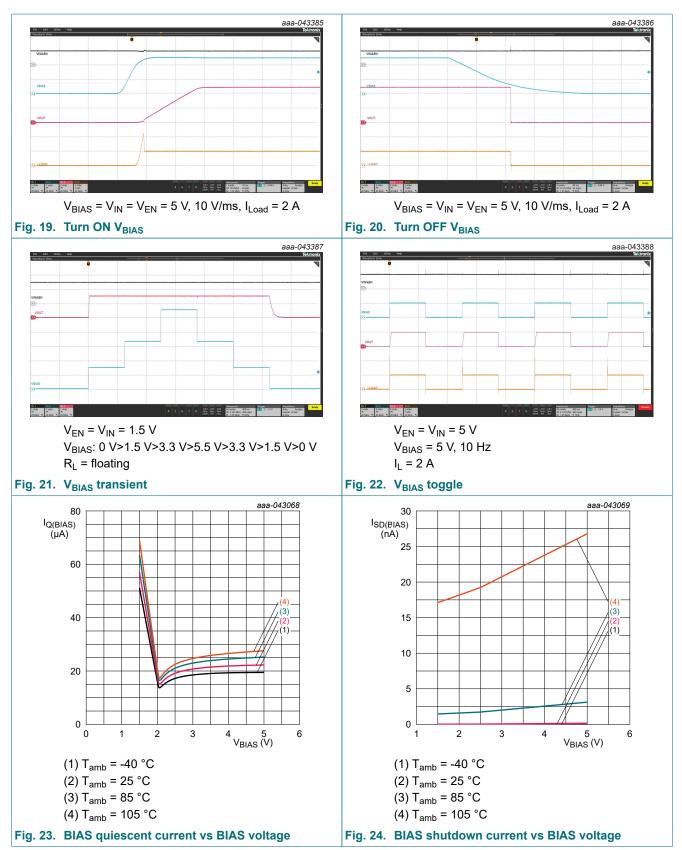

Symbol	Parameter	Conditions	T _{amb} = 25 °C			Unit		
			Min	Тур	Max			
t _{ON}	turn ON time	R_L = 10 Ω, C_L = 0.1 μF, C_{IN} = 1 μF, C_{SS} = 1 nF, V_{EN} = 5 V, 50% V_{EN} to 50% V_{OUT}						
		V _{IN} = V _{BIAS} = 5 V	-	1450	-	μs		
		$V_{IN} = V_{BIAS} = 2.5$	-	2180	-	μs		
t _{OFF}	turn OFF time	R _L = 10 Ω, C _L = 0.1 μF, C _{IN} = 1 μF, C _{SS} = 1 nF, V _{EN} = 5 V	$C_L = 10 \Omega$, $C_L = 0.1 \mu$ F, $C_{IN} = 1 \mu$ F, $C_{SS} = 1 n$ F, $V_{EN} = 5 V$, 50% V_{EN} to 50% V_{OUT}					
		V _{IN} = V _{BIAS} = 5 V	-	2	-	μs		
		$V_{IN} = V_{BIAS} = 2.5$	-	2	-	μs		
t _R	output rise time	to 50% V _{Οι}	JT					
		V _{BIAS} = 5 V, V _{IN} = 1.5 V	-	595	-	μs		
		V _{BIAS} = 5 V, V _{IN} = 1.8 V	-	700	-	μs		
		V _{BIAS} = 5 V, V _{IN} = 3.3 V	-	1190	-	μs		
		V _{BIAS} = 5 V, V _{IN} = 5 V	-	1750	-	μs		
		V _{BIAS} = 2.5 V, V _{IN} = 2.5 V	-	2150	-	μs		
t _F	output fall time	R _L = 10 Ω, C _L = 0.1 μF, C _{IN} = 1 μF, C _{SS} = 1 nF, V _{EN} = 5 V	, 50% V _{EN}	to 50% V _{Οι}	JT			
		V _{BIAS} = 5 V, V _{IN} = 5 V	-	2	-	μs		
		V _{BIAS} = 2.5 V, V _{IN} = 2.5 V	-	2	-	μs		

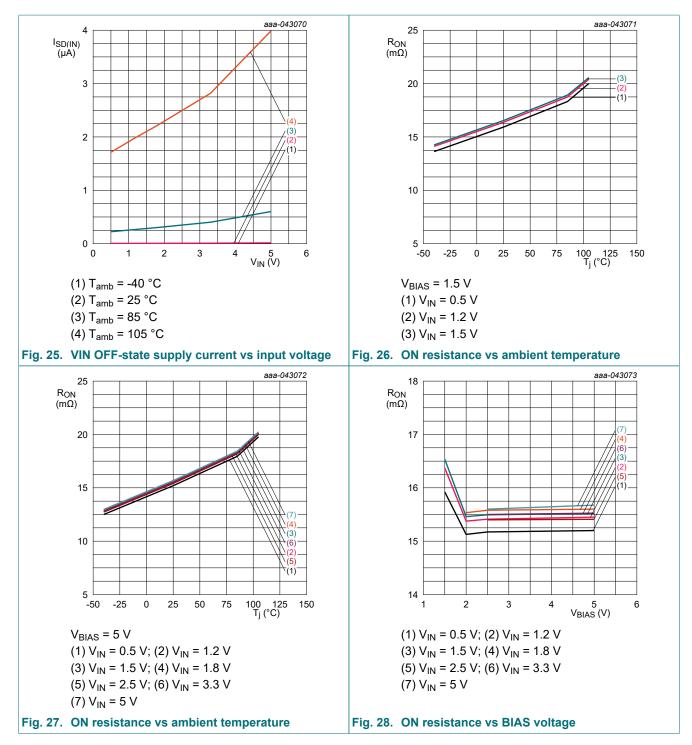
NPS3005 ment feedback Submit docu

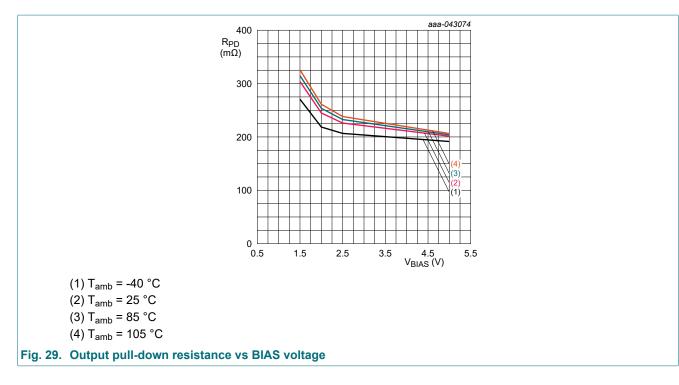

All information provided in this document is subject to legal disclaimers.

Symbol	Parameter	Conditions	T _{amb} = 25 °C		Unit	
			Min	Тур	Мах	
t _{D(EN)}	EN delay time	R_L = 10 Ω, C_L = 0.1 µF, C_{IN} = 1 µF, C_{SS} = 1 nF, V_{EN} = 5 V, 50% V_{EN} to 50% V_{OUT}				
		V _{BIAS} = 5 V, V _{IN} = 5 V	-	600	-	μs
		V _{BIAS} = 2.5 V, V _{IN} = 2.5 V	-	1120	-	μs

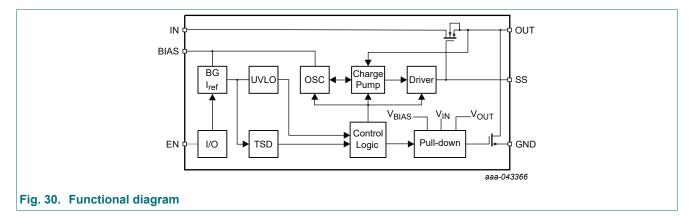
14.1. Typical characteristics


ent feed




NPS3005

NPS3005


NPS3005

15. Detailed description

15.1. Overview

The NPS3005 consists of a 6 A rated N-channel MOSFET (NMOS) transistor with single-channel. The device has configured adjustable slew rate for specific soft start. The OUT pin will be pulled low when the device is disabled. NPS3005 also has thermal shutdown to prevent any damage from overheating.

15.2. Functional diagram

15.3. Feature description

Enable (EN)

The logic enable (pin EN) circuit controls the power switch, a logic high (above 1 V) enables the internal MOSFET. The EN input is compatible with both TTL and CMOS logic levels.

Bias voltage range

To obtain a stable ON resistance, the NPS3005 introduces an additional bias pin, which is connected to the charge pump inside the chip to provide a stable supply voltage for the internal MOSFET.

It is highly recommended to keep the IN pin voltage not larger than the BIAS pin voltage. The device will still be functional if $V_{IN} > V_{BIAS}$ but the ON resistance will be larger.

Adjustable Soft Start

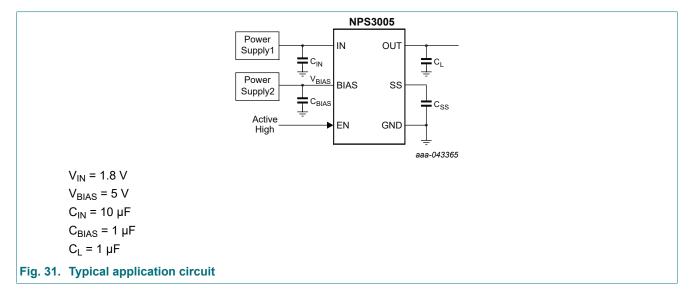
NPS3005 has built in adjustable Soft Start which helps to reduce output current peak, thus to reduce the voltage drop of the input voltage. Soft start time can be adjusted via an external capacitor connected between SS pin and GND. The quick output discharge feature not only prevents output pin from being floating when disabled but also helps to adjust falling time with an external resistor.

Quick output discharge

An internal 230 Ω pull-down resistor is connected between OUT pin and GND when the NPS3005 is disabled to prevent the OUT pin from being floating.

16. Application information

The typical application circuit is shown in Fig. 31. Component selection is explained below.


Input Capacitor

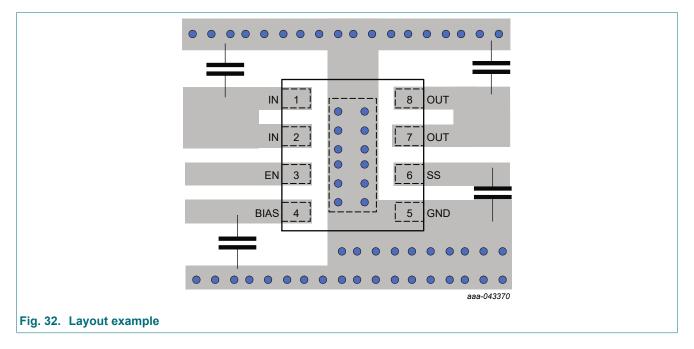
A capacitor of 10 μ F or higher value is recommended to be placed close to the IN pins of NPS3005. This capacitor can reduce the voltage drop caused by the in-rush current during the turn-on transient of the load switch. A higher value capacitor can be used to further reduce the voltage drop during high-current application.

Output Capacitor

A capacitor of 1 μ F or higher value is recommended to be placed between the OUT pins and GND. The switching times are affected by the capacitance. A larger capacitor makes the initial turn-on transient smoother. This capacitor must be large enough to supply a fast transient load to prevent the output from dropping.

Typical Application

17. Layout


Power supply recommendations

The NPS3005 is designed to operate with a V_{IN} range of 0.5 V to 5.5 V, V_{BIAS} range of 1.5 V to 5.5 V. The V_{IN} and V_{BIAS} power supply must be well regulated and placed as close to the device terminal as possible. The power supply must be able to withstand all transient load current steps. In most situations, using an input capacitance (C_{IN}) of 1 μ F is sufficient to prevent the supply voltage from dipping when the switch is turned on. In cases where the power supply is slow to respond to a large transient current or large load current step, additional bulk capacitance may be required on the input.

Layout guidelines

For best performance, all traces must be as short as possible. To be most effective, the input and output capacitors must be placed close to the device to minimize the effects that parasitic trace inductances may have on normal operation. Using wide traces for V_{IN} , V_{OUT} , and GND helps minimize the parasitic electrical effects.

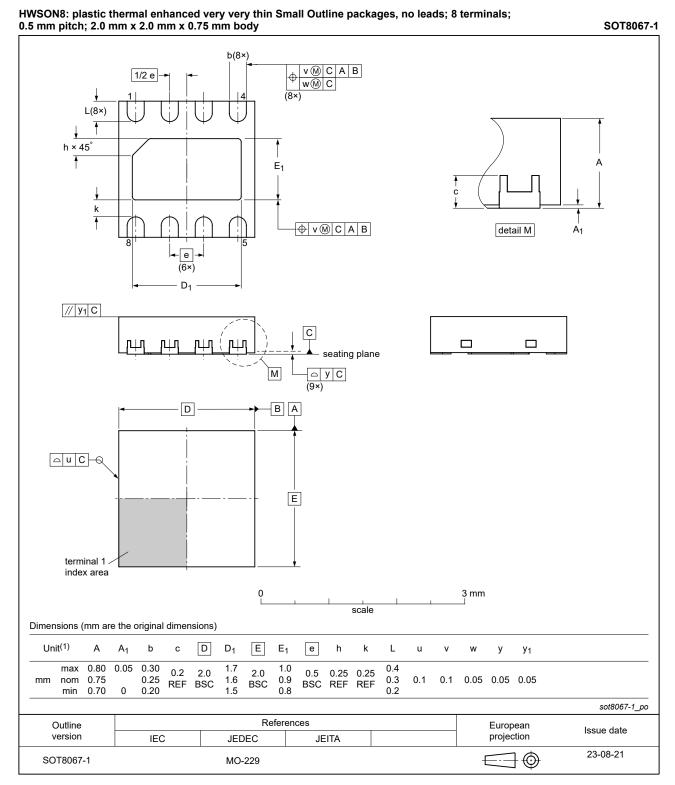
Layout example

18. Thermal considerations

The maximum IC junction temperature should be restricted to 150 °C under normal operating conditions. To calculate the maximum allowable dissipation, $P_{D(max)}$ for a given output current and ambient temperature, the equation as shown below can be used:

$$P_{D(MAX)} = \frac{T_{j(MAX)} - T_{amb}}{\theta_{IA}}$$

Where:


P_{D(MAX)} = maximum allowable power dissipation

 $T_{j(MAX)}$ = maximum allowable junction temperature (150 °C for the NPS3005 devices)

T_{amb} = ambient temperature of the device

 θ_{JA} = junction to air thermal impedance. This parameter is highly dependent upon board layout.

19. Package outline

Fig. 33. Package outline SOT8067-1 (HWSON8)

NPS3005

All information provided in this document is subject to legal disclaimers.

0.5~V to $5.5~V\!\!, 6~A\!\!, 15~m\Omega\!\!,$ single channel load switch with soft start

20. Abbreviations

Acronym	Description
CMOS	Complementary Metal Oxide Semiconductor
TTL	Transistor-Transistor Logic
HBM	Human Body Model
ESD	ElectroStatic Discharge

21. Revision history

Table 12. Revision history

Document ID	Release date	Data sheet status	Change notice	Supersedes		
NPS3005 v.1.1 20250610		Product data sheet	-	-		
Modifications:	• Fig. 1, Fig. 4, F	ig. 28 and <u>Fig. 31</u> have chang	jed.			
NPS3005 v.1.2	20250604	Product data sheet	-	-		

22. Legal information

Data sheet status

Document status [1][2]	Product status [3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

 Please consult the most recently issued document before initiating or completing a design.

- [2] The term 'short data sheet' is explained in section "Definitions".
- [3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the internet at <u>https://www.nexperia.com</u>.

Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. Nexperia does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local Nexperia sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

Product specification — The information and data provided in a Product data sheet shall define the specification of the product as agreed between Nexperia and its customer, unless Nexperia and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the Nexperia product is deemed to offer functions and qualities beyond those described in the Product data sheet.

Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, Nexperia does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. Nexperia takes no responsibility for the content in this document if provided by an information source outside of Nexperia.

In no event shall Nexperia be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, Nexperia's aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the Terms and conditions of commercial sale of Nexperia.

Right to make changes — Nexperia reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — Nexperia products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an Nexperia product can reasonably be expected to result in personal

injury, death or severe property or environmental damage. Nexperia and its suppliers accept no liability for inclusion and/or use of Nexperia products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Quick reference data — The Quick reference data is an extract of the product data given in the Limiting values and Characteristics sections of this document, and as such is not complete, exhaustive or legally binding.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. Nexperia makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using Nexperia products, and Nexperia accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the Nexperia product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

Nexperia does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using Nexperia products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). Nexperia does not accept any liability in this respect.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commercial sale — Nexperia products are sold subject to the general terms and conditions of commercial sale, as published at <u>http://www.nexperia.com/profile/terms</u>, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. Nexperia hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of Nexperia products by customer.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

Non-automotive qualified products — Unless this data sheet expressly states that this specific Nexperia product is automotive qualified, the product is not suitable for automotive use. It is neither qualified nor tested in accordance with automotive testing or application requirements. Nexperia accepts no liability for inclusion and/or use of non-automotive qualified products in automotive equipment or applications.

In the event that customer uses the product for design-in and use in automotive applications to automotive specifications and standards, customer (a) shall use the product without Nexperia's warranty of the product for such automotive applications, use and specifications, and (b) whenever customer uses the product for automotive applications beyond Nexperia's specifications such use shall be solely at customer's own risk, and (c) customer fully indemnifies Nexperia for any liability, damages or failed product claims resulting from customer design and use of the product for automotive applications beyond Nexperia's standard warranty and Nexperia's product specifications.

Translations — A non-English (translated) version of a document is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions.

Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

All information provided in this document is subject to legal disclaimers.

© Nexperia B.V. 2025. All rights reserved

ent feedback

Contents

1. General description	1
2. Features and benefits	1
3. Applications	1
4. Ordering information	2
5. Marking	2
6. Selection guide	2
7. Functional diagram	2
8. Pinning information	3
8.1. Pinning	3
8.2. Pin description	3
9. Limiting values	4
10. ESD ratings	4
11. Recommended operating conditions	4
12. Recommended components	4
13. Static characteristics	5
14. Dynamic characteristics	9
14.1. Typical characteristics	10
15. Detailed description	15
15.1. Overview	15
15.2. Functional diagram	15
15.3. Feature description	15
16. Application information	16
17. Layout	17
18. Thermal considerations	17
19. Package outline	18
20. Abbreviations	19
21. Revision history	19
22. Legal information	20

© Nexperia B.V. 2025. All rights reserved

For more information, please visit: http://www.nexperia.com For sales office addresses, please send an email to: salesaddresses@nexperia.com Date of release: 10 June 2025